首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The addition of hydrophilic and hydrophobic molecules to the 1-monooleoyl glycerol (MO)/water (W) system has been investigated at a molecular level by 13C nuclear magnetic resonance (NMR) relaxation. Depending on the nature of the additive, the liquid crystalline phases of the MO/W binary system are modified. The 13C NMR spin lattice relaxation rates of the various MO carbons were determined in the presence of the additives for different types of L(2) and liquid crystalline phases. Data revealed that local dynamics are independent of type and amount of additive (within 5 wt.%), and also of the type of the structural arrangement. The curvature of the interface does not affect the local mobility of MO carbons, with the exception of the glycerol G3 and the carboxylic C1 carbons. Moreover, the presence of the double bond in the mid part of the hydrocarbon chain induces a levelling in the relaxation rates on the neighboring carbons. The 13C NMR spin lattice relaxation rates at two magnetic field strengths and the Overhauser enhancement were measured in the L(2) phase of the MO/W/sodium decanoate system. The use of a two-step model of relaxation allowed to estimate order parameters, and slow and fast motions of MO in the structured aggregate.  相似文献   

2.
C Czeslik  R Winter  G Rapp    K Bartels 《Biophysical journal》1995,68(4):1423-1429
We used x-ray and neutron diffraction to study the temperature- and pressure-dependent structure and phase behavior of the monoacylglycerides 1-monoelaidin (ME) and 1-monoolein (MO) in excess water. The monoacylglycerides were chosen for investigation of their phase behavior because they exhibit mesomorphic phases with one-, two-, and three-dimensional periodicity, such as lamellar, an inverted hexagonal and bicontinuous cubic phases, in a rather easily accessible temperature and pressure range. We studied the structure, stability, and transformations of the different phases over a wide temperature and pressure range, explored the epitaxial relations that exist between different phases, and established a relationship between the chemical structure of the lipid molecules and their phase behavior. For both systems, a temperature-pressure phase diagram has been determined in the temperature range from 0 to 100 degrees C at pressures from ambient up to 1400 bar, and drastic differences in phase behavior are found for the two systems. In MO-water dispersions, the cubic phase Pn3m extends over a large phase field in the T,p-plane. At temperatures above 95 degrees C, the inverted hexagonal phase is found. In the lower temperature region, a crystalline lamellar phase is induced at higher pressures. The phases found in ME-water include the lamellar crystalline Lc phase, the L beta gel phase, the L alpha liquid-crystalline phase, and two cubic phases belonging to the crystallographic space groups Im3m and Pn3m. In addition, the existence of metastable phases has been exploited. Between coexisting metastable cubic structures, a metric relationship has been found that is predicted theoretically on the basis of the curvature elastic energy approximation only.  相似文献   

3.
To elucidate effects of electrostatic interactions resulting from surface charges on structures and phase stability of cubic phases of lipid membranes, membranes of 1-monoolein (MO) and dioleoylphosphatidic acid (DOPA) (DOPA/MO membrane) mixtures have been investigated by small-angle x-ray scattering method. As increasing DOPA concentration in the DOPA/MO membrane at 30 wt% lipid concentration, a phase transition from Q(224) to Q(229) phase occurred at 0.6 mol% DOPA, and at and above 25 mol% DOPA, DOPA/MO membranes were in the L(alpha) phase. As NaCl concentration in the bulk phase increased, for 10% DOPA/90% MO membrane in excess water, a Q(229) to Q(224) phase transition occurred at 60 mM NaCl, and then a Q(224) to H(II) phase transition occurred at 1.2 M NaCl. Similarly, for 30% DOPA/70% MO membrane in excess water, at low NaCl concentrations it was in the L(alpha) phase, but at and above 0.50 M NaCl it was in the Q(224) phase, and then at 0.65 M NaCl a Q(224) to H(II) phase transition occurred. These results indicate that the electrostatic interactions in the membrane interface make the Q(229) phase more stable than the Q(224) phase, and that, at larger electrostatic interactions, the L(alpha) phase is more stable than the cubic phases (Q(224) and Q(229)). We have found that the addition of tetradecane to the MO membrane induced a Q(224)-to-H(II) phase transition and also that to the 30% DOPA/70% MO membrane induced an L(alpha)-to-H(II) phase transition. By using these membranes, the effect of the electrostatic interactions resulting from the membrane surface charge (DOPA) on the spontaneous curvature of the monolayer membrane has been investigated. The increase in DOPA concentration in the DOPA/MO membrane reduced the absolute value of spontaneous curvature of the membrane. In the 30% DOPA/70% MO membrane, the absolute value of spontaneous curvature of the membrane increased with an increase in NaCl concentration. On the basis of these new results, the phase stability of DOPA/MO membranes can be reasonably explained by the spontaneous curvature of the monolayer membrane and a curvature elastic energy of the membrane.  相似文献   

