首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The proliferation and maturation of granulocytic-monocytic stem cells appears to be controlled by a series of closely related glycoproteins termed “colony-stimulating factors” (CSFs). Recently, we devised a 6-step scheme for the purification of murine fibroblast (L-cell)-derived CSF. Ten liter pools of conditioned media were concentrated by ultrafiltration, precipitated by ethanol, and separated on DEAE cellulose, Con-A Sepharose, and Sephadex G 150. The CSF was separated from trace contaminants, including endotoxin, by density gradient centrifugation. The purified material was radioiodinated and used to define the serum half-life and in vivo distribution. Following IV injection there was a biphasic serum clearance with a t½ of 24–40 min and 2–2½ hours in the first and second phases. Approximately 25% of the tracer was excreted in the urine at 6 h; however, urinary radioactivity was due to low molecular weight peptides. Simultaneous studies by radioimmunoassay showed a similar rapid serum clearance of unlabeled CSF but virtually no urinary CSF activity. Thus, assays for urinary CSF may not provide useful measures of in vivo CSF activity. Further in vitro studies have defined the interaction of CSF with responsive cells in the marrow. Varying doses of CSF were incubated with 107 marrow cells for intervals of 24–48 h. The major increment in cell-associated radioactivity occurred between 6 and 16 h. The reaction was saturable with 1–2 ng/ml CSF. Binding was prevented by cold CSF, but not by other proteins. Irradiation yielded only a minimal reduction in CSF binding. The interaction of CSF with marrow cells appeared to require new protein synthesis, as binding was completely inhibited by cycloheximide and puromycin. Irradiated mice injected with antibodies to CSF showed an inhibition of granulopoiesis by marrow cells in peritoneal diffusion chambers; however, granulopoiesis in the intact bone marrow was unaffected. Granulpoiesis in long-term marrow cultures was also unaffected by anti-CSF. These different responses may be due to accelerated clearance of injected CSF in nonirradiated mice or to extensive stromal interactions that modulate and perhaps control granulocytic differentiation in the intact bone marrow microenvironment.  相似文献   

2.
Vindesine (VDS) is a new vinca-alkaloid related to vinblastine and vincristine that blocks production of the microtubules in the mitotic phase of the cell cycle. Studies were undertaken to investigate the inhibitory effect of VDS on normal murine bone marrow cell proliferation and the possible interactions between this compound and L-cell derived colony stimulating factor (CSF). One X 10(7) murine bone marrow cells were exposed to various concentrations of VDS, ranging from 0.1 to 1.5 micrograms/ml for 1 h at 37 degrees C. Following this period, the cells were plated in agar in the presence of 100 units of CSF. A dose-dependent inhibition of colony formation was noted with increasing doses of the drugs. To determine whether an increased dose of CSF could overcome the inhibitory effect of VDS, further studies compared colony growth in response to 100 and 200 units of CSF. Virtually no inhibition of colony growth was detected in VDS-treated cells exposed to this higher dose of CSF while a dose-dependent reduction in CFU-C was noted with 100 units of CSF. Preincubation of cells with VDS and CSF prevented the inhibition that occurred with VDS alone. The addition of anti-CSF serum during the preincubation phase abolished the protective effect of CSF. The studies show that short-term exposure of marrow cells to VDS causes a dose-dependent inhibition of in vitro colony formation; this inhibition is prevented by increasing doses of CSF in agar culture or by simultaneous preincubation with CSF. The CSF action appears specific as its protective effect is neutralized by antibody to CSF, suggesting a potential role for CSF in preventing the antimitotic activity of VDS.  相似文献   

