首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigated the effects of maternal glucocorticoid exposure in the spiny mouse, a precocial species with a relatively long gestation, few offspring, and in which nephrogenesis is complete before birth. We hypothesized that exposure of the fetus to glucocorticoids before the formation of glomeruli would result in adult hypertensive offspring with fewer nephrons. Furthermore, we hypothesized that this nephron deficit would result from changes in expression of genes involved in branching morphogenesis. Osmotic pumps implanted in pregnant spiny mice at midgestation (day 20) delivered dexamethasone (dex; 125 microg/kg) or saline for 60 h. Females were killed at day 23 of gestation and kidneys were frozen for real-time PCR analysis or allowed to deliver their offspring. At 20 wk of age, blood pressure was measured in the offspring for 1 wk before nephron number was determined using unbiased stereology. Males and females exposed to dex had significantly fewer nephrons (male: saline: 7,870 +/- 27, dex: 6,878 +/- 173; female: saline: 7,526 +/- 62, dex: 5,886 +/- 382; P < 0.001) compared with controls. Dex had no effect on basal blood pressure. Fetal kidneys collected at day 23 of gestation from dex-exposed mothers showed increased mRNA expression of BMP4 (P < 0.05), TGF-beta(1) (P < 0.05), genes known to inhibit branching morphogenesis and gremlin (P < 0.01), an antagonist of BMP4, compared with saline controls. This study shows for the first time an upregulation of branching morphogenic genes in the fetal kidney in a model of excess maternal glucocorticoids that leads to a nephron deficit in the adult. This study also provides evidence that a reduced nephron number does not necessarily lead to development of hypertension.  相似文献   

2.
In rats, maternal protein restriction reduces nephron endowment and often leads to adult hypertension. Sex differences in these responses have been identified. The molecular and genetic bases of these phenomena can best be identified in a mouse model, but effects of maternal protein restriction on kidney development have not been examined in mice. Therefore, we determined how combined prenatal and postnatal protein restriction in mice affects organ weight, glomerular number and dimensions, and renal expression of angiotensin receptor mRNA, in both male and female offspring. C57/BL6/129sv mice received either a normal (20% wt/wt; NP) or low (9% wt/wt; LP) protein diet during gestation and postnatal life. Offspring were examined at postnatal day 30. Protein restriction retarded growth of the kidney, liver, spleen, heart, and brain. All organs except the brain weighed less in female than male offspring. Protein restriction increased normalized (to body weight) brain weight, with females having relatively heavier brains than males. The effects of protein restriction were not sex dependent, except that normalized liver weight was reduced in males but increased in females. Glomerular volume, but not number, was greater in female than in male mice. Maternal protein restriction reduced nephron endowment similarly in male and female mice. Renal expression of AT(1A) receptor mRNA was approximately sixfold greater in female than male NP mice, but similar in male LP and female LP mice. We conclude that maternal protein restriction reduces nephron endowment in mice. This effect provides a basis for future studies of developmental programming in the mouse.  相似文献   

3.
A mutation in the D-loop of the second zinc finger of the DNA-binding domain of the human glucocorticoid receptor (hGR), A458T (GR(dim)), has been suggested to be essential for dimerization and DNA binding of the GR, and genetically altered GR(dim) mice survive, whereas murine GR knockout mice die. Interestingly, thymocytes isolated from the GR(dim) mice were reported to be resistant to glucocorticoid-induced apoptosis. To further evaluate the dim mutations in glucocorticoid-induced apoptosis, we stably expressed either the hGR(dim) (A458T) or the hGR(dim4) (A458T, R460D, D462C, and N454D) mutant receptors in human osteosarcoma (U-2 OS) cells that are devoid of hGR and unresponsive to glucocorticoids. We analyzed these cell lines by comparison with a stable expression hGRα U-2 OS cell line, which undergoes apoptosis after glucocorticoid treatment. Transient reporter gene assays with glucocorticoid response element-driven vectors revealed that the hGR(dim) mutation had diminished steroid responsiveness and cells carrying the hGR(dim4) mutation were unresponsive to steroid, whereas glucocorticoid-induced nuclear factor κB repression was unaffected by either mutation. Interestingly, both the hGR(dim) and hGR(dim4) receptors readily formed dimers as measured by immunoprecipitation. Examination of GR-mediated apoptosis showed that hGR(dim) cells were only partially resistant to apoptosis, whereas hGR(dim4) cells were completely resistant to glucocorticoid-induced cell death despite remaining sensitive to other apoptotic stimuli. Global gene expression analysis revealed that hGR(dim4) cells widely regulated gene expression but differentially regulated apoptotic mRNA when compared with cells expressing wild-type hGRα. These studies challenge conclusions drawn from previous studies of GR dim mutants.  相似文献   