4.
A partial phase diagram of the ternary system dioleoylphosphatidylethanolamine (DOPE)/sodium cholate/water has been determined using 31P Nuclear Magnetic Resonance (NMR) spectroscopy. In the absence of cholate, it is well known that the DOPE/water system forms a reversed hexagonal (HII) phase. We have found that addition of even small amounts of cholate to the DOPE/water system leads to a transition to a lamellar (L alpha) phase. At higher cholate concentrations, a cubic (I) phase (low water content) or a micellar solution (L1) phase (high water content) is present. Thus, cholate molecules have a strong tendency to alter the lipid monolayer curvature. Increasing the concentration of cholate changes the curvature of DOPE from negative (HII phase), through zero (L alpha phase), and finally to a phase of positive curvature (micellar solution). This observation can be rationalized in terms of the molecular structure of cholate, which is amphipathic and has one hydrophobic and one hydrophilic side of the steroid ring system. The cholate molecules have a tendency to lie flat on the lipid aggregate surface, thereby increasing the effective interfacial area of the polar head groups, and altering the curvature free energy of the system.  相似文献   

5.
The rate of formation of high-curvature intermediates or disordered cubic phases in N-methyldioleoylphosphatidylethanolamine (N-methyl-DOPE) dispersions with or without additives was studied by 31P NMR spectroscopy. In N-methyl-DOPE dispersions, both the L alpha liquid-crystalline phase and the hexagonal HII phase convert into phases of high curvature giving rise to isotropic 31P NMR resonances. Addition of the bilayer destabilizers 1,2-diolein, 1,3-diolein, or eicosane lowers the threshold temperature of the isotropic phase. The isotropic threshold temperature is strongly correlated with the L alpha-HII phase transition temperature (TH). The addition of hexagonal phase promoters does not change the rate of formation of the isotropic phase at a temperature shifted by a fixed amount below TH. However, the formation of "isotropic" phases from the additive-stabilized hexagonal phase is slow compared to that observed in pure N-methyl-DOPE lipid dispersions. Membrane leakage and fusion are promoted by the dioleins and well as by eicosane, but changes in the rates of these processes do not correlate well with the extent of formation of isotropic phases. All three additives have similar effects on phase behavior and on vesicle leakage and fusion. These similarities occur despite the fact that eicosane is believed to partition differently into the membrane than diolein. In addition to the general similarities in the effects of the two diolein isomers, 1,2-diolein is somewhat more potent in promoting the hexagonal phase and in increasing rates of leakage and fusion than is 1,3-diolein.  相似文献   