3.
Anomalies in neuropeptides and neuroactive amino acids have been postulated to play a role in neurodegeneration in a variety of diseases including the inherited neuronal ceroid lipofuscinoses (NCLs, Batten disease). These are often indicated by concentration changes in cerebrospinal fluid (CSF). Here we compare CSF neuropeptide concentrations in patients with the classical juvenile CLN3 form of NCL and the classical late infantile CLN2 form with neuropeptide and neuroactive amino acid concentrations in CSF from sheep with the late infantile variant CLN6 form.A marked disease related increase in CSF concentrations of neuron specific enolase and tau protein was noted in the juvenile CLN3 patients but this was not observed in an advanced CLN2 patient nor CLN6 affected sheep. No changes were noted in S-100b, GFAP or MBP in patients or of S-100b, GFAP or IGF-1 in affected sheep. There were no disease related changes in CSF concentrations of the neuroactive amino acids, aspartate, glutamate, serine, glutamine, glycine, taurine and GABA in these sheep.The changes observed in the CLN3 patients may be progressive markers of neurodegeneration, or of underlying metabolic changes perhaps associated with CLN3 specific changes in neuroactive amino acids, as have been postulated. The lack of changes in the CLN2 and CLN6 subjects indicate that these changes are not shared by the CLN2 or CLN6 forms and changes in CSF concentrations of these compounds are unreliable as biomarkers of neurodegeneration in the NCLs in general.  相似文献   

4.
Anomalies in neuropeptides and neuroactive amino acids have been postulated to play a role in neurodegeneration in a variety of diseases including the inherited neuronal ceroid lipofuscinoses (NCLs, Batten disease). These are often indicated by concentration changes in cerebrospinal fluid (CSF). Here we compare CSF neuropeptide concentrations in patients with the classical juvenile CLN3 form of NCL and the classical late infantile CLN2 form with neuropeptide and neuroactive amino acid concentrations in CSF from sheep with the late infantile variant CLN6 form.A marked disease related increase in CSF concentrations of neuron specific enolase and tau protein was noted in the juvenile CLN3 patients but this was not observed in an advanced CLN2 patient nor CLN6 affected sheep. No changes were noted in S-100b, GFAP or MBP in patients or of S-100b, GFAP or IGF-1 in affected sheep. There were no disease related changes in CSF concentrations of the neuroactive amino acids, aspartate, glutamate, serine, glutamine, glycine, taurine and GABA in these sheep.The changes observed in the CLN3 patients may be progressive markers of neurodegeneration, or of underlying metabolic changes perhaps associated with CLN3 specific changes in neuroactive amino acids, as have been postulated. The lack of changes in the CLN2 and CLN6 subjects indicate that these changes are not shared by the CLN2 or CLN6 forms and changes in CSF concentrations of these compounds are unreliable as biomarkers of neurodegeneration in the NCLs in general.  相似文献   

5.
While BK virus (BKV) is frequently associated with pathological conditions in bone marrow and renal transplant recipients, BKV infection in neurological individuals has been rarely reported. As a result of a BKV, JCV, and SV40 large T antigen-specific multiplex PCR on 2,062 cerebrospinal fluid (CSF) samples from neurological patients suspicious of JCV infection, we identified 20 subjects with at least 1 CSF specimen positive for BKV large T antigen DNA. Because VP1 protein has been suggested to influence the biological/pathological properties of BKV, we tried to sequence the entire VP1 gene in the BKV-positive neurological patients and succeeded in 14 of the 20 neurological patients. To compare the VP1 sequence of the BKV neurological strains with that of non-neurotropic strains in other clinical situations, full-length VP1 DNA was sequenced in 15 renal and 6 bone marrow transplant recipients positive to BKV-viremia, and in 8 pregnant women as non-pathological controls. An increased (respectively, decreased) tendency for mutations in the BC loop (respectively, EF loop) was observed, and no mutations were detected in the CD, GH, and HI loops. Subtype I was predominant (93%) and compared to archetypal BKV (WW), amino acid substitutions were detected in 4/14 neurological patients, 10/15 renal transplant recipients, 3/6 bone marrow transplant patients, and in all the pregnant women. Each patient group had distinctive VP1 mutations, but these unique substitutions were not present in all patients of this group. However, molecular modeling simulations of the VP1 mutants predicted changes in protein surface properties which might affect the VP1-receptor interaction.  相似文献   

