首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The plus strand of the L-A double-stranded RNA virus of Saccharomyces cerevisiae has two large open reading frames, ORF1, which encodes the major coat protein, and ORF2, which encodes a single-stranded RNA-binding protein having a sequence diagnostic of viral RNA-dependent RNA polymerases. ORF2 is expressed only as a Gag-Pol-type fusion protein with ORF1. We have constructed a plasmid which expresses these proteins from the yeast PGK1 promoter. We show that this plasmid can support the replication of the killer toxin-encoding M1 satellite virus in the absence of an L-A double-stranded RNA helper virus itself. This requires ORF2 expression, providing a potential in vivo assay for the RNA polymerase and single-stranded RNA-binding activities of the fusion protein determined by ORF2. ORF1 expression, like a host ski- mutation, can suppress the usual requirement of M1 for the MAK11, MAK18, and MAK27 genes and allow a defective L-A (L-A-E) to support M1 replication. These results suggest that expression of ORF1 from the vector makes the cell a ski- phenocopy. Indeed, expression of ORF1 in a wild-type killer makes it a superkiller, suggesting that a target of the SKI antiviral system may be the major coat protein.  相似文献   

3.
4.
Liu T  Ye Z 《Journal of virology》2002,76(24):13055-13061
The matrix protein (M1) of influenza virus plays an essential role in viral assembly and has a variety of functions, including association with influenza virus ribonucleoprotein (RNP). Our previous studies show that the association of M1 with viral RNA and nucleoprotein not only promotes formation of helical RNP but also is required for export of RNP from the nucleus during viral replication. The RNA-binding domains of M1 have been mapped to two independent regions: a zinc finger motif at amino acid positions 148 to 162 and a series of basic amino acids (RKLKR) at amino acid positions 101 to 105, which is also involved in RNP-binding activity. To further understand the role of the RNP-binding domain of M1 in viral assembly and replication, mutations in the coding sequences of RKLKR and the zinc finger motif of M1 were constructed using a PCR technique and introduced into wild-type influenza virus by reverse genetics. Altering the zinc finger motif of M1 only slightly affected viral growth. Substitution of Arg with Ser at position 101 or 105 of RKLKR did not have a major impact on nuclear export of RNP or viral replication. In contrast, deletion of RKLKR or substitution of Lys with Asn at position 102 or 104 of RKLKR resulted in a lethal mutation. These results indicate that the RKLKR domain of M1 protein plays an important role in viral replication.  相似文献   

5.
Phosphoprotein NSP5 is a component of replication intermediates that catalyze the synthesis of the segmented double-stranded RNA (dsRNA) rotavirus genome. To study the role of the protein in viral replication, His-tagged NSP5 was expressed in bacteria and purified by affinity chromatography. In vitro phosphorylation assays showed that NSP5 alone contains minimal autokinase activity but undergoes hyperphosphorylation when combined with the NTPase and helix-destabilizing protein NSP2. Hence, NSP2 mediates the hyperphosphorylation of NSP5 in the absence of other viral or cellular proteins. RNA-binding assays demonstrated that NSP5 has unique nonspecific RNA-binding activity, recognizing single-stranded RNA and dsRNA with similar affinities. The possible functions of the RNA-binding activities of NSP5 are to cooperate with NSP2 in the destabilization of RNA secondary structures and in the packaging of RNA and/or to prevent the interferon-induced dsRNA-dependent activation of the protein kinase PKR.  相似文献   