6.
Wang W  Yang L  Huang HW 《Biophysical journal》2007,92(8):2819-2830
Recent experiments suggested that cholesterol and other lipid components of high negative spontaneous curvature facilitate membrane fusion. This is taken as evidence supporting the stalk-pore model of membrane fusion in which the lipid bilayers go through intermediate structures of high curvature. How do the high-curvature lipid components lower the free energy of the curved structure? Do the high-curvature lipid components modify the average spontaneous curvature of the relevant monolayer, thereby facilitate its bending, or do the lipid components redistribute in the curved structure so as to lower the free energy? This question is fundamental to the curvature elastic energy for lipid mixtures. Here we investigate the lipid distribution in a monolayer of a binary lipid mixture before and after bending, or more precisely in the lamellar, hexagonal, and distorted hexagonal phases. The lipid mixture is composed of 2:1 ratio of brominated di18:0PC and cholesterol. Using a newly developed procedure for the multiwavelength anomalous diffraction method, we are able to isolate the bromine distribution and reconstruct the electron density distribution of the lipid mixture in the three phases. We found that the lipid distribution is homogenous and uniform in the lamellar and hexagonal phases. But in the distorted hexagonal phase, the lipid monolayer has nonuniform curvature, and cholesterol almost entirely concentrates in the high curvature region. This finding demonstrates that the association energies between lipid molecules vary with the curvature of membrane. Thus, lipid components in a mixture may redistribute under conditions of nonuniform curvature, such as in the stalk structure. In such cases, the spontaneous curvature depends on the local lipid composition and the free energy minimum is determined by lipid distribution as well as curvature.  相似文献   

7.
The presence of reversed hexagonal phase, HII, favoring lipids in membranes has been proposed to be significant in various biological processes. Therefore an understanding of the HII phase and the transition from the lamellar to hexagonal phase is of importance. We have applied deuterium NMR spectroscopy to study the bilayer and reversed hexagonal phases of 1-perdeuteriopalmitoyl-2-linoleoyl-sn-glycero-3-phosphoethanolamin e. The difference in packing between the HII and L alpha phases leads to smaller segmental order parameters in the former case. Since the order profiles are sensitive to the geometry of the aggregates, they can be used to extract structural information about the phases. We present a new means of calculating the radius of curvature, R1, for the HII phase from 2H NMR data. This method gives a value of R1 = 18.1 A, which is in agreement with current understanding of the structure of the HII phase and with x-ray diffraction data.  相似文献   

8.
Yang L  Ding L  Huang HW 《Biochemistry》2003,42(22):6631-6635
Membrane fusion is a ubiquitous process in eukaryotic cells. When two membranes fuse, lipid must undergo molecular rearrangements at the point of merging. To understand how lipid structure transitions occur, scientists studied the phase transition of lipid between the lamellar (L(alpha)) phase and the inverted hexagonal (H(II)) phase, based on the idea that lipid must undergo a similar rearrangement as in fusion. However, previous investigations on the system of dioleoylphosphatidylcholine (DOPC) and dioleoylphosphatidylethanolamine (DOPE) did not reveal intermediate phases between the L(alpha) and H(II) phases. Recently, we found a rhombohedral phase of diphytanoylphosphatidylcholine between its L(alpha) and H(II) phases using substrate-supported samples. Here we report the observation of two new phases in the DOPC-DOPE system: a rhombohedral phase and a distorted hexagonal phase. The rhombohedral phase confirms the stalk hypothesis for the L(alpha)-H(II) transition, but the phase of stable stalks exists only for a certain range of spontaneous curvature. The distorted hexagonal phase exists only in a lipid mixture. It implies that lipids may demix to adjust its local spontaneous curvature in order to achieve energy minimum under stress.  相似文献   

9.
Lipid and water diffusion coefficients in bicontinuous cubic liquid crystalline phases have been determined with the NMR pulsed magnetic field gradient technique. In the monoolein-water system, a discontinuity in the variation of the water diffusion coefficient with water content is observed, which coincides with the two-phase region between the two cubic phases in this system. The degree of water association to the lipid has been determined, considering the obstruction factor for diffusion in the cubic phases. The lipid diffusion coefficient increases with increased unsaturation of the lipid, and decreases when larger amphiphile molecules like cholesterol, gramicidin-A, and lyso-oleoyl-phosphatidylcholine are solubilized in the cubic phase. In a cubic liquid crystal of monoolein (MO), dioleoylphosphatidylcholine (DOPC), and water, the individual lipid diffusion coefficients have been determined simultaneously in the same sample. The diffusion coefficients of MO and DOPC differ by a factor of two, and both decrease with increasing DOPC content. The results are discussed in relation to probe techniques for measurements of lipid diffusion.  相似文献   

