首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Escherichia coli RecA protein catalyzes the central DNA strand-exchange step of homologous recombination, which is essential for the repair of double-stranded DNA breaks. In this reaction, RecA first polymerizes on single-stranded DNA (ssDNA) to form a right-handed helical filament with one monomer per 3 nt of ssDNA. RecA generally binds to any sequence of ssDNA but has a preference for GT-rich sequences, as found in the recombination hot spot Chi (5′-GCTGGTGG-3′). When this sequence is located within an oligonucleotide, binding of RecA is phased relative to it, with a periodicity of three nucleotides. This implies that there are three separate nucleotide-binding sites within a RecA monomer that may exhibit preferences for the four different nucleotides. Here we have used a RecA coprotease assay to further probe the ssDNA sequence specificity of E.coli RecA protein. The extent of self-cleavage of a λ repressor fragment in the presence of RecA, ADP-AlF4 and 64 different trinucleotide-repeating 15mer oligonucleotides was determined. The coprotease activity of RecA is strongly dependent on the ssDNA sequence, with TGG-repeating sequences giving by far the highest coprotease activity, and GC and AT-rich sequences the lowest. For selected trinucleotide-repeating sequences, the DNA-dependent ATPase and DNA-binding activities of RecA were also determined. The DNA-binding and coprotease activities of RecA have the same sequence dependence, which is essentially opposite to that of the ATPase activity of RecA. The implications with regard to the biological mechanism of RecA are discussed.  相似文献   

2.
In the accompanying paper, RecA142 protein was found to be completely defective in DNA heteroduplex formation. Here, we show that RecA142 protein not only is defective in this activity but also is inhibitory for certain activities of wild-type RecA protein. Under appropriate conditions, RecA142 protein substantially inhibits the DNA strand exchange reaction catalyzed by wild-type RecA protein; at equimolar concentrations of each protein, formation of full-length gapped duplex DNA product molecules is less than 7% of the amount produced by wild-type protein alone. Inhibition by RecA142 protein is also evident in S1 nuclease assays of DNA heteroduplex formation, although the extent of inhibition is less than is observed for the complete DNA strand exchange process; at equimolar concentrations of wild-type and mutant proteins, the extent of DNA heteroduplex formation is 36% of the wild-type protein level. This difference implies that RecA142 protein prevents, at minimum, the branch migration normally observed during DNA strand exchange. RecA142 protein does not inhibit either the single-strand (ss) DNA-dependent ATPase activity or the coaggregation activities of wild-type RecA protein. This suggests that these reactions are not responsible for the inhibition of wild-type protein DNA strand exchange activity by RecA142 protein. However, under conditions where RecA142 protein inhibits DNA strand exchange activity, RecA142 protein renders the M13 ssDNA-dependent ATPase activity of wild-type protein sensitive to inhibition by single-strand DNA-binding protein, and it inhibits the double-strand DNA-dependent ATPase activity of wild-type RecA protein. These results imply that these two activities are important components of the overall DNA strand exchange process. These experiments also demonstrate the applicability of using defective mutant RecA proteins as specific codominant inhibitors of wild-type protein activities in vitro and should be of general utility for mechanistic analysis of RecA protein function both in vitro and in vivo.  相似文献   

3.
The specific influence of the four nucleobases on electrophoretic mobility of oligodeoxyribonucleotides in polyacrylamide-gels under denaturing and nondenaturing conditions has been investigated using homooligomers from the four deoxyribonucleotides as chain length standards. Homooligomers of same chain lengths exhibit remarkable differences in mobility. Specific retardation of any other oligonucleotide investigated was found to be mainly dependent on base composition but not on sequence. A simple procedure is presented for calculating mobilities relative to the standards on denaturing gels. This allows a reliable identification of oligonucleotides on acrylamide-gels by exact chain length determination with respect to base composition and furthermore a detailed interpretation of complex reaction mixtures. The homooligomers also show the same differences in mobility on nondenaturing gels. The significance of this effect for strand separation is discussed.  相似文献   