4.
We have previously shown that blockade of ATP-binding cassette transporter A1 (ABCA1) with cyclosporine A (CsA) stimulates the epithelial sodium channel (ENaC) in cultured distal nephron cells. Here we show that CsA elevated systolic blood pressure in both wild-type and apolipoprotein E (ApoE) knockout (KO) mice to a similar level. The elevated systolic blood pressure was completely reversed by inhibition of cholesterol (Cho) synthesis with lovastatin. Inside-out patch-clamp data show that intracellular Cho stimulated ENaC in cultured distal nephron cells by interacting with phosphatidylinositol?4,5?bisphosphate (PIP2), an ENaC activator. Confocal microscopy data show that both α?ENaC and PIP2 were localized in microvilli via a Cho-dependent mechanism. Deletion of membrane Cho reduced the levels of γ?ENaC in the apical membrane. Reduced ABCA1 expression and elevated intracellular Cho were observed in old mice, compared to young mice. In parallel, cell-attached patch-clamp data from the split-open cortical collecting ducts (CCD) show that ENaC activity was significantly increased in old mice. These data suggest that elevation of intracellular Cho due to blockade of ABCA1 stimulates ENaC, which may contribute to CsA-induced hypertension. This study also implies that reduced ABCA1 expression may mediate age-related hypertension by increasing ENaC activity via elevation of intracellular Cho.  相似文献   

5.
The molecular mechanisms by which aldosterone regulates epithelial sodium transport in the distal colon and the distal nephron remain to be fully elucidated. Aldosterone acts via the mineralocorticoid receptor (MR) to induce the expression of genes whose products are involved in sodium transport. The structural basis of MR interactions with aldosterone has been examined by creating chimeras of the MR and the closely related glucocorticoid receptor; we have exploited differences in ligand-binding specificity to determine the region(s) of the MR that confer aldosterone-binding specificity. These findings have been related to a three-dimensional model of the MR based on the crystal structure of the progesterone receptor. These studies have been extended to include the characterisation of interactions between the N- and C-termini of the MR. We have characterised six genes that are regulated in vivo in the distal colon and/or kidney of the rat that are directly and acutely regulated by aldosterone administration: the three subunits of the epithelial sodium channel, serum and glucocorticoid-induced kinase, channel-inducing factor and K-ras2A. These studies provide insights into the molecular pathways that mediate aldosterone-induced amiloride-sensitive epithelial sodium transport.  相似文献   

6.
The number of nephrons, the functional units of the kidney, varies among individuals. A low nephron number at birth is associated with a risk of hypertension and the progression of renal insufficiency. The molecular mechanisms determining nephron number during embryogenesis have not yet been clarified. Germline knockout of bone morphogenetic protein 7 (Bmp7) results in massive apoptosis of the kidney progenitor cells and defects in early stages of nephrogenesis. This phenotype has precluded analysis of Bmp7 function in the later stage of nephrogenesis. In this study, utilization of conditional null allele of Bmp7 in combination with systemic inducible Cre deleter mice enabled us to analyze Bmp7 function at desired time points during kidney development, and to discover the novel function of Bmp7 to inhibit the precocious differentiation of the progenitor cells to nephron. Systemic knockout of Bmp7 in vivo after the initiation of kidney development results in the precocious differentiation of the kidney progenitor cells to nephron, in addition to the prominent apoptosis of progenitor cells. We also confirmed that in vitro knockout of Bmp7 in kidney explant culture results in the accelerated differentiation of progenitor population. Finally we utilized colony-forming assays and demonstrated that Bmp7 inhibits epithelialization and differentiation of the kidney progenitor cells. These results indicate that the function of Bmp7 to inhibit the precocious differentiation of the progenitor cells together with its anti-apoptotic effect on progenitor cells coordinately maintains renal progenitor pool in undifferentiated status, and determines the nephron number at birth.  相似文献   