10.
T Heimburg  P Hildebrandt  D Marsh 《Biochemistry》1991,30(37):9084-9089
The interaction of cytochrome c with negatively charged lipids has been studied by resonance Raman spectroscopy of the protein heme group and 31P NMR of the phospholipid headgroups. The gel-to-fluid-phase transition of dimyristoylphosphatidylglycerol induces shifts in the conformational and coordination equilibria of the bound cytochrome c, as recorded by the resonance Raman spectra in the fingerprint and marker band regions. Conformational and coordination shifts of the bound cytochrome are also induced on admixture of dioleoylglycerol or dioleoylphosphatidylcholine with dioleoylphosphatidylglycerol. In the case of dioleoylglycerol, significant changes take place even at levels as low as 5 mol %. Binding of cytochrome c induces or increases the content of near isotropically diffusing lipid registered by the 31P NMR spectra of the different lipids studied. Admixture of dioleoylglycerol also increases the bilayer curvature of dioleoylphosphatidylglycerol, inducing an inverted hexagonal phase at 50 mol % concentration; the tendency to spontaneous curvature in the lipid appears to relax the conformational change detected in the protein.  相似文献   

11.
The liquid-crystalline phases of the systems monooleoylglycerol (MO)/water, dioleoylphosphatidylcholine (DOPC)/water, and MO/DOPC/water have been studied by Fourier-transform infrared (FTIR) spectroscopy. In the latter ternary system, the sn-3 OH group of MO competes with water to interact with the polar head group of DOPC, and an intramolecular hydrogen bonding of MO is broken up. The hydration of the ester carbonyl groups in the lamellar phases of both the MO/water and DOPC/water systems increases with increasing water content. Similarly, the addition of small amounts either of MO to a DOPC/water system or of DOPC to an MO/water system also results in an increase in the hydration of the ester carbonyl groups. This leads to an unfavorable hydrocarbon-water contact which is counteracted by the formation of a cubic phase, except for the DOPC/water system, where the lamellar phase is stable also at the highest water concentrations. The phase behavior of the different systems can be described in terms of lipid monolayer curvature and molecular packing in the lipid aggregates. Finally, it is shown by the water association band in the FTIR spectrum that the water hydrogen bonding is considerably different in the liquid-crystalline phases than in bulk water.  相似文献   

12.
This study reports the effect of loading four different charged designer lipid-like short anionic and cationic peptide surfactants on the fully hydrated monoolein (MO)-based Pn3m phase (Q(224)). The studied peptide surfactants comprise seven amino acid residues, namely A(6)D, DA(6), A(6)K, and KA(6). D (aspartic acid) bears two negative charges, K (lysine) bears one positive charge, and A (alanine) constitutes the hydrophobic tail. To elucidate the impact of these peptide surfactants, the ternary MO/peptide/water system has been investigated using small-angle X-ray scattering (SAXS), within a certain range of peptide concentrations (R相似文献   

13.
The present work explores inner structuration of in situ gelling system consisting of glyceryl monooleate (GMO) and oleic acid (OA). The system under study involves investigation of microstructural changes which are believed to govern the pharmaceutical performance of final formulation. The changes which are often termed mesophasic transformation were analysed by small angle X-ray scattering (SAXS), differential scanning calorimetry (DSC), rheology and plane polarised light (PPL) microscopy. The current work revealed transformation of blank system from W/O emulsion to reverse hexagonal structure upon addition of structural analogues of ibuprofen. Such transformations are believed to occur due to increased hydrophobic volume within system as probed by SAXS analysis. The findings of SAXS studies were well supported by DSC, rheology and PPL microscopy. The study established inverse relationship between log P value of structural analogues of ibuprofen and the degree of binding of water molecules to surfactant chains. Such relationship had pronounced effect on sol–gel transformation process. The prepared in situ gelling system showed sustained drug release which followed Higuchi model.KEY WORDS: flurbiprofen, hexagonal phase, ibuprofen, ketoprofen, liquid crystal, sustained drug release  相似文献   