4.
S A Chow  S K Chiu  B C Wong 《Biochimie》1991,73(2-3):157-161
RecA protein promotes homologous pairing and symmetrical strand exchange between partially single-stranded duplex DNA and fully duplex molecules. We constructed circular gapped DNA with a defined gap length and studied the pairing reaction between the gapped substrate and fully duplex DNA. RecA protein polymerizes onto the single-stranded and duplex regions of the gapped DNA to form a nucleoprotein filament. The formation of such filaments requires a stoichiometric amount of RecA protein. Both the rate and yield of joint molecule formation were reduced when the pairing reaction was carried out in the presence of a sub-saturating amount of RecA protein. The amount of RecA protein required for optimal pairing corresponds to the binding site size of RecA protein at saturation on duplex DNA. The result suggests that in the 4-stranded system the single-stranded as well as the duplex regions are involved in pairing. By using fully duplex DNA that shares different lengths and regions of homology with the gapped molecule, we directly showed that the duplex region of the gapped DNA increased both the rate and yield of joint molecule formation. The present study indicates that even though strand exchange in the 4-stranded system must require the presence of a single-stranded region, the pairing that occurs in duplex regions between DNA molecules is functionally significant and contributes to the overall activity of the gapped DNA.  相似文献   

5.
We have characterised a RecA protein fused to the simian virus 40 large T nuclear-localisation signal. The fusion protein was targeted to the nucleus in transgenic tobacco plants with high efficiency. By contrast, authentic RecA was not enriched in the nuclei of plant cells expressing comparable amounts of protein. For detailed characterisation of the strand-exchange activity of the nuclear-targeted RecA protein, a nearly identical protein was expressed in Escherichia coli and purified to homogeneity. This protein was found to bind to single-stranded DNA with the same stoichiometry and to promote the exchange of homologous DNA strands with the same kinetics as authentic RecA. It was concluded that the amino-terminal modification did not alter any of the essential properties of RecA and that the fusion protein is a fully functional strand-exchange protein. However, the ATPase activity of this protein was 20 times greater than that of RecA in the absence of single-stranded DNA. As with RecA, this activity was further stimulated by the addition of single-stranded DNA. Since ATPase activity is correlated with the ability of RecA to assume its high affinity state for DNA, the nuclear-targeted RecA protein might be regarded as a constitutively stimulated RecA variant, fully functional in promoting homologous recombination.  相似文献   

6.
In this study, the double-stranded DNA-dependent activities of Deinococcus radiodurans RecA protein (Dr RecA) were characterized. The interactions of the Dr RecA protein with double-stranded DNA were determined, especially dsDNA-dependent ATP hydrolysis by the Dr RecA protein and the DNA strand exchange reaction, in which multiple branch points exist on a single RecA protein-DNA complex. A nucleotide cofactor (ATP or dATP ) was required for the Dr RecA protein binding to duplex DNA. In the presence of dATP, the nucleation step in the binding process occurred more rapidly than in the presence of ATP. Salts inhibited the binding of the Dr RecA protein to double-stranded DNA. Double-stranded DNA-dependent ATPase activities showed a different sensitivity to anion species. Glutamate had only a minimal effect on the double-stranded DNA-dependent ATPase activities, up to a concentration of 0.7 M. In the competition experiment for Dr RecA protein binding, the Dr RecA protein manifested a higher affinity to double-stranded DNA than was observed for single-stranded DNA.  相似文献   