7.
8.
Mice in which exon 2 of the glucocorticoid receptor (GR) has been disrupted [GR exon 2 knockout (GR2KO)] have been used as a model to study the requirement for this receptor in a number of biological systems. A recent report showed that these mice actually express a truncated ligand-binding GR fragment, prompting us to ask whether this mutation truly results in a glucocorticoid-insensitive phenotype. Based on cDNA microarray analysis of fetal thymocytes, we found that glucocorticoids were able to enhance or repress activation-induced gene expression in GR2KO and wild-type thymocytes to a similar degree. Moreover, although changes in gene expression induced by glucocorticoids alone were blunted, the expression of a substantial number of genes in GR2KO thymocytes was modulated by stimulation with glucocorticoids. Among these genes, as confirmed by quantitative real-time PCR, was the classic glucocorticoid-responsive gene glutamine synthetase as well as genes implicated in T cell development and function such as IL-7 receptor alpha-chain and glucocorticoid-induced leucine zipper (GIL2). Thus, the truncated C-terminal GR2KO product, which lacks the major transactivation domain, retains, to a large extent, the ability to regulate gene expression both positively and negatively in a ligand-responsive manner when expressed in vivo.  相似文献   

9.
10.
Exposure to synthetic glucocorticoids during development can result in later cardiovascular and renal disease in sheep and rats. Although prenatal glucocorticoid exposure is associated with impaired renal development, less is known about effects on the developing heart. This study aimed to examine the effects of a short-term exposure to dexamethasone (60 hours from embryonic day 12.5) on the developing mouse heart, and cardiovascular function in adult male offspring. Dexamethasone (DEX) exposed fetuses were growth restricted compared to saline treated controls (SAL) at E14.5, but there was no difference between groups at E17.5. Heart weights of the DEX fetuses also tended to be smaller at E14.5, but not different at E17.5. Cardiac AT1aR, Bax, and IGF-1 mRNA expression was significantly increased by DEX compared to SAL at E17.5. In 12-month-old offspring DEX exposure caused an increase in basal blood pressure of ∼3 mmHg. In addition, DEX exposed mice had a widened pulse pressure compared to SAL. DEX exposed males at 12 months had an approximate 25% reduction in nephron number compared to SAL, but no difference in cardiomyocyte number. Exposure to DEX in utero appears to adversely impact on nephrogenesis and heart growth but is not associated with a cardiomyocyte deficit in male mice in adulthood, possibly due to compensatory growth of the myocardium following the initial insult. However, the widened pulse pressure may be indicative of altered vascular compliance.  相似文献   

11.
Murine glucocorticoid receptors and the H-2 locus--a reappraisal   总被引:1,自引:0,他引:1  
It has been demonstrated that susceptibility to glucocorticoid-induced formation of cleft palate is regulated by the mouse histocompatibility complex (H-2). This has encouraged us to examine H-2 effects on glucocorticoid binding in tissues of adult animals which would provide sufficient material with which to study the biochemical mechanism of the H-2 effect. Although it has been reported that cytosol prepared from lungs of adult mice with a high susceptibility to steroid-induced cleft palate formation have a higher level of glucocorticoid binding than lung cytosol prepared from a low-susceptibility strain, we are unable to demonstrate any influence of H-2 on binding capacity in this tissue from adult animals when glucocorticoid receptors are assayed in the presence of receptor reducing and stabilizing agents that maximize binding capacity. Cytosol prepared from rat liver contains an endogenous receptor-reducing system composed of NADPH and thioredoxin. It has also been reported that the murine H-2 complex contains a gene(s) that regulates the level of a modifier(s) in fetal hepatic cytosol that affects the binding of glucocorticoids to the receptor. Of two known low molecular weight modifiers that could account for this effect, we have previously established that the heat-stable, steroid receptor "modulator" is not regulated by the H-2 complex. In the present work we have assayed thioredoxin, a second potential modifier, in liver cytosols prepared from adults of two pairs of two H-2 congenic mouse strains. Our results show that the amount of thioredoxin is the same in all four mouse strains and that it is not regulated by the H-2 locus. At this time, we are unable to identify a system in adult mice in which the widely reported regulation of glucocorticoid binding by the mouse histocompatibility locus can be submitted to definitive biochemical study.  相似文献   

