首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Summary Patch-clamp methods were used to study single-channel events in isolated oxyntic cells and gastric glands fromNecturus maculosa. Cell-attached, excised inside-out and outside-out patches from the basolateral membrane frequently contained channels which had conductances of 67±21 pS in 24% of the patches and channels of smaller conductance, 33±6 pS in 56% of the patches. Channels in both classes were highly selective for K+ over Na+ and Cl, and shared linear current-voltage relations. The 67-pS channel was activated by membrane depolarization, whereas the activity of the 33-pS channel was relatively voltage independent. The larger conductance channels were activated by intracellular Ca2+ in the range between 5 and 500nm, but unaffected by cAMP. The smaller conductance channels were activated by cAMP, but not Ca2+. The presence of K+ channels in the basolateral membrane which are regulated by these known second messengers can account for the increase in conductance and the hyperpolarization of the membrane observed upon secretagogue stimulation.  相似文献   

2.
Summary The voltage- and time-dependent properties of whole-cell, multi-channel (outside-out), and single channel inwardly-rectifying K+ currents were studied using adult and neonatal rat, and embryonic chick ventricular myocytes. Inward rectification of the current-voltage relationship was found in the whole-cell and single channel measurements. The steady-state single channel probability of opening decreased with hyperpolarization from EK, as did the mean open time, thereby explaining the time-dependent inactivation of the macroscopic current. Myocytes dialysed with a Mg++-free K+ solution (to remove the property of inward rectification) displayed a quasi-linear current-voltage relationship. The outward K+ currents flowing through the modified inward rectifier channels were able to be blocked by the local anesthetic and anti-arrhythmic agent, lidocaine.  相似文献   

3.
Summary In the mammalian distal colon, the surface epithelium is responsible for electrolyte absorption, while the crypts are the site of secretion. This study examines the properties of electrical potential-driven86Rb+ fluxes through K+ channels in basolateral membrane vesicles of surface and crypt cells of the rabbit distal colon epithelium. We show that Ba2+-sensitive, Ca2+-activated K+ channels are present in both surface and crypt cell derived vesicles with half-maximal activation at 5×10–7 m free Ca2+. This suggests an important role of cytoplasmic Ca2+ in the regulation of the bidirectional ion fluxes in the colon epithelium.The properties of K+ channels in the surface cell membrane fraction differ from those of the channels in the crypt cell derived membranes. The peptide toxin apamin inhibits Ca2+-activated K+ channels exclusively in surface cell vesicles, while charybdotoxin inhibits predominantely in the crypt cell membrane fraction. Titrations with H+ and tetraethylammonium show that both high-and low-sensitive86Rb+ flux components are present in surface cell vesicles, while the high-sensitive component is absent in the crypt cell membrane fraction. The Ba2+-sensitive, Ca2+-activated K+ channels can be solubilized in CHAPS and reconstituted into phospholipid vesicles. This is an essential step for further characterization of channel properties and for identification of the channel proteins in purification procedures.  相似文献   

4.
Summary Confluent monolayers of the established opossum kidney cell line were exposed to NH4Cl pulses (20 mmol/liter) during continuous intracellular measurements of pH, membrane potential (PD m ) and membrane resistance (R m) in bicarbonate-free Ringer. The removal of extracellular NH4Cl leads to an intracellular acidification from a control value of 7.33±0.08 to 6.47±0.03 (n=7). This inhibits the absolute K conductance (g K+), reflected by a decrease of K+ transference number from 71±3% (n=28) to 26±6% (n=5), a 2.6±0.2-fold rise ofR m, and a depolarization by 24.2±1.5 mV (n=52). In contrast, intracellular acidification during a block ofg K+ by 3 mmol/liter BaCl2 enhances the total membrane conductance, being shown byR m decrease to 68±7% of control and cell membrane depolarization by 9.8±2.8 mV (n=17). Conversely, intracellular alkalinization under barium elevatesR m and hyperpolarizes PD m . The replacement of extracellular sodium by choline in the presence of BaCl2 significantly hyperpolarizes PD m and increasesR m, indicating the presence of a sodium conductance. This conductance is not inhibited by 10–4 mol/liter amiloride (n=7). Patch-clamp studies at the apical membrane (excised inside-out configuration) revealed two Na+-conductive channels with 18.8±1.4 pS (n=10) and 146 pS single-channel conductance. Both channels are inwardly rectifying and highly selective towards Cl. The low-conductive channel is 4.8 times more permeable for Na+ than for K+. Its open probability rises at depolarizing potentials and is dependent on the pH of the membrane inside (higher at pH 6.5 than at pH 7.8).  相似文献   