6.
The Pol region of the Gag-Pol fusion protein of the L-A double-stranded (ds) RNA virus of Saccharomyces cerevisiae has (i) a domain essential for packaging viral positive strands, (ii) consensus amino acid sequence patterns typical of RNA-dependent RNA polymerases, and (iii) two single-stranded RNA binding domains. We describe here a third single-stranded RNA binding domain (Pol residues 374 to 432), which is unique in being cryptic. Its activity is revealed only after deletion of an inhibitory region C terminal to the binding domain itself. This cryptic RNA binding domain is necessary for propagation of M1 satellite dsRNA, but it is not necessary for viral particle assembly or for packaging of viral positive-strand single-stranded RNA. The cryptic RNA binding domain includes a sequence pattern common among positive-strand single-stranded RNA and dsRNA viral RNA-dependent RNA polymerases, suggesting that it has a role in RNA polymerase activity.  相似文献   

7.
The adenovirus L4 100-kDa nonstructural protein (100K protein) is required for efficient initiation of translation of viral late mRNA species during the late mRNA species during the late phase of infection (B. W. Hayes, G. C. Telling, M. M. Myat, J. F. Williams, and S. J. Flint, J. Virol. 64:2732-2742, 1990). The RNA-binding properties of this protein were analyzed in an immunoprecipitation assay with the 100K-specific monoclonal antibody 2100K-1 (C. L. Cepko and P. A. Sharp, Virology 129:137-154, 1983). Coprecipitation of the 100K protein and 3H-infected cell RNA was demonstrated. The RNA-binding activity of the 100K protein was inhibited by single-stranded DNA but not by double-stranded DNA, double-stranded RNA, or tRNA. Competition assays were used to investigate the specificity with which the 100K protein binds to RNA in vitro. Although the protein exhibited a strong preference for the ribohomopolymer poly(U) or poly(G), no specific binding to viral mRNA species could be detected; uninfected or adenovirus type 5-infected HeLa cell poly(A)-containing and poly(A)-lacking RNAs were all effective inhibitors of binding of the protein to viral late mRNA. Similar results were obtained when the binding of the 100K protein to a single, in vitro-synthesized L2 mRNA was assessed. The poly(U)-binding activity of the 100K protein was used to compare the RNA-binding properties of the 100K protein prepared from cells infected by adenovirus type 5 and the H5ts1 mutant (B. W. Hayes, G. C. Telling, M. M. Myat, J. F. Williams, and S. J. Flint, J. Virol. 64:2732-2742, 1990). A temperature-dependent decrease in H5ts1 100K protein binding was observed, correlating with the impaired translational function of this protein in vivo. By contrast, wild-type 100K protein RNA binding was unaffected by temperature. These data suggest that the 100K protein acts to increase the translational efficiency of viral late mRNA species by a mechanism that involves binding to RNA.  相似文献   

8.
9.
We identified and mapped RNA-binding sites of yeast Saccharomyces cerevisiae translation initiation factor eIF4G1 and examined their importance for eIF4G1 function in vitro and in vivo. Yeast eIF4G1 binds to single-stranded RNA with three different sites, the regions of amino acids 1-82 (N terminus), 492-539 (middle), and 883-952 (C terminus). The middle and C-terminal RNA-binding sites represent RS (arginine and serine)-rich domains; the N-terminal site is asparagine-, glutamine- and glycine-rich. The three RNA-binding sites have similar affinity for single-stranded RNA, whereas the affinity for single-stranded RNA full-length eIF4G1 is about 100-fold higher (approximate K(d) of 5 x 10(-8) M). Replacement of the arginine residues in the middle RS site by alanine residues abolishes its RNA-binding activity. Deletion of individual RNA-binding sites shows that eIF4G1 molecules lacking one binding site are still active in supporting growth of yeast cells and translation in vitro, whereas eIF4G1 molecules lacking two or all three RNA-binding sites are strongly impaired or inactive. These data suggest that RNA-binding activity is required for eIF4G1 function.  相似文献   

10.
11.
12.
Various 2alpha-helix peptides were designed and synthesized based on the RNA-binding region of matrix protein M1 in influenza virus. The binding properties of the peptides to model ssRNA, ssDNA, dsDNA, and virus RNA were examined by the fluorescence studies of a dansyl group incorporated into the peptides. The peptide containing the hydrophilic residues of M1 RNA-binding region bound RNAs selectively.  相似文献   