6.
It proved that Zymosan‐A protected the haematopoietic system from radiation‐induced damage via Toll‐Like Receptor2 in our previous study. In this study, we investigated the potential mechanism for the radioprotective effects of Zymosan‐A. The mice were treated with Zymosan‐A (50 mg/kg, dissolved in NS) via peritoneal injection 24 and 2 hours before ionizing radiation. Apoptosis of bone marrow cells and the levels of IL‐6, IL‐12, G‐CSF and GM‐CSF were evaluated by flow cytometry assay. DNA damage was determined by γ‐H2AX foci assay. In addition, RNA sequencing was performed to identify differentially expressed genes (DEGs). Zymosan‐A protected bone marrow cells from radiation‐induced apoptosis, up‐regulated IL‐6, IL‐12, G‐CSF and GM‐CSF in bone marrow cells. Zymosan‐A also protected cells from radiation‐induced DNA damage. Moreover, RNA sequencing analysis revealed that Zymosan‐A induced 131 DEGs involved in the regulation of immune system process and inflammatory response. The DEGs were mainly clustered in 18 KEGG pathways which were also associated with immune system processes. Zymosan‐A protected bone marrow cells from radiation‐induced apoptosis and up‐regulated IL‐6, IL‐12, G‐CSF and GM‐CSF. Moreover, Zymosan‐A might also exhibit radioprotective effects through regulating immune system process and inflammatory response. These results provided new knowledge regarding the radioprotective effect of Zymosan‐A.  相似文献   

7.
Tumor promoting phorbol esters, such as 12-0-tetradecanoyl-phorbol-13-acetate (TPA), stimulate colony formation in vitro by murine granulocyte-macrophage progenitors (GM-CFC) without added colony stimulating factors (CSF). To determine whether TPA induces CSF production in vitro, marrow cells were cultured for 1 to 7 days in liquid medium with or without TPA. No CSF was detected in any sample by a double antibody radioimmunoassay (sensitivity = 2 units/0.1 ml), however, colony-stimulating activity was detected in supernatant fluid from all TPA containing cultures by bioassay. This activity appeared to result from a direct effect of TPA rather than from production of CSF, as equivalent activity was found in TPA-containing medium incubated in the absence of marrow cells. Rabbit antiserum to purified L-cell CSF inhibited colony formation stimulated by L-cell CSF and WEHI-3 CSF, but had no effect on colony formation induced by TPA. Cells from long-term marrow cultures responded to TPA with colony formation, despite culture conditions and cell fractionation procedures that reduced the frequency of CSF-producing macrophages to less than 1.0%. TPA inhibited binding of radioiodinated L-cell CSF to marrow cells, especially if the cells were first exposed to TPA. These results do not support induction of CSF production as the major mechanism of phorbol ester stimulation of myelopoiesis. Phorbol esters may directly stimulate GM-CFC and/or enhance their response to CSF by a mechanism involving CSF binding sites.  相似文献   

8.
This report examines the actions of IFN-gamma on monocytopoiesis in murine liquid and semisolid bone marrow cultures. The proliferative response of bone marrow cells to macrophage CSF and granulocyte-macrophage CSF was assayed by measuring [3H]TdR uptake in a range of mouse strains. No interstrain difference in kinetics was observed for CSF-1 action, but GM-CSF acted significantly more rapidly on C57B1/6, Swiss, and to a lesser extent A/J mice than on BALB/c or CBA. IFN-gamma inhibited [3H]TdR incorporation elicited by CSF-1, and to a much lesser extent, GM-CSF. When the two CSF were added together, the effects were not additive; in fact, the response was the same as that seen with GM-CSF alone. When IFN-gamma was also added, the response was restored to the level seen with CSF-1 alone. In essence, the inhibitory actions of GM-CSF and IFN-gamma were mutually exclusive. The mechanism of these actions was investigated using colony assays. As expected, CSF-1 caused the formation of pure macrophage colonies, whereas GM-CSF stimulated production of macrophage, granulocyte, and mixed granulocyte macrophage colonies. When the two CSF were added in combination, the total colony count was greater than with either alone, but less than additive. The number of pure macrophage colonies was reduced to the number seen with GM-CSF alone. IFN-gamma reduced the number of colonies in the presence of CSF-1, but slightly increased the number with GM-CSF. In the presence of both CSF, IFN-gamma increased the colony count by around 25 to 40%, so that the numbers were greater than the combined total of CSF-1 plus GM-CSF added separately. Similar results were obtained in all mouse strains tested. The results suggest that the thymidine uptake data reflect changes in the number of progenitor cells responding rather than changes in cell cycle time. The results are discussed in terms of the possibility that coadministration of GM-CSF and CSF-1 could ameliorate the myelosuppressive actions of IFN-gamma in vivo, leading to more effective use of this agent as a biologic response modifier.  相似文献   