5.
6.
Alves DP  Tatsuo MA  Leite R  Duarte ID 《Life sciences》2004,74(20):2577-2591
In order to investigate to the contribution of K+ channels on the peripheral antinociception induced by diclofenac, we evaluated the effect of several K+ channel blockers, using the rat paw pressure test, in which sensitivity is increased by intraplantar injection (2 microg) of prostaglandin E2. Diclofenac administered locally into the right hindpaw (25, 50, 100 and 200 microg) elicited a dose-dependent antinociceptive effect which was demonstrated to be local, since only higher doses produced an effect when injected in the contralateral paw. This blockade of PGE2 mechanical hyperalgesia induced by diclofenac (100 microg/paw) was antagonized in a dose-dependent manner by intraplantar administration of the sulphonylureas glibenclamide (40, 80 and 160 microg) and tolbutamide (80, 160 and 320 microg), specific blockers of ATP-sensitive K+ channels, and it was observed even when the hyperalgesic agent used was carrageenin, while the antinociceptive action of indomethacin (200 microg/paw), a typical cyclo-oxygenase inhibitor, over carrageenin-induced hyperalgesia was not affected by this treatment. Charybdotoxin (2 microg/paw), a blocker of large conductance Ca2+-activated K+ channels and dequalinium (50 microg/paw), a selective blocker of small conductance Ca2+-activated K+ channels, did not modify the effect of diclofenac. This effect was also unaffected by intraplantar administration of non-specific voltage-dependent K+ channel blockers tetraethylammonium (1700 microg) and 4-aminopyridine (100 microg) or cesium (500 microg), a non-specific K+ channel blocker. The peripheral antinociceptive effect induced by diclofenac was antagonized by NG-Nitro L-arginine (NOarg, 50 microg/paw), a NO synthase inhibitor and methylene blue (MB, 500 microg/paw), a guanylate cyclase inhibitor, and this antagonism was reversed by diazoxide (300 microg/paw), an ATP-sensitive K+ channel opener. We also suggest that an endogenous opioid system may not be involved since naloxone (50 microg/paw) did not affect diclofenac-induced antinociception in the PGE2-induced hyperalgesia model. This study provides evidence that the peripheral antinociceptive effect of diclofenac may result from activation of ATP-sensitive K+ channels, possible involving stimulation of L-arginine/NO/cGMP pathway, while Ca2+-activated K+ channels, voltage-dependent K+ channels as well as endogenous opioids appear not to be involved in the process.  相似文献   

7.
Large conductance (approximately 210 pS), K+-selective channels were identified in excised, insideout patches obtained from the apical membranes of both ciliated and nonciliated epithelial cells grown as monolayers from the primary culture of rabbit oviduct. The open probability of channels showing stable gating was increased at positive membrane potentials and was sensitive to the concentration of free calcium ions at the cytosolic surface of the patch ([Ca2+] i ). In these respects, the channel resembled maxi K+ channels found in a number of other cell types. The distributions of dwell-times in the open state were most consistently described by two exponential components. Four exponential components were fitted to the distributions of dwelltimes in the closed state. Depolarizations and [Ca2+] i increases had similar effects on the distribution of open dwell-times, causing increases in the two open time constants ( o1 and o2) and the fraction of events accounted for by the longer component of the distribution. In contrast, calcium ions and voltage had distinct effects on the distribution of closed dwelltimes. While the three shorter closed time constants ( c1, c2 and c3) were reduced by depolarizing membrane potentials, increases in [Ca2+] i caused decreases in the longer time constants ( c3 and c4). It is concluded that oviduct large conductance Ca2+-activated K+ channels can enter at least two major open states and four closed states.A.F.J. was supported by a research fellowship from the Japan Society for the Promotion of Science and received a grant for laboratory expenses from the Ministry of Education, Science and Culture, Japan. The authors wish to thank Dr. Shigetoshi Oiki for valuable discussion of the analysis of gating kinetics and Dr. Jeman Kim (Kyoto Pharmaceutical University) for making the transmission electron micrographs.  相似文献   

