首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
TRK-100 is a chemically stable analogue of prostacyclin and effective in inhibiting platelet aggregation when orally administered in experimental animals. In the present study we compared the potency of TRK-100 with those of PGI2 and PGE1 to cause an activation of adenylate cyclase activity in rat and human platelet membranes. TRK-100 was half as effective as PGI2, and 10 times more effective than PGE1 in both platelet membranes. TRK-100 also induced an activation of phosphodiesterase activity when directly added to intact platelets probably as a feedback mechanism of intracellular cAMP level like PGI2 did. TRK-100 would mimic PGI2 in the regulation of cAMP metabolism.  相似文献   

2.
The prostacyclin (PGI2) analogues, TEI-9063 and its methyl ester, TEI-1324, have been compared with another stable analogue, iloprost, with respect to binding to the PGI2 receptor, stimulation of adenylate cyclase activity and inhibition of thrombin-induced Ca2+ mobilization in mastocytoma P-815 cells. TEI-9063 displaced the [3H]iloprost binding to the membrane fraction, the IC50 value being 3 nM, but showed very low affinity for the PGE receptor. TEI-9063 dose dependently stimulated cAMP formation in the cells and GTP-dependent adenylate cyclase activity in the membrane fraction, the EC50 value being 50 and 10 nM, respectively. Furthermore, TEI-9063 prevented the thrombin-induced increase in the intracellular Ca2+ concentration, the IC50 value being 50 nM. These IC50 and EC50 values are lower than those obtained for iloprost. On the other hand, those of TEI-1324 were about two-orders higher. Although PGI2 lost its ability to stimulate cAMP formation by preincubation for 20 min at 37 degrees C, TEI-9063 completely retained its ability after 60-min preincubation. These results demonstrate that TEI-9063 is a stable and stronger agonist for the PGI2 receptor than iloprost, and that it prevents thrombin-induced Ca2+ mobilization through stimulation of the adenylate cyclase system in mastocytoma cells.  相似文献   

3.
20-Isopropylidene-PGE1 (Isop-PGE1) was about 10 times more potent than PGE1 in inhibition of thrombin-induced aggregation of rabbit washed platelets. Likewise, 20-isopropylidene-17(R)-methyl-carbacyclin (CS-570), a stable PGI2 analogue, was more potent than carbacyclin in the anti-aggregatory activity. In order to define the platelet-prostaglandin interactions, a binding assay was done using platelet membranes with [3H]-PGE1 as a radioligand. Isop-PGE1 (IC50 = 0.18 microM) bound to the PG receptors more potently than PGE1 (IC50 = 2.1 microM). CS-570 (IC50 = 0.39 microM) was more potent than carbacyclin (IC50 = 1.9 microM). These indicate that introduction of an isopropylidene group to the carbon 20 of PGs increases the binding ability to the receptors. These PGE1 and PGI2 analogues activated platelet membrane adenyl cyclase and increased intracellular cAMP levels with the same potency series obtained in the binding experiments. All these results suggest that the binding to the receptors by these PGs is coupled to the activation of adenyl cyclase, followed by the increase in cAMP levels in platelets and the inhibition of platelet aggregation. Thus, the increased anti-aggregatory activity of 20-isop-PGs may be explained by their increased affinity for the PG receptors and stimulation of adenyl cyclase. 15-Epimeric-20-isopropylidene-PGE1 (15-Epi-isop-PGE1), which has an unnatural configuration of the 15-hydroxyl group, was much less potent than isop-PGE1 in the binding experiment and the other three investigations. This indicates that the configuration of the 15-hydroxyl group is important for the binding to the PG receptors and the consequent activities in platelets.  相似文献   

