首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Hematopoietic stem cells (HSCs) can self-renew extensively after transplantation. The conditions supporting their in vitro expansion are still being defined. Retroviral overexpression of the human homeobox B4 (HOXB4) gene in mouse bone marrow cells enables over 40-fold expansion of HSCs in vitro. To circumvent the requirement for retroviral infection, we used recombinant human TAT-HOXB4 protein carrying the protein transduction domain of the HIV transactivating protein (TAT) as a potential growth factor for stem cells. HSCs exposed to TAT-HOXB4 for 4 d expanded by about four- to sixfold and were 8-20 times more numerous than HSCs in control cultures, indicating that HSC expansion induced by TAT-HOXB4 was comparable to that induced by the human HOXB4 retrovirus during a similar period of observation. Our results also show that TAT-HOXB4-expanded HSC populations retain their normal in vivo potential for differentiation and long-term repopulation. It is thus feasible to exploit recombinant HOXB4 protein for rapid and significant ex vivo expansion of normal HSCs.  相似文献   

3.
BACKGROUND: Extensive efforts to develop hematopoietic stem cell (HSC) based gene therapy have been hampered by low gene marking. Major emphasis has so far been directed at improving gene transfer efficiency, but low gene marking in transplanted recipients might equally well reflect compromised repopulating activity of transduced cells, competing for reconstitution with endogenous and unmanipulated stem cells. METHODS: The autologous settings of clinical gene therapy protocols preclude evaluation of changes in repopulating ability following transduction; however, using a congenic mouse model, allowing for direct evaluation of gene marking of lympho-myeloid progeny, we show here that these issues can be accurately addressed. RESULTS: We demonstrate that conditions supporting in vitro stem cell self-renewal efficiently promote oncoretroviral-mediated gene transfer to multipotent adult bone marrow stem cells, without prior in vivo conditioning. Despite using optimized culture conditions, transduction resulted in striking losses of repopulating activity, translating into low numbers of gene marked cells in competitively repopulated mice. Subjecting transduced HSCs to an ex vivo expansion protocol following the transduction procedure could partially reverse this loss. CONCLUSIONS: These studies suggest that loss of repopulating ability of transduced HSCs rather than low gene transfer efficiency might be the main problem in clinical gene therapy protocols, and that a clinically feasible ex vivo expansion approach post-transduction can markedly improve reconstitution with gene marked stem cells.  相似文献   

4.
Increasing demand for human hematopoietic stem cells (HSCs) in clinical and research applications necessitates expansion of HSCs in vitro. Before these cells can be used they must be carefully evaluated to assess their stem cell activity. Here, we expanded cord blood CD34(+) CD133(+) cells in a defined medium containing angiopoietin like 5 and insulin-like growth factor binding protein 2 and evaluated the cells for stem cell activity in NOD-SCID Il2rg(-/-) (NSG) mice by multi-lineage engraftment, long term reconstitution, limiting dilution and serial reconstitution. The phenotype of expanded cells was characterized by flow cytometry during the course of expansion and following engraftment in mice. We show that the SCID repopulating activity resides in the CD34(+) CD133(+) fraction of expanded cells and that CD34(+) CD133(+) cell number correlates with SCID repopulating activity before and after culture. The expanded cells mediate long-term hematopoiesis and serial reconstitution in NSG mice. Furthermore, they efficiently reconstitute not only neonate but also adult NSG recipients, generating human blood cell populations similar to those reported in mice reconstituted with uncultured human HSCs. These findings suggest an expansion of long term HSCs in our culture and show that expression of CD34 and CD133 serves as a marker for HSC activity in human cord blood cell cultures. The ability to expand human HSCs in vitro should facilitate clinical use of HSCs and large-scale construction of humanized mice from the same donor for research applications.  相似文献   