8.
Summary The properties of Ca2+-activated K+ channels in the apical membrane of theNecturus choroid plexus were studied using single-channel recording techniques in the cell-attached and excised-patch configurations. Channels with large unitary conductances clustered around 150 and 220 pS were most commonly observed. These channels exhibited a high selectivity for K+ over Na+ and K+ over Cs+. They were blocked by high cytoplasmic Na+ concentrations (110mm). Channel activity increased with depolarizing membrane potentials, and with increasing cytoplasmic Ca2+ concentrations. Increasing Ca2+ from 5 to 500nm, increased open probability by an order of magnitude, without changing single-channel conductance. Open probability increased up to 10-fold with a 20-mV depolarization when Ca2+ was 500nm. Lowering intracellular pH one unit, decreased open probability by more than two orders of magnitude, but pH did not affect single-channel conductance. Cytoplasmic Ba2+ reduced both channel-open probability and conductance. The sites for the action of Ba2+ are located at a distance more than halfway through the applied electric field from the inside of the membrane. Values of 0.013 and 117mm were calculated as the apparent Ba2+ dissociation constants (K d (0 mV) for the effects on probability and conductance, respectively. TEA+ (tetraethylammonium) reduced single-channel current. Applied to the cytoplasmic side, it acted on a site 20% of the distance through the membrane, with aK d (0 mV)=5.6mm. A second site, with a higher affinity,K d (0 mV)=0.23mm, may account for the near total block of chanel conductance by 2mm TEA+ applied to the outside of the membrane. It is concluded that the channels inNecturus choroid plexus exhibit many of the properties of maxi Ca2+-activated K+ channels found in other tissues.  相似文献   

9.
Summary Using the patch-clamp technique we have identified a Ca2+-sensitive, voltage-dependent, maxi-K+ channel on the basolateral surface of rat pancreatic duct cells. The channel had a conductance of 200 pS in excised patches bathed in symmetrical 150mm K+, and was blocked by 1mm Ba2+. Channel openstate probability (P o ) on unstimulated cells was very low, but was markedly increased by exposing the cells to secretin, dibutyryl cyclic AMP, forskolin or isobutylmethylxanthine. Stimulation also shifted theP o /voltage relationship towards hyperpolarizing potentials, but channel conductance was unchanged. If patches were excised from stimulated cells into the inside-out configuration,P o remained high, and was not markedly reduced by lowering bath (cytoplasmic) Ca2+ concentration from 2mm to 0.1 m. However, activated channels were still blocked by 1mm Ba2+. ChannelP o was also increased by exposing the cytoplasmic face of excised patches to the purified catalytic subunit of cyclic AMP-dependent protein kinase., We conclude that cyclic AMP-dependent phosphorylation can activate maxi-K+ channels on pancreatic duct cells via a stable modification of the channel protein itself, or a closely associated regulatory subunit, and that phosphorylation alters the responsiveness of the channels to Ca2+. Physiologically, these K+ channels may contribute to the basolateral K+ conductance of the duct cell and, by providing a pathway for current flow across the basolateral membrane, play an important role in pancreatic bicarbonate secretion.  相似文献   

10.
In the last 15 years, remarkable progress has been realized in identifying the genes that encode the ion-transporting proteins involved in exocrine gland function, including salivary glands. Among these proteins, Ca2+-dependent K+ channels take part in key functions including membrane potential regulation, fluid movement and K+ secretion in exocrine glands. Two K+ channels have been identified in exocrine salivary glands: (1) a Ca2+-activated K+ channel of intermediate single channel conductance encoded by the KCNN4 gene, and (2) a voltage- and Ca2+-dependent K+ channel of large single channel conductance encoded by the KCNMA1 gene. This review focuses on the physiological roles of Ca2+-dependent K+ channels in exocrine salivary glands. We also discuss interesting recent findings on the regulation of Ca2+-dependent K+ channels by protein–protein interactions that may significantly impact exocrine gland physiology.  相似文献   