14.
Docosahexaenoic acid (DHA), the longest and most unsaturated fatty acid commonly found in biological membranes, is known to affect various membrane properties. In a variety of cell membranes, DHA is primarily incorporated in phosphatidylethanolamines, where its function remains poorly understood. In order to understand the role of DHA in influencing membrane structure, we utilize (31)P NMR spectroscopy to study the phase behavior of 1-stearoyl-2-docosahexaenoyl-sn-glycerophosphoethanolamine (SDPE) in comparison to 1-palmitoyl-2-oleoyl-sn-glycerophosphoethanolamine (POPE) from 20 to 50 degrees C. Spectra of SDPE phospholipids show the formation of inverted hexagonal phase (H(II)) from 20 to 50 degrees C; in contrast, POPE mutilamellar dispersions exist in a lamellar liquid-crystalline phase (L(alpha)) at the same temperatures. The ability of SDPE to adopt nonbilayer phases at a physiological temperature may indicate its role in imparting negative curvature stress upon the membrane and may affect local molecular organization including the formation of lipid microdomains within biological membranes.  相似文献   

15.
One- and two-dimensional 31P-exchange NMR has been used to investigate chemical exchange between coexisting lamellar (L alpha) and non-lamellar (hexagonal HII and cubic I2) lipid phases. Samples of DOPE, DOPE/DOPC (9:1 and 7:3), DOPE/cholesterol sulfate (9:1), DOPC/monoolein (MO) (3:7 and 1:1), and DOPC/DOPE/cholesterol (1:1:2) were macroscopically oriented on glass plates and studied at the 0 degree orientation (angle between the bilayer normal and the external magnetic field), where the L alpha, HII, and I2 resonances are resolved. A reversible L alpha to HII transition was observed for all of the samples except for the DOPC/MO mixtures, which displayed a reversible L alpha to I2 transition. Near-equilibrium mixtures of L alpha and either HII or I2 were obtained after prolonged incubation at a given temperature. Two-dimensional exchange experiments were performed on DOPE at 9-14 degrees C for mixing times ranging from 500 ms to 2 s. For all samples, one-dimensional exchange experiments were performed for mixing times ranging from 100 ms to 4 s, at temperatures ranging from 3 degrees C to 73 degrees C. No evidence of lipid exchange between lamellar and non-lamellar phases was observed, indicating that if such a process occurs it is either very slow on the seconds' timescale, or involves an undetectable quantity of lipid. The results place constraints on the stability or kinetic behaviour of proposed transition intermediates (Siegel, D.P. (1986) Biophys. J. 49, 1155-1170).  相似文献   

16.
The chloroplast galactolipids monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG) were isolated from wheat leaves. The phase equilibria of galactolipid-water systems with MGDG / DGDG molar ratios equal to 0:1, 1:2, 1.2:1, 2:1 and 1:0 were investigated, using nuclear magnetic resonance (NMR) methods. MGDG and DGDG form reversed hexagonal and lamellar phases, respectively, at temperatures between 10 and 40°C at all water contents studied (up to about 14 mol 2H2O per mol lipid). The galactolipid mixtures show a complex phase forming reversed hexagonal, lamellar and reversed cubic phases, depending on water content and temperature. It was found that the water hydration is similar for the lamellar and hexagonal phases formed by DGDG and MGDG, respectively. The non-lamellar phase areas increase with increasing content of MGDG. Small-angle X-ray measurements show that the cubic phase belongs to the Ia3d space group. From translational diffusion studies by NMR it is concluded that the structure of this cubic phase is bicontinuous.  相似文献   

17.
With few exceptions, membrane lipids are usually regarded as a kind of filler or passive solvent for membrane proteins. Yet, cells exquisitely control membrane composition. Many phospholipids found in plasma membrane bilayers favor packing into inverted hexagonal bulk phases. It was suggested that the strain of forcing such lipids into a bilayer may affect membrane protein function, such as the operation of transmembrane channels. To investigate this, we have inserted the peptide alamethicin into bilayer membranes composed of lipids of empirically determined inverted hexagonal phase "spontaneous radii" Ro, which will have expectably different degrees of strain when forced into bilayer form. We observe a correlation between measured Ro and the relative probabilities of different conductance states. States of higher conductance are more probable in dioleoylphosphatidylethanolamine, the lipid of highest curvature, 1/Ro, than in dioleoylphosphatidylcholine, the lipid of lowest curvature.  相似文献   