9.
We studied the effect of vitamin A and its analogues (retinoids) on the clonal growth in vitro of normal human myeloid progenitor cells. Normal human bone marrow cells were cultured in soft gel in the presence of a source of colony-stimulating factor (CSF), and various retinoids, and the number of granulocyte-macrophage colonies (CFU-GM) were scored. The addition of 3 × 10?8 to 3 × 10?6 M retinoic acid to culture plates containing CSF markedly increased the number of myeloid colonies as compared with culture plates containing CSF alone. Maximal stimulation occurred at a concentration of 3 × 10?7 M retinoic acid which increased the mean number of colonies by 213 ± 8 % (±S.E.) over plates containing CSF alone. Retinal or retinyl acetate was less potent than retinoic acid, and retinol (vitamin A) had no effect on colony growth. Retinoic acid had no direct CSF activity nor did it stimulate CSF production by the cultured bone marrow cells. Our studies show for the first time that retinoids can stimulate granulopoiesis in vitro and we suggest that this stimulation may be mediated by increased responsiveness of the granulocyte-macrophage progenitors to the action of CSF.  相似文献   

10.
人骨髓细胞体外培养液中含有高活力的 CSF,在长期培养过程中,CSF 活力的变化,与 CFU-C 数量的变化有大致平行的趋势。这种 CSF 对狗和小鼠也同样有效。人骨體条件液中的 CSF 对培养中的 CFU-S 也有明显的激发作用。这一结论可以从几个方面获得证据:第一,小鼠骨髓细胞与人骨髓条件液保温六小时后,再测定其中 CFU-S 数,结果是增加了。第二,经亚致死剂量照射的小鼠,腹腔注射适量的人骨髓条件液,其内源性脾结节也明显增多。第三,采用阿糖胞苷自杀的方法,测定小鼠骨髓经与人骨髓条件液保温后,其中 CFU-S 的自杀率也有增高的趋势。上述几方面的实验,说明人骨髓长期培养中存在着某种活性物质,调节体外造血。至于这种物质的来源,以及在体外造血中所起的作用,还需要做很多工作,逐步予以澄清。  相似文献   

11.
Serum creatinine and urea changes as well as protein, erythrocytes, and leucocytes excretion with the urine in allogenic bone marrow recipients are discussed. An increase in serum creatinine and urea together with proteinuria and hematuria were noted in 1/3 of patients treated with busulphan and cyclophosphamide prior to bone marrow transplantation. In cases of bone marrow graft rejection or post-transplantation complications no abnormalities in the value of investigated parameters were noted, especially immediately before death. Possible causes of such renal function disorders are also discussed.  相似文献   

12.
The migration of infective larvae of Strongyloides ratti has been examined in C57Bl/6 mice after percutaneous infection of the anterior abdominal wall. Lateral migration of larvae through the skin and subcutaneous tissues was not seen. Large numbers of larvae were recovered from the muscles between 2 and 24 hours after infection and larvae were seen in the cerebrospinal fluid 24 and 48 hours after infection. Insignificant numbers of larvae were seen in the blood, serosal cavities, liver, spleen, kidneys, brain or nasopharynx. Larvae arrived in the lungs between 24 and 72 hours after infection and worms were first noted in the small intestines at 48 hours. It is concluded that larvae migrate preferentially to the muscles and CSF before passing to the lungs, but the exact mode of travel is uncertain.  相似文献   

13.
Production of colony stimulating factor in long-term bone marrow cultures   总被引:4,自引:0,他引:4  
Previous studies have shown no detectable colony-stimulating factor (CSF) in media harvested from long-term bone marrow cultures. In the present experiments supernatants from long-term cultures established in three laboratories were assayed for CSF by colony assay and by radioimmunoassay (RIA). Most samples were devoid of biologic activity but all contained CSF as judged by RIA. Biologic activity was found in the majority of samples after diafiltration to remove low molecular weight inhibitors or 5-fold concentration by ultrafiltration. Samples that remained inactive in the colony assay were subjected to gel filtration on Sephadex G-150 to remove potential high molecular weight inhibitors. Biologic activity remained lower than that by RIA in two of three samples tested. Thus, most long-term cultures appear to contain biologically active CSF but this activity is masked by various types of inhibitors. In addition some media appear to contain material that is only detected by RIA.  相似文献   