7.
Gamper HB  Nulf CJ  Corey DR  Kmiec EB 《Biochemistry》2003,42(9):2643-2655
RecA protein catalyzes strand exchange between homologous single-stranded and double-stranded DNAs. In the presence of ATPgammaS, the post-strand exchange synaptic complex is a stable end product that can be studied. Here we ask whether such complexes can hybridize to or exchange with DNA, 2'-OMe RNA, PNA, or LNA oligonucleotides. Using a gel mobility shift assay, we show that the displaced strand of a 45 bp synaptic complex can hybridize to complementary oligonucleotides with different backbones to form a four-stranded (double D-loop) joint that survives removal of the RecA protein. This hybridization reaction, which confirms the single-stranded character of the displaced strand in a synaptic complex, might initiate recombination-dependent DNA replication if it occurs in vivo. We also show that either strand of the heteroduplex in a 30 bp synaptic complex can be replaced with a homologous DNA oligonucleotide in a strand exchange reaction that is mediated by the RecA filament. Consistent with the important role that deoxyribose plays in strand exchange, oligonucleotides with non-DNA backbones did not participate in this reaction. The hybridization and strand exchange reactions reported here demonstrate that short synaptic complexes are dynamic structures even in the presence of ATPgammaS.  相似文献   

8.
RecA protein catalyzes homologous pairing of partially single-stranded duplex DNA and fully duplex DNA to form stable joint molecules. We constructed circular duplex DNA with various defined gap lengths and studied the pairing reaction between the gapped substrate with fully double-stranded DNA. The reaction required a stoichiometric amount of RecA protein, and the optimal reaction was achieved at a ratio of 1 RecA monomer per 4 base pairs. The length of the gap, ranging from 141 to 1158 nucleotides, had little effect on the efficiency of homologous pairing. By using a circular gapped duplex DNA prepared from the chimeric phage M13Gori1, we were able to show the formation of nonintertwined or paranemic joints in duplex regions between the gapped and fully duplex molecules. The formation of such paranemic joints occurred efficiently and included nearly all of the DNA in the reaction mixture. The reaction required negative superhelicity, and pairing was greatly reduced with linear or nicked circular DNA. We conclude that one functional role of the single-stranded gap is for facilitating the binding of RecA protein to the duplex region of the gapped DNA. Once the nucleoprotein filament is formed, homologous pairing between the gapped and fully duplex DNA can take place anywhere along the length of the nucleoprotein complex.  相似文献   

9.
 We have characterised a RecA protein fused to the simian virus 40 large T nuclear-localisation signal. The fusion protein was targeted to the nucleus in transgenic tobacco plants with high efficiency. By contrast, authentic RecA was not enriched in the nuclei of plant cells expressing comparable amounts of protein. For detailed characterisation of the strand-exchange activity of the nuclear-targeted RecA protein, a nearly identical protein was expressed in Escherichia coli and purified to homogeneity. This protein was found to bind to single-stranded DNA with the same stoichiometry and to promote the exchange of homologous DNA strands with the same kinetics as authentic RecA. It was concluded that the amino-terminal modification did not alter any of the essential properties of RecA and that the fusion protein is a fully functional strand-exchange protein. However, the ATPase activity of this protein was 20 times greater than that of RecA in the absence of single-stranded DNA. As with RecA, this activity was further stimulated by the addition of single-stranded DNA. Since ATPase activity is correlated with the ability of RecA to assume its high affinity state for DNA, the nuclear-targeted RecA protein might be regarded as a constitutively stimulated RecA variant, fully functional in promoting homologous recombination. Received: 29 July 1996 / Accepted: 24 September 1996  相似文献   

10.
Dmc1 and Rad51 are eukaryotic RecA homologues that are involved in meiotic recombination. The expression of Dmc1 is limited to meiosis, whereas Rad51 is expressed in mitosis and meiosis. Dmc1 and Rad51 have unique and overlapping functions during meiotic recombination. Here we report the purification of the Dmc1 protein from the budding yeast Saccharomyces cerevisiae and present basic characterization of its biochemical activity. The protein has a weak DNA-dependent ATPase activity and binds both single-strand DNA (ssDNA) and double-strand DNA. Electrophoretic mobility shift assays suggest that DNA binding by Dmc1 is cooperative. Dmc1 renatures linearized plasmid DNA with first order reaction kinetics and without requiring added nucleotide cofactor. In addition, Dmc1 catalyzes strand assimilation of ssDNA oligonucleotides into homologous supercoiled duplex DNA in a reaction promoted by ATP or the non-hydrolyzable ATP analogue AMP-PNP.  相似文献   