4.
Thrombin-induced platelet aggregation is accompanied by cleavage of aggregin, a surface membrane protein (Mr = 100 kDa), and is mediated by the intracellular activation of calpain. We now find that agents that increase intracellular levels of platelet cAMP by stimulating adenylate cyclase, also inhibit thrombin binding and platelet activation by destabilizing thrombin receptors on the platelet surface. Iloprost (a stable analog of PGI2) and forskolin each completely inhibited platelet aggregation by 2 nM thrombin and markedly decreased cleavage of aggregin. Thrombin inactivated by D-phenylalanine-L-prolyl-L-arginine chloromethyl ketone (PPACK-thrombin) binds to the highest affinity site for thrombin on the platelet surface, but thrombin modified by N alpha-tosyl-L-lysine chloromethylketone (TLCK-thrombin) does not. We now demonstrate that preincubation of platelets with PPACK-thrombin blocked platelet aggregation and cleavage of aggregin induced by 2 nM thrombin. In contrast, TLCK-thrombin neither blocked platelet aggregation nor the cleavage of aggregin. These results show that a) platelet aggregation and cleavage of aggregin by thrombin (2nm) involves the occupancy of high affinity alpha-thrombin receptors on the platelet surface, and b) stimulators of adenylate cyclase which increase cAMP, inhibit thrombin-induced platelet aggregation and cleavage of aggregin by mechanisms which include inhibiting the binding of thrombin to its receptors.  相似文献   

5.
SQ-27986, a oxabicycloheptane derivative, potently inhibits ADP-, collagen- and arachidonic acid-induced platelet aggregation in human platelet-rich plasma. Human platelet aggregation induced by ADP is inhibited by SQ-27986 (EC50 = 22nM), and the inhibitory action of SQ-27986 can be prevented with N-0164, a PGD2 antagonist. By comparison, ADP-induced rat platelet aggregation is unaffected by SQ-27986 (IC50 greater than 80 microM). Washed human platelets treated with SQ-27986 exhibit elevated cAMP levels and activated cAMP-dependent protein kinase. Elevation of platelet cAMP levels (greater than 4 fold basal) and activation of the cAMP-dependent protein kinase (greater than 4 fold) are observed with SQ-27986 concentrations above 100 nM. The SQ-27986-induced elevation of cAMP can be prevented by N-0164. Lysed platelets treated with SQ-27986 showed stimulated adenylate cyclase activity. SQ-27986 competes with [3H]prostaglandin D2 binding to isolated platelet membranes (EC50 for SQ-27986 is 20 nM, which was more potent than cold PGD2 itself). Radiolabeled Iloprost binding is virtually unaffected by SQ-27986 (EC50 greater than 100 microM), indicating that SQ-27986 does not interact with platelet prostacyclin receptors. These studies indicate that SQ-27986 inhibits platelet aggregation by activating platelet adenylate cyclase via stimulation of platelet PGD2 receptors.  相似文献   

6.
Adrenaline is a weak aggregating agonist for human platelets acting through G-protein-coupled α2-adrenoceptors to inhibit adenylate cyclase and thus reduce cyclic AMP levels. Studies of equine platelets have shown that adrenaline is unable to promote their aggregation. We now confirm that adrenaline is without effect on equine platelet aggregation and demonstrate that it is also without effect on equine platelet membrane adenylate cyclase activity. We have previously shown that equine platelet membranes contain conventionally regulated adenylate cyclase activity, with both stimulatory ligands (forskolin and PGE1) and inhibitory ligands (collagen and PAF) each showing substantial and dose-dependent effects. We now show, in Western blots, that equine platelet membranes contain G proteins, including Gi2 (which mediates inhibition of adenylate cyclase by adrenaline in human platelets), Gi3, Gs, and Gq. Hence, all the necessary components and responses are in place in equine platelets to provide for a conventional role for cyclic AMP and adenylate cyclase in modulating platelet aggregation. The basis for the failure of adrenaline, unlike other ligands, to deliver such a signal, appears to be a marked lack of α2-adrenoceptors. This is supported by the low receptor density we found in idazoxan binding studies.  相似文献   

7.
D L Garver  C Johnson  D R Kanter 《Life sciences》1982,31(18):1987-1992
Reduced cyclic AMP (cAMP) production has been found in platelets of schizophrenic patients. cAMP is generated physiologically as a result of a series of steps beginning with receptor activation by a ligand, progressing through activation of the enzyme protein, adenylate cyclase. The deficit of cAMP found in the schizophrenic population may occur at any one, or at multiple steps in this cascade. The present study attempts to discriminate whether impaired adenylate cyclase itself was responsible for the cAMP deficit or whether abnormalities in receptor events or linkage are present in schizophrenics. The production of cAMP following direct stimulation of adenylate cyclase by NaF was contrasted with receptor mediated activation of adenylate cyclase by prostaglandin E1 (PGE1) in disrupted platelet preparations from schizophrenics and normal controls. cAMP formation stimulated by NaF was not different in platelets of schizophrenics as compared to controls, however, platelets of schizophrenics showed reduced response to PGE1 stimulation. The authors interpret these findings as evidence for a membrane associated abnormality of either receptor or receptor-adenylate cyclase linkage in the schizophrenias.  相似文献   