14.
Cytokines play a key role in mutual influence of the immunological, endocrine and CNS systems. It has been proven that proinflammatory ILs may intensify the cascade of biochemical changes in ischemic brain damage. Vasospasm, which may accompany SAH and often coexists with symptoms of DINDs, is the cause of ischemic changes in the brain. It is thought that immunological mechanisms may be one of the causes of degenerative-productive changes in vessel walls, in delayed vasospasm following SAH, which lead to substantial vasospasm and in consequence too cerebral ischemia. In the randomly selected group of patients, who underwent surgical treatment after aneurysmal SAH, we determined the concentration of IL-1 beta and IL-6 in CSF in the periods between Days 0 to 3; 4 to 7; and 8 to 15 after the occurrence of SAH. The presence and dynamics of development of vasospasm were assessed on the basis of increasing DINDs as well as CT and cerebral angiography. We examined the concentrations of ILs in CSF using radioimmunological methods, applying commercially available tests for their assessment. We found that in the period between 8 and 15 days after SAH, in increasing delayed vasospasm and DINDs, here is a statistically significant increase concentration of IL-1 beta in CSF (105.4 +/- 46.9 pg x ml-1; p<0.005), and no significant changes in patients without vasospasm and neurological deficits. On the other hand, we noted a statistically significant increase concentration of IL-6 in CSF (4802 +/- 1170 ng x ml-1; p<0.05) only in the acute phase after SAH (Days 0-3) in patients in poor clinical condition, in whom delayed vasospasm and cerebral ischemia developed later. This increase of ILs level in CSF is probably related to the intensity of the SAH, and secondarily aggravates the vasospasm and ischemic changes in the brain.  相似文献   

15.
125I-labeled colony-stimulating factor (CSF) binds to granulocytic and monocytic cells in the bone marrow in an irreversible manner. Addition of a 1000-fold excess of unlabeled CSF does not displace the bound material. The present studies showed that brief exposures to pH 2.7-5.0 caused a marked release of the bound material. Such treatments were nontoxic to the marrow cells as judged by trypan blue dye exclusion, assay of colony-forming cells, and by analysis of rebinding of fresh 125I-CSF to the acid-treated cells. The CSF released from marrow cells by low pH revealed two peaks of radioactivity on SDS-acrylamide gel. The first peak (67,500 Da) corresponded to native CSF; a second peak of 53,500 Da was observed. Despite this apparent mild degradation of CSF, the released material showed greater binding to marrow and greater precipitation by anti-CSF than the native 125I-CSF. Further studies showed that acid treatment of marrow cells led to stabilization of the CSF receptors. Pretreatment at pH 4.0 led to retention of binding sites after conversion of marrow cultures to pH 7.5 and incubation at 22-37 degrees C. In contrast, cells that were not exposed to low pH lost receptors rapidly at these temperatures. The extent of preservation of the binding sites was related to the duration of acid exposure. These studies indicate that CSF is retained on the cell surface after binding at 0 degree C and that the CSF can be eluted by acid conditions.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Regulation of CSF HCO3-in respiratory acidosis was studied in light of the "dual contribution theory," which proposed that there were two sources for the CSF HCO3-increase: 1) HCO3-by diffusion from plasma and 2) HCO3-generated in the CNS and catalyzed by the local carbonic anhydrase (J. Appl. Physiol. 38: 504-512, 1975). In anesthetized dogs with an increase in Paco2 of 30 mmHg for 4 h the plasma HCO3 increased 2 meq/1 and CSF 6 meq/1. In combined respiratory and metabolic acidosis, plasma HCO3-did not increase but CSF HCO3-increased 6 meq/1. In combined acidosis and intraventricular injections of acetazolamide no increase in plasma or CSF HCO3-occurred. In combined respiratory acidosis and metabolic alkalosis and intraventricular acetazolamide, plasma HCO3-increased 15 meq/1 but CSF HCO3-increased 6 meq/1. Brain and CSF ammonia increased linearly and selectively with the increase in the relative contribution of CNS HCO3-increase. Therefore regulation of CSF HCO3-in respiratory acidosis depends on both components of the dual contribution theory, where each component can provide the total CSF HCO3-increase under appropriate experimental conditions. The control mechanism may be sensitive to changes in [H+] on the brain side of the blood-brain barrier.  相似文献   