12.
Previous work implicating the neuropeptide oxytocin (Oxt) in the neural regulation of aggression in males has been limited. However, there are reports of heightened aggression in Oxt knockout and Oxt receptor (Oxtr) knockout male mice when they are born to null mutant mothers; suggesting that intrauterine exposure to Oxt may be important to normal aggression in adulthood. To explore this, we examined aggression in two lines of Oxtr mice, a total knockout (Oxtr-/-), in which the Oxtr gene is absent from the time of conception, and a predominantly forebrain specific knockout (Oxtr FB/FB), in which the Oxtr gene is not excised until approximately 21-28days postnatally. Aggression was measured in males from both lines, as well as control littermates, using a resident-intruder behavioral test. Consistent with previous reports, male Oxtr-/- mice had elevated levels of aggression relative to controls. Oxtr FB/FB mice on the other hand displayed levels of aggression similar to control animals. In addition, following a resident-intruder test, Oxtr+/+ mice that displayed aggression had less c-fos immunoreactivity in the ventral portion of the lateral septum than those that did not. Further, Oxtr-/- mice had increased c-fos immunoreactivity in the medial amygdala relative to controls. These data suggest that Oxt may play an important role during development in the organization of the neural circuits that underlie aggressive behavior in adulthood, with its absence resulting in heightened aggression.  相似文献   

13.
Our earlier study revealed that STRA6 (stimulated by retinoic acid gene 6) was up-regulated within 3 h of TCR stimulation. STRA6 is the high-affinity receptor for plasma retinol-binding protein (RBP) and mediates cellular vitamin A uptake. We generated STRA6 knockout (KO) mice to assess whether such up-regulation was critical for T-cell activation, differentiation and function. STRA6 KO mice under vitamin A sufficient conditions were fertile without apparent anomalies upon visual inspection. The size, cellularity and lymphocyte subpopulations of STRA6 KO thymus and spleen were comparable to those of their wild type (WT) controls. KO and WT T cells were similar in terms of TCR-stimulated proliferation in vitro and homeostatic expansion in vivo. Naive KO CD4 cells differentiated in vitro into Th1, Th2, Th17 as well as regulatory T cells in an analogous manner as their WT counterparts. In vivo experiments revealed that anti-viral immune responses to lymphocytic choriomeningitis virus in KO mice were comparable to those of WT controls. We also demonstrated that STRA6 KO and WT mice had similar glucose tolerance. Total vitamin A levels are dramatically lower in the eyes of KO mice as compared to those of WT mice, but the levels in other organs were not significantly affected after STRA6 deletion under vitamin A sufficient conditions, indicating that the eye is the mouse organ most sensitive to the loss of STRA6.Our results demonstrate that 1) in vitamin A sufficiency, the deletion of STRA6 in T cells does no affect the T-cell immune responses so-far tested, including those depend on STAT5 signaling; 2) STRA6-independent vitamin A uptake compensated the lack of STRA6 in lymphoid organs under vitamin A sufficient conditions in mice; 3) STRA6 is critical for vitamin A uptake in the eyes even in vitamin A sufficiency.  相似文献   

14.
The bone morphogenetic protein (BMP) type II receptor (BMPR2) has a long cytoplasmic tail domain whose function is incompletely elucidated. Mutations in the tail domain of BMPR2 are found in familial cases of pulmonary arterial hypertension. To investigate the role of the tail domain of BMPR2 in BMP signaling, we generated a mouse carrying a Bmpr2 allele encoding a non-sense mediated decay-resistant mutant receptor lacking the tail domain of Bmpr2. We found that homozygous mutant mice died during gastrulation, whereas heterozygous mice grew normally without developing pulmonary arterial hypertension. Using pulmonary artery smooth muscle cells (PaSMC) from heterozygous mice, we determined that the mutant receptor was expressed and retained its ability to transduce BMP signaling. Heterozygous PaSMCs exhibited a BMP7‑specific gain of function, which was transduced via the mutant receptor. Using siRNA knockdown and cells from conditional knockout mice to selectively deplete BMP receptors, we observed that the tail domain of Bmpr2 inhibits Alk2‑mediated BMP7 signaling. These findings suggest that the tail domain of Bmpr2 is essential for normal embryogenesis and inhibits Alk2‑mediated BMP7 signaling in PaSMCs.  相似文献   

15.
Moderate concentrations of the sensory stimulant drug capsaicin caused relaxation in human and animal intestinal circular muscle preparations (guinea-pig proximal, mouse distal colon, human small intestine and appendix) in vitro. With the exception of the guinea-pig colon, the nitric oxide (NO) synthase inhibitor N(G)-nitro-L-arginine (L-NOARG; 10(-4) M) strongly inhibited the relaxant effect of capsaicin. Tetrodotoxin, an inhibitor of voltage-sensitive Na+ channels failed to significantly reduce the inhibitory effect of capsaicin in the guinea-pig colon, human ileum and appendix; it caused an approximately 50% reduction in the mouse colon. The relaxant effect of capsaicin was strongly reduced in colonic preparations from transient receptor potential vanilloid type (TRPV1) receptor knockout mice as compared to their wildtype controls. It is concluded that nitric oxide, possibly of sensory origin, is involved in the relaxant action of capsaicin in the circular muscle of the mouse and human intestine.  相似文献   