13.
Herpes simplex virus 1 (HSV-1) Us11 protein is a double-stranded RNA-binding protein that suppresses type I interferon production through the inhibition of the cytoplasmic RNA sensor RIG-I. Whether additional cellular mediators are involved in this suppression remains to be determined. In this study, we report on the requirement of cellular double-stranded RNA-binding protein PACT for Us11-mediated perturbation of type I interferon production. Us11 associates with PACT tightly to prevent it from binding with and activating RIG-I. The Us11-deficient HSV-1 was indistinguishable from the Us11-proficient virus in the suppression of interferon production when PACT was compromised. More importantly, HSV-1-induced activation of interferon production was abrogated in PACT knockout murine embryonic fibroblasts. Our findings suggest a new mechanism for viral evasion of innate immunity through which a viral double-stranded RNA-binding protein interacts with PACT to circumvent type I interferon production. This mechanism might also be used by other PACT-binding viral interferon-antagonizing proteins such as Ebola virus VP35 and influenza A virus NS1.  相似文献   

14.
Liu T  Ye Z 《Journal of virology》2004,78(18):9585-9591
Our previous studies with influenza A viruses indicated that the association of M1 with viral RNA and nucleoprotein (NP) is required for the efficient formation of helical ribonucleoprotein (RNP) and for the nuclear export of RNPs. RNA-binding domains of M1 map to the following two independent regions: a zinc finger motif at amino acid positions 148 to 162 and a series of basic amino acids (RKLKR) at amino acid positions 101 to 105. Altering the zinc finger motif of M1 reduces viral growth slightly. A substitution of Ser for Arg at either position 101 or position 105 of the RKLKR domain partially reduces the nuclear export of RNP and viral replication. To further understand the role of the zinc finger motif and the RKLKR domain in viral assembly and replication, we introduced multiple mutations by using reverse genetics to modify these regions of the M gene of influenza virus A/WSN/33. Of multiple mutants analyzed, a double mutant, R101S-R105S, of RKLKR resulted in a temperature-sensitive phenotype. The R101S-R105S double mutant had a greatly reduced ratio of M1 to NP in viral particles and a weaker binding of M1 to RNPs. These results suggest that mutations can be introduced into the RKLKR domain to control viral replication.  相似文献   

15.
The NS1 protein of influenza A virus has the unique property of binding to three apparently different RNAs: poly A; a stem-bulge in U6 small nuclear RNA; and double-stranded RNA. One of our major goals is to determine how the NS1 protein recognizes and binds to its several RNA targets. As the first step for conducting structural studies, we have succeeded in identifying a fragment of the NS1 protein that possesses all the RNA-binding activities of the full-length protein. The RNA-binding fragment consists of the 73 amino-terminal amino acids of the protein. We have developed procedures for obtaining large amounts of the polypeptide in pure form. This has enabled us to establish the RNA-binding properties of this polypeptide and to demonstrate that it retains the ability to dimerize exhibited by the full-length protein. In addition, far-UV CD spectroscopy indicates that this RNA-binding polypeptide is largely (approximately 80%) helical, suggesting that the mode of dimerization of the NS1 protein and of its interaction with RNA is mediated, at least in part, by helices.  相似文献   

16.
17.
18.
The influenza A virus genome consists of eight RNA segments that associate with the viral polymerase proteins (PB1, PB2, and PA) and nucleoprotein (NP) to form ribonucleoprotein complexes (RNPs). The viral NS1 protein was previously shown to associate with these complexes, although it was not clear which RNP component mediated the interaction. Using individual TAP (tandem affinity purification)-tagged PB1, PB2, PA, and NP, we demonstrated that the NS1 protein interacts specifically with NP and not the polymerase subunits. The region of NS1 that binds NP was mapped to the RNA-binding domain.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号