17.
Mouse bone marrow cells grown in medium enriched with L cell conditioned medium (LCM) as a source of colony stimulating factor (CSF) yield populations of adherent macrophages which are quite sensitive to induction of interferon (IFN) by viral and nonviral inducers. We examined the role of LCM in the sensitivity of marrow macrophage cultures to IFN induction. Removal of LCM from the cultures for as little as 3 hours markedly reduced the IFN titers induced by a double stranded ribopolynucleotide (poly I:C) or a lipopolysaccharide (LPS), while induction by Newcastle disease virus (NDV) was unaffected. Addition of anti-CSF serum to LCM medium also reduced IFN titers in response to polyI:C but had no effect on NDV induction. The inhibitory effect of anit-CSF indicates that the LCM requirement is at least partially related to the colony stimulating activity of the medium. We postulate that CSF regulates the initial interaction of macrophages with polyI:C or LPS rather than the synthesis and secretion of interferon by the phagocytes. Nearly complete restoration of IFN induction with polyI:C was obtained when LCM deprived cultures were reincubated with LCM medium previously conditioned by marrow cultures.  相似文献   

18.
The production of granulocytes and macrophages from progenitor cells in the bone marrow is controlled, in part, by a family of humoral regulators, termed colony stimulating factors (CSF). We have examined genetic factors controlling this process using in vitro cloning techniques. The inbred mouse strain LP/J showed elevated colony formation (CFU-C) in response to one subtype of CSF (G,M-CSF) compared to other strains of mice examined including the strain C57BL/6J. This variation resulted in a shift to the left of the CFU-C dose-response curve for LP/J. No difference between LP/J and C57BL/6J was seen with another subtype of CSF (CSF-1). Maximal CFU-C response was similar in the two mouse strains with both types of CSF, and mixing experiments with both types of CSF gave the same maximal level of colony formation as the individual CSF. (C57BL/6J X LP/J)F1 progeny exhibited a CFU-C dose-response curve to CSF-2 that was intermediate between the parental types, indicating additive inheritance. Genetic analysis of backcross progeny suggested that the variation in CFU-C response is probably determined by a single primary gene, although the variability of the colony formation assay has complicated interpretation of genetic studies. These results suggest that CSF-1 and G,M-CSF act independently on a single bone marrow progenitor cell population. The properties of the genetic variation for G,M-CSF response are consistent with an alteration in cellular receptors for G,M-CSF.  相似文献   

19.
Valproate (VPA) was administered to four rhesus monkeys by constant-rate intravenous infusion for two weeks under controlled conditions. Plasma and CSF samples were collected for a period of 27 hours at 3-hour intervals during steady-state and post-infusion periods. The mean correlation coefficient between total plasma and CSF VPA concentrations was found to be 0.78 +/- 0.09. The CSF VPA levels reflected the changes in free VPA in plasma but the two were not equivalent. Diurnal fluctuations in CSF VPA concentration were similar to those found in plasma but the inter-animal variation was greater in CSF than in plasma.  相似文献   

20.
The density of eosinophils in the cerebrospinal fluid (CSF) and blood of male ddY mice infected with Angiostrongylus cantonensis was examined on days 14, 20 and 27 post-infection (p.i.) with discontinuous Percoll gradient centrifugation. Normal blood eosinophils had a density of between 1.070 and 1.080 g ml-1. No significant changes in density in blood eosinophils were noted during the course of the observations. CSF eosinophils began to become hypodense (defined as density less than 1.070 g ml-1) on day 20 p.i., and 88% of eosinophils were hypodense on day 27. Our results suggest therefore that eosinophils probably become hypodense in the CSF and brain tissues, but not in the blood.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号