11.
In a previous work, we have reported that the ionic nature of the outward current recorded in MCF-7 cells was that of a K+ current. In this study, we have identified a Ca2+-activated K+ channel not yet described in MCF-7 human breast cancer cells. In cells arrested in the early G1 (depolarized cells), increasing [Ca2+]i induced both a shift in the I-V curve toward more negative potentials and an increase in current amplitude at negative and more at positive potential. Currents were inhibited by r-iberiotoxin (r-IbTX, 50 nM) and charybdotoxin (ChTX, 50 nM). These data indicate that human breast cancer cells express large-conductance Ca2+-activated K+ (BK) channels. BK current-density increased in cells synchronized at the end of G1, as compared with those in the early G1 phase. This increased current-density paralleled the enhancement in BK mRNA levels. Blocking BK channels with r-IbTX, ChTX or both induced a slight depolarization in cells arrested in the early G1, late G1, and S phases and accumulated cells in the S phase, but failed to induce cell proliferation. Thus, the expression of the BK channels was cell-cycle-dependent and seems to contribute more to the S phase than to the G1 phase. However, these K+ channels did not regulate the cell proliferation because of their minor role in the membrane potential.  相似文献   

12.
Summary The plasma membrane of the yeast Saccharomyces cerevisiae has been investigated by patch-clamp techniques, focusing upon the most conspicuous ion channel in that membrane, a K+-selective channel. In simple observations on inside-out patches, the channel is predominantly closed at negative membrane voltages, but opens upon polarization towards positive voltages, typically displaying long flickery openings of several hundred milliseconds, separated by long gaps (G). Elevating cytoplasmic calcium shortens the gaps but also introduces brief blocks (B, closures of 2–3 msec duration). On the assumption that the flickery open intervals constitute bursts of very brief openings and closings, below the time resolution of the recording system, analysis via the beta distribution revealed typical closed durations (interrupts, I) near 0.3 msec, and similar open durations. Overall behavior of the channel is most simply described by a kinetic model with a single open state (O), and three parallel closed states with significantly different lifetimes: long (G), short (B) and very short (I). Detailed kinetic analysis of the three open/closed transitions, particularly with varied membrane voltage and cytoplasmic calcium concentration, yielded the following stability constants for channel closure: K I =3.3 · e –zu in which u=eV m /kT is the reduced membrane voltage, and z is the charge number; K G = 1.9 · 10–4([Ca2+] · e zu )–1; and K B =2.7 · 103([Ca2+] · e zu )2. Because of the antagonistic effects of both membrane voltage (V m ) and cytoplasmic calcium concentration ([Ca2+]cyt) on channel opening from the B state, compared with openings from the G state, plots of net open probability (P 0 ) vs. either V m or [Ca2+] are bell-shaped, approaching unity at low calcium ( m) and high voltage (+150 mV), and approaching 0.25 at high calcium (10 mm) and zero voltage. Current-voltage curves of the open channel are sigmoid vs. membrane voltage, saturating at large positive or large negative voltages; but time-averaged currents, along the rising limb of P 0 (in the range 0 to +150 mV, for 10 m [Ca2+]) make this channel a strong outward rectifier. The overall properties of the channel suggest that it functions in balancing charge movements during secondary active transport in Saccharomyces.The authors are indebted to Dr. Michael Snyder and Dr. Constance Copeland (Yale Department of Biology) for providing the tetraploid yeast strain and for initial assistance in handling the cells and preparing protoplasts; and to Dr. Esther Bashi for technical assistance throughout the experiments. The work was supported by Research Grant 85ER13359 from the United States Department of Energy (to C.L.S.), by Forschungs-Stipendium Be 1181/2-1 from the Deutsche Forschungsgemeinschaft (to A.B.), and by Akademie-Stipendium II/66647 from the Volkswagenstiftung (to D.G.).  相似文献   