8.
Platelet responses at sites of vascular injury are regulated by intracellular cAMP levels, which rise rapidly when prostacyclin (PGI(2)) is released from endothelial cells. Platelet agonists such as ADP and epinephrine suppress PGI(2)-stimulated cAMP formation by activating receptors coupled to G(i) family members, four of which are present in platelets. To address questions about the specificity of receptor:G protein coupling, the regulation of cAMP formation in vivo and the contribution of G(i)-mediated pathways that do not involve adenylyl cyclase, we studied platelets from mice that lacked the alpha subunits of one or more of the three most abundantly expressed G(i) family members and compared the results with platelets from mice that lacked the PGI(2) receptor, IP. As reported previously, loss of G(i2)alpha or G(z)alpha inhibited aggregation in response to ADP and epinephrine, respectively, producing defects that could not be reversed by adding an adenylyl cyclase inhibitor. Platelets that lacked both G(i2)alpha and G(z)alpha showed impaired responses to both agonists, but the impairment was no greater than in the individual knockouts. Loss of G(i3)alpha had no effect either alone or in combination with G(z)alpha. Loss of either G(z)alpha or G(i2)alpha impaired the ability of ADP and epinephrine to inhibit PGI(2)-stimulated adenylyl cyclase activity and caused a 40%-50% rise in basal cAMP levels, whereas loss of G(i3)alpha did not. Conversely, deletion of IP abolished responses to PGI(2) and caused cAMP levels to fall by 30%, effects that did not translate into enhanced responsiveness to agonists ex vivo. From these results we conclude that 1) cAMP levels in circulating platelets reflect ongoing signaling through G(i2), G(z), and IP, but not G(i3); 2) platelet epinephrine (alpha(2A)-adrenergic) and ADP (P2Y12) receptors display strong preferences among G(i) family members with little evidence of redundancy; and 3) these receptor preferences do not extend to G(i3). Finally, the failure of ADP and epinephrine to inhibit basal, as opposed to PGI(2)-stimulated, cAMP formation highlights the need during platelet activation for G(i) signaling pathways that involve effectors other than adenylyl cyclase.  相似文献   

9.
1. In both the intact guinea pig myometrium and human platelets, cAMP accumulation was enhanced by prostaglandin I2 (prostacyclin, PGI2) and forskolin with potentiated responses in the simultaneous presence of both effectors. Under basal conditions, forskolin caused rises in platelet cAMP concentration through a single low-affinity interaction (Kapp = 90 microM) while in myometrium, activation involved both a low-affinity (Kapp = 10 microM) and a high-affinity (Kapp = 0.8 microM) component. The contribution of the high-affinity component could be reduced when endogenous PGI2 was decreased. In both tissues, the synergistic effect of forskolin in the presence of PGI2 was mediated by a single high-affinity interaction (Kapp = 0.3 microM). The data were consistent with a low-affinity interaction of the diterpene with the cyclase catalytic unit C generating the C...forskolin state and with a high-affinity interaction of the diterpene with the activated complex (stimulatory regulatory protein) and C generating the potentiated Gs-C...forskolin state. 2. Both norepinephrine in platelets and carbachol in the myometrium (via Gi, the inhibitory regulatory protein) inhibited PGI2-mediated cAMP accumulation (EC50 = 100 nM and 8 nM respectively). The persistently activated cAMP-generating system induced by cholera toxin in the myometrium was also susceptible to inhibition but the EC50 for carbachol was increased to 50 nM and the extent of inhibition was decreased. Forskolin-mediated effect in platelets was inhibited by norepinephrine as was the PGI2 response. By contrast, the synergistic state of the cyclase resisted the inhibitory action of norepinephrine and carbachol in platelets and myometrium respectively. In the myometrium, where the cAMP response due to forskolin alone partially involved some synergistic Gs-C ... forskolin species, carbachol at 50 microM elicited no more than 30% inhibition. Inhibition was partly improved (60% inhibition at 1 microM carbachol) when the contribution of the Gs-C species was decreased by lowering the concentration of local PGI2. Partial inhibition by norepinephrine was similarly observed in platelets under partial synergistic conditions. The data suggest that receptor-mediated inhibition of cAMP generation could be differentially expressed depending on the nature of the active species of the cyclase involved in the stimulatory responses.  相似文献   