5.
HOXB4-induced expansion of adult hematopoietic stem cells ex vivo   总被引:48,自引:0,他引:48  
  相似文献   

6.
Thrombopoietin is a potent cytokine that exerts proliferation of hematopoietic stem cells (HSCs) through its cognate receptor, c-Mpl. Therefore, mimicry of c-Mpl signaling by a receptor recognizing an artificial ligand would be attractive to attain specific expansion of genetically modified HSCs. Here we propose a system enabling selective expansion of genetically modified cells using an antibody/receptor chimera that can be activated by a specific antigen. We constructed an antibody/c-Mpl chimera, in which single-chain Fv (ScFv) of an anti-fluorescein antibody was tethered to the extracellular D2 domain of the erythropoietin receptor and transmembrane/cytoplasmic domains of c-Mpl. When the chimera was expressed in interleukin (IL)-3-dependent pro-B cell line Ba/F3, genetically modified cells were selectively expanded in the presence of fluorescein-conjugated BSA (BSA-FL) as a specific antigen. Furthermore, highly purified mouse HSCs transduced with the retrovirus carrying antibody/c-Mpl chimera gene proliferated in vitro in response to BSA-FL, and the cells retained in vivo long-term repopulating abilities. These results demonstrate that the antibody/c-Mpl chimera is capable of signal transduction that mimics wild-type c-Mpl signaling.  相似文献   

7.
Techniques to expand human hematopoietic stem cells ex-vivo could be beneficial to the fields of clinical hematopoietic stem cell transplantation and gene therapy targeted at hematopoietic stem cells. NUP98-HOXA10HD is a relatively newly discovered fusion gene that in mouse transplant experiments has been shown to increase numbers of hematopoietic stem cells. We evaluated whether this fusion gene could be used to expand engrafting human primitive CD34+ cells in an immunodeficient mouse model. Gene transfer was achieved using a lentiviral based vector. The engraftment of mobilized peripheral blood human CD34+ cells grown in culture for one week after gene transfer was evaluated 3–4 months after transplant and found to be 2–3 fold higher in the NUP98-HOXA10HD groups as compared to controls. These data suggest an expansive effect at least at the short term human repopulating cell level. Further evaluation in long term repopulating models and investment in a NUP98-HOXA10HD protein seems worthy of consideration. Additionally, the results here provide strong impetus to utilize NUP98-HOXA10HD as a tool to search for underlying genes and pathways involved in hematopoietic stem cell expansion that can be enhanced and have an even more potent expansive effect.  相似文献   

8.
Allogeneic hematopoietic stem cell (HSC) transplantations from umbilical cord blood or autologous HSCs for gene therapy purposes are hampered by limited number of stem cells. To test the ability to expand HSCs in vitro prior to transplantation, two growth factor cocktails containing stem cell factor, thrombopoietin, fms-related tyrosine kinase-3 ligand (STF) or stem cell factor, thrombopoietin, insulin-like growth factor-2, fibroblast growth factor-1 (STIF) either with or without the addition of angiopoietin-like protein-3 (Angptl3) were used. Culturing HSCs in STF and STIF media for 7 days expanded long-term repopulating stem cells content in vivo by ∼6-fold and ∼10-fold compared to freshly isolated stem cells. Addition of Angptl3 resulted in increased expansion of these populations by ∼17-fold and ∼32-fold, respectively, and was further supported by enforced expression of Angptl3 in HSCs through lentiviral transduction that also promoted HSC expansion. As expansion of highly purified lineage-negative, Sca-1+, c-Kit+ HSCs was less efficient than less pure lineage-negative HSCs, Angptl3 may have a direct effect on HCS but also an indirect effect on accessory cells that support HSC expansion. No evidence for leukemia or toxicity was found during long-term follow up of mice transplanted with ex vivo expanded HSCs or manipulated HSC populations that expressed Angptl3. We conclude that the cytokine combinations used in this study to expand HSCs ex vivo enhances the engraftment in vivo. This has important implications for allogeneic umbilical cord-blood derived HSC transplantations and autologous HSC applications including gene therapy.  相似文献   