11.
The UvrD helicase has been implicated in the disassembly of RecA nucleoprotein filaments in vivo and in vitro. We demonstrate that UvrD utilizes an active mechanism to remove RecA from the DNA. Efficient RecA removal depends on the availability of DNA binding sites for UvrD and/or the accessibility of the RecA filament ends. The removal of RecA from DNA also requires ATP hydrolysis by the UvrD helicase but not by RecA protein. The RecA-removal activity of UvrD is slowed by RecA variants with enhanced DNA-binding properties. The ATPase rate of UvrD during RecA removal is much slower than the ATPase activity of UvrD when it is functioning either as a translocase or a helicase on DNA in the absence of RecA. Thus, in this context UvrD may operate in a specialized disassembly mode.  相似文献   

12.
P Duwat  S D Ehrlich    A Gruss 《Applied microbiology》1992,58(8):2674-2678
Two particularly well-conserved stretches in the RecA protein sequences were chosen as templates to synthesize degenerate oligonucleotides, which were used in polymerase chain reaction to amplify an internal recA DNA fragment of Lactococcus lactis subsp. lactis ML3. Using this fragment, we recovered and sequenced the entire lactococcal recA gene. The end of an open reading frame present upstream of the recA gene shows strong homology with formamidopyrimidine-DNA-glycosylase, a protein involved in DNA repair.  相似文献   

13.
Two particularly well-conserved stretches in the RecA protein sequences were chosen as templates to synthesize degenerate oligonucleotides, which were used in polymerase chain reaction to amplify an internal recA DNA fragment of Lactococcus lactis subsp. lactis ML3. Using this fragment, we recovered and sequenced the entire lactococcal recA gene. The end of an open reading frame present upstream of the recA gene shows strong homology with formamidopyrimidine-DNA-glycosylase, a protein involved in DNA repair.  相似文献   

14.
The DNA-binding ability of the poly-ADPribose polymerase-like enzyme from the extremely thermophilic archaeon Sulfolobus solfataricus was determined in the presence of genomic DNA or single stranded oligodeoxyribonucleotides. The thermozyme protected homologous DNA against thermal denaturation by lowering the amount of melted DNA and increasing melting temperature. The archaeal protein induced structural changes of the nucleic acid by modifying the dichroic spectra towards a shape typical of condensing DNA. However, enzyme activity was slightly increased by DNA. Competition assays demonstrated that the protein interacted also with heterologous DNA. In order to characterize further the DNA binding properties of the archaeal enzyme, various ss-oligodeoxyribonucleotides of different base composition, lengths (12-mer to 24-mer) and structure (linear and circular) were used for fluorescence titration measurements. Intrinsic fluorescence of the archaeal protein due to tryptophan (excitation at 295 nm) was measured in the presence of each oligomer at 60 degrees C. Changes of tryptophan fluorescence were induced by all compounds in the same range of base number per enzyme molecule, but independently from the structural features of oligonucleotides, although the protein exhibited a slight preference for those adenine-rich and circular. The binding affinities were comparable for all oligomers, with intrinsic association constants of the same order of magnitude (K=10(6) M(-1)) in 0.01 M Na-phosphate buffer, pH 8.0, and accounted for a "non-specific" binding protein. Circular dichroism analysis showed that at 60 degrees C the native protein was better organized in a secondary structure than at 20 degrees C. Upon addition of oligonucleotides, enzyme structure was further stabilized and changed towards a beta-conformation. This effect was more marked with the circular oligomer. The analysed oligodeoxyribonucleotides slightly enhanced enzyme activity with the maximal increase of 50% as compared to the control. No activation was observed with the circular oligomer.  相似文献   