13.
Summary The effects of cAMP, ATP and GTP on the Ca2+-dependent K+ channel of fresh (1–2 days) or cold-stored (28–36 days) human red cells were studied using atomic absorption flame photometry of Ca2+-EGTA loaded ghosts which had been resealed to monovalent cations in dextran solutions. When high-K+ ghosts were incubated in an isotonic Na+ medium, the rate constant of Ca2+-dependent K+ efflux was reduced by a half on increasing the theophylline concentration to 40mm. This effect was observed in ghosts from both fresh and stored cells, but only if they were previously loaded with ATP. The inhibition was more marked when Mg2+ was added together with ATP, and it was abolished by raising free Ca2+ to the micromolar level. Like theophylline, isobutyl methylxanthine (10mm) also affected K+ efflux. cAMP (0.2–0.5mm), added both internally and externally (as free salt, dibutyryl or bromide derivatives), had no significant effect on K+ loss when the ghost free-Ca2+ level was below 1 m, but it was slightly inhibitory at higher concentrations. The combined presence of cAMP (0.2mm) plus either theophylline (10mm), or isobutyl methylxanthine (0.5mm), was more effective than cAMP alone. This inhibition showed a strict requirement for ATP plus Mg2+ and it, was not overcome by raising internal Ca2+. Ghosts from stored cells seemed more sensitive than those from fresh cells, to the combined action of cAMP and methylxanthines. Loading ATP into ghosts from fresh or stored cells markedly decreased K+ loss. Although this effect was observed in the absence of added Mg2+ (0.5mm EDTA present), it was potentiated upon adding 2mm Mg2+. The K+ efflux from ATP-loaded ghosts was not altered by dithio-bis-nitrobenzoic acid (10mm) or acridine orange (100 m), while it was increased two-to fourfold by incubating with MgF2 (10mm), or MgF2 (10mm)+theophylline (40mm), respectively. By contrast, a marked efflux reduction was obtained by incorporating 0.5mm GTP into ATP-containing ghosts. The degree of phosphorylation obtained by incubating membranes with (-32P)ATP under various conditions affecting K+ channel activity, was in direct correspondence to their effect on K+ efflux. The results suggest that the K+ channel of red cells is under complex metabolic control, via cAMP-mediated and nonmediated mechanisms, some which require ATP and presumably, involve phosphorylation of the channel proteins.  相似文献   

14.
15.
Recent molecular dynamic simulations and electrostatic calculations suggested that the external TEA binding site in K+ channels is outside the membrane electric field. However, it has been known for some time that external TEA block of Shaker K+ channels is voltage dependent. To reconcile these two results, we reexamined the voltage dependence of block of Shaker K+ channels by external TEA. We found that the voltage dependence of TEA block all but disappeared in solutions in which K+ ions were replaced by Rb+. These and other results with various concentrations of internal K+ and Rb+ ions suggest that the external TEA binding site is not within the membrane electric field and that the voltage dependence of TEA block in K+ solutions arises through a coupling with the movement of K+ ions through part of the membrane electric field. Our results suggest that external TEA block is coupled to two opposing voltage-dependent movements of K+ ions in the pore: (a) an inward shift of the average position of ions in the selectivity filter equivalent to a single ion moving approximately 37% into the pore from the external surface; and (b) a movement of internal K+ ions into a vestibule binding site located approximately 13% into the membrane electric field measured from the internal surface. The minimal voltage dependence of external TEA block in Rb+ solutions results from a minimal occupancy of the vestibule site by Rb+ ions and because the energy profile of the selectivity filter favors a more inward distribution of Rb+ occupancy.  相似文献   

16.
Summary Cytoplasmic drops, covered by a membrane derived from the tonoplast, were obtained from the internodal cells ofChara australis. Patch-clamp measurements were made on this membrane using the droplet-attached configuration with the membrane patch voltage clamped at values from –250 to 50 mV. Single-channel records, filtered at 5 kHz, were analyzed to elucidate the kinetics of the ion gating reaction of the K+-selective channel. The current-voltage characteristics for single channels exhibit saturation and are shown to be consistent with Läuger's theory of diffusion-limited ion flow through pores (P. Läuger,Biochim. Biophys. Acta 455:493–509, 1976). The time-averaged behavior of the K+ conductance has a maximum at –100 to –150 mV which is produced by the combination of two distinct mechanisms: (1) The channel spending more time in long-lived closed states at positive voltages and (2) a large decrease in the mean open lifetime at more negative voltages. The channel activity shows bursting behavior with opening and closing rates that are voltage-dependent. The mean open time is the kinetic parameter most sensitive to membrane potential, showing a maximum between –100 to –150 mV. The distribution of open times is dominated by one exponential component (time constant 0.3 to 10 msec). In some cases an additional rapidly decaying exponential component was detectable (time constant=0.1 msec). The closed distributions contained were observed to obtain up to four exponential components with time constants over the range 0.1 to 200 msec. However, the voltage dependence of the closed-time distributions suggests an eight-state model for this channel.  相似文献   