10.
In platelets activated by thrombin, the hydrolysis of phosphatidylinositol 4,5-bisphosphate by phospholipase C produces inositol 1,4,5-triphosphate (IP3) and diacylglycerol, metabolites which are known to cause Ca2+ release from the platelet dense tubular system and granule secretion. Previous studies suggest that phospholipase C activation is coupled to platelet thrombin receptors by a guanine nucleotide-binding protein or G protein. The present studies examine the contribution of this protein to thrombin-induced platelet activation and compare its properties with those of Gi, the G protein which mediates inhibition of adenylate cyclase by thrombin. In platelets permeabilized with saponin, nonhydrolyzable GTP analogs reproduced the effects of thrombin by causing diacylglycerol formation, Ca2+ release from the dense tubular system and serotonin secretion. In intact platelets, fluoride, which by-passes the thrombin receptor and directly activates G proteins, caused phosphoinositide hydrolysis and secretion. Fluoride also caused an increase in the platelet cytosolic free Ca2+ concentration that appeared to be due to a combination of Ca2+ release from the dense tubular system and increased Ca2+ influx across the platelet plasma membrane. Guanosine 5'-O-(2-thiodiphosphate) (GDP beta S), which inhibits G protein function, inhibited the ability of thrombin to cause IP3 and diacylglycerol formation, granule secretion, and Ca2+ release from the dense tubular system in saponin-treated platelets. Increasing the thrombin concentration overcame the effects of GDP beta S on secretion without restoring diacylglycerol formation. The effects of GDP beta S on platelet responses to thrombin which had been subjected to partial proteolysis (gamma-thrombin) were similar to those obtained with native alpha-thrombin despite the fact that gamma-thrombin is a less potent inhibitor of adenylate cyclase than is alpha-thrombin. Thrombin-induced diacylglycerol formation and 45Ca release were also inhibited when the saponin-treated platelets were preincubated with pertussis toxin, an event that was associated with the ADP-ribosylation of a protein with Mr = 41.7 kDa. At each concentration tested, the inhibition of thrombin-induced diacylglycerol formation by pertussis toxin paralleled the inhibition of thrombin's ability to suppress PGI2-stimulated cAMP formation.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

11.
Effect of prostacyclin (PGI2) on adenylate cyclase activity in human thyroid membranes was examined. PGI2 caused a dose- and time-dependent production of cyclic AMP (cAMP) with high potency. When GTP was added in concentrations up to 100 uM, the activation of adenylate cyclase by PGI2 was increased. In the assay medium containing 3 mM ATP, 10 uM GTP and nucleotide regenerating system, the replacement of Mg2+ by increasing concentrations of Mn2+ caused a progressive loss of PGI2 as well as TSH-stimulated adenylate cyclase activities, while high concentrations of Mg2+ (12 or 18 mM) slightly suppressed the activity stimulated by either PGI2 or TSH. Both agents had an additive effect on the stimulation of adenylate cyclase activity in the presence of either 6 mM Mg2+ or 6 mM Mn2+. Gamma-globulin fraction containing non-stimulatory TSH receptor antibody which was prepared from a patient with chronic thyroiditis, suppressed only TSH- but not PGI2-stimulation of the adenylate cyclase activity. These results suggest that PGI2 can stimulate the adenylate cyclase activity in human thyroid tissue, and that PGI2-stimulation may be mediated by the different system from TSH-dependent one.  相似文献   