16.
The contribution of individual lipoprotein species to the generation of the adrenal cholesterol pool used for the synthesis of anti-inflammatory glucocorticoid species remains unknown. Here we examined the impact of specific lowering of very low-density lipoprotein (VLDL) and low-density (LDL) levels on adrenal cholesterol and glucocorticoid homeostasis. Hereto, lethally-irradiated hypercholesterolemic apolipoprotein E (APOE) knockout mice received APOE-containing bone marrow from wild-type mice (n = 6) or APOE knockout control bone marrow (n = 10) and were subsequently fed a regular chow diet. Transplantation with wild-type bone marrow was associated with a 10-fold decrease in VLDL/LDL-cholesterol levels. No changes were observed in adrenal weights, adrenal cholesterol content, or basal plasma corticosterone levels. However, food deprivation-induced corticosterone secretion was 64% lower (P < 0.05) in wild-type bone marrow recipients as compared to APOE knockout bone marrow recipients, in the context of similar plasma adrenocorticotropic hormone (ACTH) levels. A parallel 19–29% decrease in adrenal relative mRNA expression levels of ACTH-responsive genes SR-BI (P < 0.01), STAR (P < 0.05), and CYP11A1 (P < 0.05) was detected. In support of relative glucocorticoid insufficiency, blood lymphocyte and eosinophil concentrations were respectively 2.4-fold (P < 0.01) and 8-fold (P < 0.001) higher in wild-type bone marrow recipients under food deprivation stress conditions.In conclusion, we have shown that a selective lowering of VLDL/LDL levels in APOE knockout mice through a transplantation with APOE-containing wild-type bone marrow is associated with a decreased maximal adrenal glucocorticoid output. Our studies provide experimental support for the hypothesis that, in vivo, VLDL/LDL serves as the primary source of cholesterol used for glucocorticoid synthesis during food deprivation stress.  相似文献   

17.
Glucocorticoids, acting through the glucocorticoid receptor, potently modulate immune function and are a mainstay of therapy for treatment of inflammatory conditions, autoimmune diseases, leukemias and lymphomas. Moreover, removal of systemic glucocorticoids, by adrenalectomy in animal models or adrenal insufficiency in humans, has shown that endogenous glucocorticoid production is required for regulation of physiologic immune responses. These effects have been attributed to suppression of cytokines, although the crucial cellular and molecular targets remain unknown. In addition, considerable controversy remains as to whether glucocorticoids are required for thymocyte development. To assess the role of the glucocorticoid receptor in immune system development and function, we generated T-cell-specific glucocorticoid receptor knockout mice. Here we show that the T-cell is a critical cellular target of glucocorticoid receptor signaling, as immune activation in these mice resulted in significant mortality. This lethal activation is rescued by cyclooxygenase-2 (COX-2) inhibition but not steroid administration or cytokine neutralization. These studies indicate that glucocorticoid receptor suppression of COX-2 is crucial for curtailing lethal immune activation, and suggest new therapeutic approaches for regulation of T-cell-mediated inflammatory diseases.  相似文献   

18.
Arterial blood pressure is critically dependent on sodium balance. The kidney is the key player in maintaining sodium homeostasis. Aldosterone-dependent epithelial sodium transport in the distal nephron is mediated by the highly selective, amiloride-sensitive epithelial sodium channel (ENaC). Direct evidence that dysfunction of ENaC participates in blood pressure regulation has come from the molecular analysis of two human genetic diseases, Liddle’s syndrome and pseudohypoaldosteronism type 1 (PHA-1). Both, increased sodium reabsorption despite low aldosterone levels in Liddle’s patients and decreased sodium reabsorption despite high aldosterone levels in PHA-1 patients, demonstrated that ENaC is an effector for aldosterone action. Gene-targeting and classical transgenic technology enable the generation of mouse models for these diseases and the analysis of the involvement of the epithelial sodium channel (ENaC) in the progress of these diseases. A first mouse model using ENaC transgenic knockout mice [ENaC(−/−)Tg] mimicked several clinical features of PHA-1, like salt-wasting, metabolic acidosis, high aldosterone levels, growth retardation and increased early mortality. Such mouse models will be necessary in testing the involvement of genetic and/or environmental factors like salt-intake in hypertension.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号