17.
In this work, we used a panel prokaryote/eukaryote K+ channel chimeras to generate K+ channel arrays. Their behaviour in solution was compared with that when spotted on a nitrocellulose-supported film and their responses to selective high affinity ligands, including polypeptide toxins and TEA, were studied.  相似文献   

18.
Summary Using intracellular microelectrode technique, we investigated the changes in membrane voltage (V) of cultured bovine pigmented ciliary epithelial cells induced by different extracellular solutions. (1)V in 213 cells under steady-state conditions averaged –46.1±0.6 mV (sem). (2) Increasing extracellular K+ concentration ([K+] o ) depolarizedV. Addition of Ba2+ could diminish this response. (3) Depolarization on doubling [K+] o was increased at higher [K+] o (or low voltage). (4) Removing extracellular Ca2+ decreasedV and reduced theV amplitude on increasing [K+] o . (5)V was pH sensitive. Extra-and intracellular acidification depolarizedV; alkalinization induced a hyperpolarization.V responses to high [K+] o were reduced at acidic extracellular pH. (6) Removing K o + depolarized, K o + readdition after K+ depletion transiently hyperpolarizedV. These responses were insensitive to Ba2+ but were abolished in the presence of ouabain or in Na+-free medium. (7) Na+ readdition after Na+ depletion transiently hyperpolarizedV. This reaction was markedly reduced in the presence of ouabain or in K+-free solution but unchanged by Ba2+. It is concluded that in cultured bovine pigmented ciliary epithelial cells K+ conductance depends on Ca2+, pH and [K+] o (or voltage). An electrogenic Na+/K+-transport is present, which is stimulated during recovery from K+ or Na+ depletion. This transport is inhibited by ouabain and in K+-or Na+-free medium.  相似文献   

19.
Summary ADH, acting through cAMP, increases the potassium conductance of apical membranes of mouse medullary thick ascending limbs of Henle. The present studies tested whether exposure of renal medullary apical membranes in vitro to the catalytic subunit of cAMP-dependent protein kinase resulted in an increase in potassium conductance. Apical membrane vesicles prepared from rabbit outer renal medulla demonstrated bumetanide-and chloride-sensitive22Na+ uptake and barium-sensitive, voltage-dependent86Rb+-influx. When vesicles were loaded with purified catalytic subunit of cAMP-dependent protein kinase (150 mU/ml), 1mm ATP, and 50mm KCl, the barium-sensitive86Rb+ influx increased from 361±138 to 528±120pm/mg prot · 30 sec (P<0.01). This increase was inhibited completely when heat-stable protein kinase inhibitor (1 g/ml) was also present in the vesicle solutions. The stimulation of86Rb+ uptake by protein kinase required ATP rather than ADP. It also required opening of the vesicles by hypotonic shock, presumably to allow the kinase free access to the cytoplasmic face of the membranes. We conclude that cAMP-dependent protein kinase-mediated phosphorylation of apical membranes from the renal medulla increases the potassium conductance of these membranes. This mechanism may account for the ADH-mediated increase in potassium conductance in the mouse mTALH.  相似文献   

20.
We have recently examined slow inactivation of Shab channels. Here we extend our characterization of Shab slow inactivation by presenting the properties of recovery from inactivation. The observations support our proposal that Shab reaches the same inactivated state either from open or closed states and suggest that closed and open state inactivation share the same mechanism. Regarding the latter, we also show that external K+ and TEA slow down recovery from inactivation in agreement with the hypothesis that the mechanism of Shab inactivation qualitatively differs from C-type inactivation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号