12.
B Ashby 《Prostaglandins》1992,43(3):255-261
We have compared the effects of prostacyclin (PGI2) and its stable analogs, Iloprost and Cicaprost, on cyclic AMP metabolism in intact platelets. All three compounds show similar but not identical patterns of prostaglandin concentration-dependent cyclic AMP formation. All three compounds apparently stimulate and inhibit cyclic AMP formation with different concentration dependencies, indicating the presence of distinct stimulatory and inhibitory receptors. Differences in response can be accounted for by slight differences in affinity of stimulatory and inhibitory receptors for the prostaglandins, by the fact that Iloprost contains almost 50% of a relatively inactive isomer, and by the fact that PGI2 is labile in aqueous solution, with a half-life on the order of a few minutes. We conclude 1) stimulation and inhibition of adenylate cyclase is not due to separate effects of 16S- and 16R-stereoisomers of Iloprost because similar patterns were obtained with a single isomeric form of Cicaprost and with authentic PGI2; 2) prostaglandin induced inhibition of adenylate cyclase is readily reversible because inhibition disappears when PGI2 concentration decays below saturation of the inhibitory receptor; 3) the potency of prostaglandins in stimulating platelet adenylate cyclase must be viewed in terms of their effects on both stimulatory and inhibitory receptors.  相似文献   

13.
Because of the central role of fibrinogen binding in platelet aggregation and recent evidence implicating S-nitrosothiol compounds in the platelet inhibitory effects of endogenous and exogenous organic nitrate compounds, we examined the effect of the S-nitrosothiol S-nitroso-N-acetylcysteine (SNOAC) on fibrinogen binding to gel-filtered human platelets. We found that SNOAC markedly inhibited the binding of fibrinogen to normal human platelets in a dose-dependent fashion and that this inhibitory effect was the result of both an increase in the apparent Kd of the platelet receptor for the fibrinogen molecule (from 6.8 x 10(-7) to 1.8 x 10(-6) M, a 2.7-fold increase) and a decrease in the total number of fibrinogen molecules bound to the platelet (from 76,200 to 38,250, a 50% decrease). In addition, we noted a rapid, dose-dependent rise in platelet cyclic GMP levels following exposure of platelets to SNOAC which was significantly inversely correlated with fibrinogen binding and was accompanied by inhibition of intracellular calcium flux in response to a variety of platelet agonists. Similar dose-dependent inhibition of fibrinogen binding was found in the presence of cyclic GMP analogues and was significantly enhanced by inhibition of platelet cyclic GMP phosphodiesterase. These results describe the inhibition of platelet fibrinogen binding by an S-nitrosothiol compound, help define the biochemical mechanism by which S-nitrosothiols inhibit platelet aggregation, and lend support to the view that cyclic GMP is an important inhibitory intracellular mediator in human platelets.  相似文献   

14.
The interaction of ADP with platelets leads to shape change, exposure of fibrinogen binding sites, and aggregation, all of which have been shown to be inhibited by 5'-p-fluorosulfonylbenzoyladenosine (FSBA), an alkylating analogue of adenine nucleotides which binds covalently to a 100-kDa polypeptide in intact platelet membranes (Figures, W. R., Niewiarowski, S., Morinelli, T., Colman, R. F., and Colman, R. W. (1981) J. Biol. Chem. 256, 7789-7795). In plasma, FSBA can break down to adenosine which stimulates adenylate cyclase. To distinguish between direct effects of FSBA and the actions of adenosine, we have used washed platelet suspensions and adenosine deaminase. We studied the effects of FSBA on shape change and cyclic AMP metabolism, and on the binding of 2-methylthio-ADP, which mimics the effects of ADP on cyclic AMP metabolism at concentrations too low to activate platelets. Inhibition of ADP-induced shape change of platelets incubated with FSBA for 2 min in platelet-rich plasma was greatly reduced by adenosine deaminase. In the presence of a phosphodiesterase inhibitor, 100 microM FSBA increased platelet cyclic AMP to the same extent as did 10 microM adenosine. These effects were inhibited by theophylline, an adenosine receptor antagonist, and by adenosine deaminase. Incubation of washed platelets for 60 min with FSBA and adenosine deaminase caused a concentration-dependent inhibition of ADP-induced shape change. Inhibition closely paralleled the covalent incorporation of 3H from tritiated FSBA into platelet membranes. Under these conditions, FSBA did not block inhibition of cyclic AMP accumulation by ADP, nor did it block the binding of 2-methylthio-ADP. We conclude that part of the inhibition of shape change caused by brief exposure to FSBA is due to adenosine, but at longer times shape change is inhibited in association with covalent incorporation of sulfonylbenzoyladenosine. This effect of FSBA is independent of adenosine and occurs at a site distinct from that at which ADP inhibits adenylate cyclase.  相似文献   