15.
RecA protein, which is essential for genetic recombination in Escherichia coli, was extensively purified from a strain of E. coli which contained the recA gene cloned in a plasmid (Sancar, A., and Rupp, W. D. (1979) Proc. Natl. Acad. Sci. U. S. A. 76, 3144-3148). Using the DNA-dependent ATPase activity of recA protein as an assay, we obtained about 60 mg of purified recA protein from 100 g of cells. Ten micrograms or 1 microgram of the purified protein exhibited only one detectable band with Mr approximately = 40,000 upon sodium dodecyl sulfate-acrylamide gel electrophoresis. More than 99% of the ATPase activity of purified recA protein was dependent on single-stranded DNA. Purified recA protein had no detectable DNase, topoisomerase, or ligase activities. The enzyme was stable for a least a year when stored at 0-4 degrees C. The half-life of the ATPase activity of 25 microM recA protein was 37 min at 51 degrees C. Purified recA protein binds to single-stranded and double-stranded DNA, unwinds duplex DNA by a mechanism that is stimulated by single-stranded DNA or oligonucleotides, and pairs homologous single strands with duplex DNA.  相似文献   

16.
The effect that Escherichia coli single-stranded DNA binding (SSB) protein has on the single-stranded DNA-dependent ATPase activity of RecA protein is shown to depend upon a number of variables such as order of addition, magnesium concentration, temperature and the type of single-stranded DNA substrate used. When SSB protein is added to the DNA solution prior to the addition of RecA protein, a significant inhibition of ATPase activity is observed. Also, when SSB protein is added after the formation of a RecA protein-single-stranded DNA complex using either etheno M13 DNA, poly(dA) or poly(dT), or using single-stranded phage M13 DNA at lower temperature (25 °C) and magnesium chloride concentrations of 1 mm or 4 mm, a time-dependent inhibition of activity is observed. These results are consistent with the conclusion that SSB protein displaces the RecA protein from these DNA substrates, as described in the accompanying paper. However, if SSB protein is added last to complexes of RecA protein and single-stranded M13 DNA at elevated temperature (37 °C) and magnesium chloride concentrations of 4 mm or 10 mm, or to poly(dA) and poly(dT) that was renatured in the presence of RecA protein, no inhibition of ATPase activity is observed; in fact, a marked stimulation is observed for single-stranded M13 DNA. A similar effect is observed if the bacteriophage T4-coded gene 32 protein is substituted for SSB protein. The apparent stoichiometry of DNA (nucleotides) to RecA protein at the optimal ATPase activity for etheno M13 DNA, poly(dA) and poly(dT) is 6(±1) nucleotides per RecA protein monomer at 4 mm-MgCl2 and 37 °C. Under the same conditions, the apparent stoichiometry obtained using single-stranded M13 DNA is 12 nucleotides per RecA protein monomer; however, the stoichiometry changes to 4.5 nucleotides per RecA protein monomer when SSB protein is added last. In addition, a stoichiometry of four nucleotides per RecA protein can be obtained with single-stranded M13 DNA in the absence of SSB protein if the reactions are carried out in 1 mm-MgCl2. These data are consistent with the interpretation that secondary structure within the natural DNA substrate limits the accessibility of RecA protein to these regions. The role of SSB protein is to eliminate this secondary structure and allow RecA protein to bind to these previously inaccessible regions of the DNA. In addition, our results have disclosed an additional property of the RecA protein-single-stranded DNA complex: namely, in the presence of complementary base-pairing and at elevated temperatures and magnesium concentrations, a unique RecA protein-DNA complex forms that is resistant to inhibition by SSB protein.  相似文献   