18.
We have utilized phosphorus nuclear magnetic resonance, which provides an excellent means of characterizing the physical state of lipids, to investigate the polymorphic phase behavior of pure dielaidoylphosphatidylethanolamine (DEPE). We have observed a sharp isotropic component in the typical bilayer and inverted hexagonal P-31 NMR spectra. This component appears in the spectra of both the bilayer and inverted hexagonal lipid phases after several cycles through the bilayer-to-hexagonal phase transition. The magnitude of the isotropic component increased as a function of the number of cycles through the transition. The appearance of this component was not a function of time at constant temperature, but only a function of the number of cycles through the transition. The isotropic component is stable at all temperatures above the gel-to-liquid crystal transition, but it abruptly disappears when the lipid is cooled below the gel-to-liquid crystal phase transition. It is suggested that this isotropic phase is similar to the isotropic phase observed in dioleoylphosphatidylethanolamine (DOPE) by x-ray diffraction and identified as a cubic phase (Shyamsunder, E., S. M. Gruner, M. W. Tate, D. C. Turner, P. T. C. So, and C. P. S. Tilcock. 1988. Biochemistry. 27:2332-2336).  相似文献   

19.
Gramicidin-induced hexagonal HII phase formation in erythrocyte membranes   总被引:3,自引:0,他引:3  
Using 31P nuclear magnetic resonance (NMR), small-angle X-ray scattering (SAXS), and freeze-fracture electron microscopic (FFEM) techniques, it is shown that gramicidin induces a hexagonal HII phase not only in liposomes prepared from total lipids extracted from human erythrocytes but also in isolated human erythrocyte membranes (white ghosts). A 37 degrees C, HII phase formation is detected at a gramicidin to phospholipid molar ratio exceeding 1:80. At a molar ratio of 1:5, about 30% of the phospholipid is organized in the HII phase. The gramicidin-induced HII phase exhibits a very small 31P chemical shift anisotropy [(CSA) approximately 10 +/- 1 ppm], indicating decreased head-group order, and it displays a temperature-dependent increase in tube diameter from 60.2 A at 4 degrees C to 64.2 A at 37 degrees C in ghosts and from 62.8 to 69.4 A at 37 degrees C in total lipid extracts, both in the presence of 1 mol of gramicidin/10 mol of phospholipid. This anomalous temperature-dependent behavior is probably due to the presence of cholesterol. 31P NMR data indicate that the HII phase formation by gramicidin is temperature dependent and show the gradual disappearance of the HII phase at low temperatures (less than 20 degrees C), resulting in a bilayer type of 31P NMR line shape at 4 degrees C, whereas SAXS and FFEM data suggest equal amounts of HII phases at all temperatures. This apparent discrepancy is probably the result of a decrease in the rate of lateral diffusion of the membrane phospholipids which leads to incomplete averaging of the 31P CSA in the HII phase.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
The X-ray scattering study of a cubic phase of extinction symbol Fd--, recently performed on a lipid extract (PFL) from Pseudomonas fluorescens [Mariani et al. (1990) Biochemistry 29, 6799-6810] has been extended to several other systems, all consisting of mixtures of water-miscible (MO, PC, PE, oleate) and of water-immiscible (FA, DG) lipids, plus water. In all of these systems the cubic phase was observed in the presence of excess water. Some inconsistencies observed between PFL and the other systems, the fact that in PFL one of the reflections of the cubic phase happened to coincide with the strongest reflection of the hexagonal phase, and the finding, in one of the original cubic samples of PFL kept in the cold for more than 3 years, that the intensity of one of the reflections had decreased dramatically all indicated that a nonnegligible amount of a hexagonal impurity was in fact present in the samples of PFL originally thought to contain a pure cubic phase. The intensities were corrected for that impurity and analyzed again using a pattern recognition approach based upon the axiom that the histogram of the electron density maps is invariant with respect to physical structure, when different phases are compared whose chemical composition is the same. The hexagonal phase provided the reference phase for the comparison. The moments mean value of (delta rho)n were used to compare the histograms.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号