15.
Recycling of platelet phosphorylation and cytoskeletal assembly   总被引:9,自引:2,他引:7  
The shape change and aggregation of washed platelets induced by 10 microM arachidonic acid (AA) can be reversed by 20 ng/ml prostacyclin (PGI2), but these platelets can be reactivated by treatment with 30 microM epinephrine and subsequent addition of 10 microM AA mixture. These events may be modulated by cAMP since 2 mM dibutyryl cAMP also reversed activation without reactivation by epinephrine and AA. We examined protein phosphorylation and formation of cytoskeletal cores resistant to 1% Triton X-100 extraction of these platelets and correlated these processes with aggregation, fibrinogen binding, and changes in ultrastructure. Unactivated platelet cores contained less than 15% of the total actin and no detectable myosin or actin-binding protein. AA-induced cytoskeletal cores, which contained 60-80% of the total actin, myosin, and actin-binding protein as the major components, were disassembled back to unactivated levels by PGI2 and then fully reassembled by epinephrine and AA. Phosphorylation of myosin light chain and a 40,000-dalton protein triggered by AA (two- to fivefold) was reversed to basal levels by PGI2 but was completely restored to peak levels upon addition of the epinephrine and AA mixture. The reversibility of actin-binding protein phosphorylation could not be established clearly because both PGI2 and dibutyryl cAMP caused its phosphorylation independent of activation. With this possible exception, cytoskeletal assembly with associated protein phosphorylation, aggregation, fibrinogen binding, and changes in ultrastructure triggered by activation are readily and concertedly recyclable.  相似文献   

16.
The effect of the haem precursor 5-aminolevulinic acid (ALA) on the production of cyclic adenosine-monophosphate (cAMP) by rat cerebellar membranes was investigated. It was found that ALA dose-dependently decreased cAMP levels (maximal inhibition of 38%, at 1 mM), due to an inhibition of basal adenylate cyclase activity. ALA also inhibited fluoride- and Gpp(NH)p-stimulated, but not the forskolin-stimulated adenylate cyclase activity. 5-Aminovaleric acid (an inhibitor of GABA(B) receptors) did not prevent the inhibition, indicating that it was not mediated by the activation of the G(i)-protein coupled GABA(B) receptor. In addition, the nucleotide binding site of G-protein appeared not to be affected by ALA since it did not inhibit [3H]Gpp(NH)p binding to our membrane preparation. Antioxidants (glutathione, ascorbate and trolox) completely prevented the inhibition indicating that ALA effect was mediated by an oxidative damage of adenylate cyclase. ALA also inhibited the activity of adenylate cyclase in membranes isolated from rat cortex and striatum and from human cortex. These results may be of value in understanding the neurochemical mechanisms underlying the neurotoxic effects of ALA.  相似文献   

17.
The inhibition of human platelet aggregation produced by PGF2 alpha is not specific for thromboxane A2 mimetics. Aggregation waves induced by PAF and thrombin are also inhibited by PGF2 alpha (8 microM); ADP is unaffected. These effects are still seen in platelets from aspirin-treated donors and platelets desensitized to thromboxane-like agonists (e.g. 11,9-epoxymethano PGH2). In contrast the thromboxane receptor antagonist EP 045 (up to 20 microM) had no effect on primary aggregation induced by PAF, thrombin and ADP. We have previously shown that EP 045 (IC50 = 0.5 microM), but not PGF2 alpha (28 microM), displaces the specific binding of [3H] 9,11-epoxymethano PGH2 to washed human platelets. PGF2 alpha produces small increases in cAMP levels, and both this effect and the anti-aggregation are diminished by the adenyl cyclase inhibitor SQ 22536. The rise in cAMP induced by PGF2 alpha is inhibited to a greater extent by the presence of ADP than by thrombin, PAF or a thromboxane mimetic. The ability of aggregating agents to inhibit this increase correlates inversely with their sensitivity to inhibition by PGF2 alpha. We suggest that the very weak effect of PGF2 alpha on cyclic AMP production is sufficient to account for its inhibitory activity, and it is unlikely to be a competitive antagonist at the platelet thromboxane receptor as suggested by others.  相似文献   