17.
RecA protein plays a pivotal role in homologous recombination in Escherichia coli. RecA polymerizes on single-stranded (ss) DNA forming a nucleoprotein filament. Then double-stranded (ds) DNA is bound and searched for segments homologous to the ssDNA. Finally, homologous strands are exchanged, a new DNA duplex is formed, and ssDNA is displaced. We report a quantitative analysis of RecA interactions with ss d(pN)n of various structures and lengths using these oligonucleotides as inhibitors of RecA filamentation on d(pT)20. DNA recognition appears to be mediated by weak interactions between its structural elements and RecA monomers within a filament. Orthophosphate and dNMP are minimal inhibitors of RecA filamentation (I50 = 12-20 mM). An increase in homo-d(pN)2-40 length by one unit improves their affinity for RecA (f factor) approximately twofold through electrostatic contacts of RecA with internucleoside phosphate DNA moieties (f approximately = 1.56) and specific interactions with T or C bases (f approximately = 1.32); interactions with adenine bases are negligible. RecA affinity for d(pN)n containing normal or modified nucleobases depends on the nature of the base, features of the DNA structure. The affinity considerably increases if exocyclic hydrogen bond acceptor moieties are present in the bases. We analyze possible reasons underlying RecA preferences for DNA sequence and length and propose a model for recognition of ssDNA by RecA.  相似文献   

18.
Interaction of RecA protein of Escherichia coli with pBR322 DNA modified by N-hydroxy-2-acetylaminofluorene (N-OH-AAF) and 4-hydroxyaminoquinoline 1-oxide (4HAQO) was investigated. RecA protein bound more efficiently to modified DNA than to unmodified DNA as judged by filter-binding and gel electrophoresis assay. The binding of RecA protein with modified DNA resulted in the stimulation of ATPase activity and the activation for RecA protein to stimulate the repressor cleavage. These abilities of RecA protein were increased proportionally to the number of adducts in the plasmid DNA (0-5 adducts). Apurinic and alkylated DNA did not activate RecA protein. We suggest that modification of DNA by N-OH-AAF and 4HAQO provides binding sites for RecA protein and may act as an activation signal for SOS response.  相似文献   

19.
T Horii 《Biochimie》1991,73(2-3):177-185
The RecA protein of E coli promotes a strand exchange reaction in vitro which appears to be similar to homologous genetic recombination in vivo. A model for the mechanism of strand transfer reaction by RecA protein has been proposed by Howard-Flanders et al based on the assumption that the RecA monomer has two distinctive DNA binding sites both of which can bind to ssDNA as well as dsDNA. Here, I propose an alternative model based on the assumption that RecA monomer has a single domain for binding to a polynucleotide chain with a unique polarity. In addition, the model is based on a few mechanical assumptions that, in the presence of ATP, two RecA molecules form a head to head dimer as the basic binding unit to DNA, and that the binding of RecA protein to a polynucleotide chain induces a structural change of RecA protein that causes a higher state of affinity for another RecA molecule that is expressed as cooperativy. The model explains many of the biochemical capabilities of RecA protein including the polar polymerization of RecA protein on single stranded DNA and polar strand transfer of DNA by the protein as well as the formation of a joint DNA molecule in a paranemic configuration. The model also presents the energetics in the strand transfer reaction.  相似文献   

20.
In rapidly growing cells, with recombinational DNA repair required often and a new replication fork passing every 20 min, the pace of RecA-mediated DNA strand exchange is potentially much too slow for bacterial DNA metabolism. The enigmatic RadD protein, a putative SF2 family helicase, exhibits no independent helicase activity on branched DNAs. Instead, RadD greatly accelerates RecA-mediated DNA strand exchange, functioning only when RecA protein is present. The RadD reaction requires the RadD ATPase activity, does not require an interaction with SSB, and may disassemble RecA filaments as it functions. We present RadD as a new class of enzyme, an accessory protein that accelerates DNA strand exchange, possibly with a helicase-like action, in a reaction that is entirely RecA-dependent. RadD is thus a DNA strand exchange (recombination) synergist whose primary function is to coordinate closely with and accelerate the DNA strand exchange reactions promoted by the RecA recombinase. Multiple observations indicate a uniquely close coordination of RadD with RecA function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号