18.
Human platelet adenylate cyclase is stimulated by prostaglandin E1 (PGE1) and is inhibited by epinephrine via alpha-adrenoceptors. Both agonists, epinephrine more than PGE1, increase the activity of a low Km GTPase in platelet membranes. Pretreatment of intact platelets or platelet membranes with the sulfhydryl reagent, N-ethylmaleimide (NEM), abolished the inhibition of the adenylate cyclase and the concomitant stimulation of the GTPase by epinephrine. In contrast, stimulation of the adenylate cyclase by PGE1 was not affected or even increased by NEM pretreatment; only at high NEM concentrations were both basal and PGE1-stimulated activities decreased. Similarly, the PGE1-induced activation of the low Km GTPase was not or was only partially reduced by NEM. Adenylate cyclase activation by stable GTP analogs, NaF, and cholera toxin was also not decreased by NEM pretreatment. Exposure of intact platelets to NEM did not reduce alpha-adrenoceptor number and affinities for agonists and antagonists, as determined by [3H]yohimbine binding in platelet particles. The data indicate that NEM uncouples alpha-adrenoceptor-mediated inhibition of platelet adenylate cyclase, leaving the receptor recognition site and the adenylate cyclase itself relatively intact. Although the effect of NEM may be based on a reaction with the alpha-adrenoceptor site interacting with a coupling component, the selective loss of the adenylate cyclase inhibition together with an even increased stimulation of the enzyme by PGE1 suggests that there are two at least partially distinct regulatory sites involved in opposing hormonal regulations of adenylate cyclase activity, with that involved in hormonal inhibition being highly susceptible to inactivation by NEM.  相似文献   

19.
The effects of trypsin, acrosin and a recently described trypsin-like protease from bovine sperm were studied on adenylate cyclase activity in membranes of human platelets. These proteases caused an immediate decrease in adenylate cyclase activity, which was independent of the platelet membrane concentration used and which was constant for up to 20 min of incubation at 25 degrees C. When the incubation was prolonged, the proteases eliminated their own inhibitory action as well as that of the inhibitory hormone epinephrine. The adenylate cyclase inhibition caused by the proteases was strictly dependent on the presence of GTP (EC50 approximately 0.1 microM), whereas in the absence of GTP only minor changes in enzyme activity were observed at the conditions and protease concentrations used. Maximal inhibition caused by the proteases was between 40% and 60%. Half-maximal inhibition by the purified proteases trypsin and acrosin was observed at about 30 ng/ml and 2 micrograms/ml respectively. Inhibition of platelet adenylate cyclase by the proteases was partially additive with that caused by epinephrine, while with thrombin no additivity was observed. The serine protease inhibitor leupeptin blocked the actions of the proteases when added simultaneously with the enzymes, but was ineffective when added later on. Treatment of platelet membranes with the alkylating N-ethylmaleimide at low concentrations and Mn2+ ions (greater than or equal to 1 mM), both agents known to abolish inhibition of adenylate cyclase via the inhibitory guanine-nucleotide-binding protein Gi, eliminated the inhibitory action of the proteases. The data indicate that trypsin and trypsin-like proteases have two opposite effects on the platelet adenylate cyclase system, the well-documented elimination of Gi action and, as shown here, an immediate activation of Gi with subsequent adenylate cyclase inhibition. The data are consistent with the hypothesis that the activation of Gi caused by the proteases is due to an interaction of the proteases with specific cell-surface receptor sites in a manner similar to thrombin.  相似文献   

20.
The subcellular distribution of the alpha 2-adrenergic receptor, pertussis-toxin substrates (Gi, the inhibitory G-protein) and adenylate cyclase was determined in human platelets. The alpha 2-adrenergic receptor and pertussis-toxin substrate activity codistribute with surface membranes identified by a novel fluorescent-lectin method. The platelet granule fractions did not contain detectable Gi. Only 2-4% of the total pertussis-toxin substrate activity appears in soluble fractions, and this amount was not increased upon addition of purified beta gamma units or after pretreatment of platelets with adrenaline. There is no evidence for compartmentation of the alpha 2-adrenergic receptor or Gi to account for the low-affinity component of agonist binding to the alpha 2-adrenergic receptor in human platelet membranes. Translocation of Gi from plasma membrane to platelet cytosol or granules does not appear to play any significant role in the mechanism of alpha 2-receptor-mediated platelet activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号