9.
Hematopoietic stem cells (HSCs) are known to reside in a bone marrow (BM) niche, which is associated with relatively higher calcium content. HSCs sense and respond to calcium changes. However, how calcium-sensing components modulate HSC function and expansion is largely unknown. We investigated temporal modulation of calcium sensing and Ca2+ homeostasis during ex vivo HSC culture and in vivo. Murine BM-HSCs, human BM, and umbilical cord blood (UCB) mononuclear cells (MNCs) were treated with store-operated calcium entry (SOCE) inhibitors SKF 96365 hydrochloride (abbreviated as SKF) and 2-aminoethoxydiphenyl borate (2-APB). Besides, K+ channel inhibitor TEA chloride (abbreviated as TEA) was used to compare the relationship between calcium-activated potassium channel activities. Seven days of SKF treatment induced mouse and human ex vivo BM-HSC expansion as well as UCB-derived primitive HSC expansion. SKF treatment induced the surface expression of CaSR, CXCR4, and adhesion molecules on human hematopoietic stem and progenitor cells. HSCs expanded with SKF successfully differentiated into blood lineages in recipient animals and demonstrated a higher repopulation capability. Furthermore, modulation of SOCE in the BM-induced HSC content and differentially altered niche-related gene expression profile in vivo. Intriguingly, treatments with SOCE inhibitors SKF and 2-APB boosted the mouse BM mesenchymal stem cell (MSC) and human adipose-derived MSCs proliferation, whereas they did not affect the endothelial cell proliferation. These findings suggest that temporal modulation of calcium sensing is crucial in expansion and maintenance of murine HSCs, human HSCs, and mouse BM-MSCs function.  相似文献   

10.
Human embryonic stem cells (hESCs) can be induced to differentiate into blood cells using either co-culture with stromal cells or following human embryoid bodies (hEBs) formation. It is now well established that the HOXB4 homeoprotein promotes the expansion of human adult hematopoietic stem cells (HSCs) but also myeloid and lymphoid progenitors. However, the role of HOXB4 in the development of hematopoietic cells from hESCs and particularly in the generation of hESC-derived NK-progenitor cells remains elusive. Based on the ability of HOXB4 to passively enter hematopoietic cells in a system that comprises a co-culture with the MS-5/SP-HOXB4 stromal cells, we provide evidence that HOXB4 delivery promotes the enrichment of hEB-derived precursors that could differentiate into fully mature and functional NK. These hEB-derived NK cells enriched by HOXB4 were characterized according to their CMH class I receptor expression, their cytotoxic arsenal, their expression of IFNγ and CD107a after stimulation and their lytic activity. Furthermore our study provides new insights into the gene expression profile of hEB-derived cells exposed to HOXB4 and shows the emergence of CD34(+)CD45RA(+) precursors from hEBs indicating the lymphoid specification of hESC-derived hematopoietic precursors. Altogether, our results outline the effects of HOXB4 in combination with stromal cells in the development of NK cells from hESCs and suggest the potential use of HOXB4 protein for NK-cell enrichment from pluripotent stem cells.  相似文献   

11.

Background

Hematopoietic stem cell (HSC) gene therapy has cured immunodeficiencies including X-linked severe combined immunodeficiency (SCID-X1) and adenine deaminase deficiency (ADA). For these immunodeficiencies corrected cells have a selective advantage in vivo, and low numbers of gene-modified cells are sufficient to provide therapeutic benefit. Strategies to efficiently transduce and/or expand long-term repopulating cells in vivo are needed for treatment of diseases that require higher levels of corrected cells, such as hemoglobinopathies. Here we expanded corrected stem cells in vivo in a canine model of a severe erythroid disease, pyruvate kinase deficiency.

Methodology/Principal Findings

We used a foamy virus (FV) vector expressing the P140K mutant of methylguanine methyltransferase (MGMTP140K) for in vivo expansion of corrected hematopoietic repopulating cells. FV vectors are attractive gene transfer vectors for hematopoietic stem cell gene therapy since they efficiently transduce repopulating cells and may be safer than more commonly used gammaretroviral vectors. Following transplantation with HSCs transduced ex vivo using a tri-cistronic FV vector that expressed EGFP, R-type pyruvate kinase, and MGMTP140K, we were able to increase marking from approximately 3.5% to 33% in myeloid long-term repopulating cells resulting in a functional cure.

Conclusions/Significance

Here we describe in one affected dog a functional cure for a severe erythroid disease using stem cell selection in vivo. In addition to providing a potential cure for patients with pyruvate kinase deficiency, in vivo selection using foamy vectors with MGMTP140K has broad potential for several hematopoietic diseases including hemoglobinopathies.  相似文献   

12.
To test the hypothesis that extracellular matrix (ECM) components maintain stem cell property, murine bone marrow (BM) cells were expanded in fibronectin and laminin coated plate in the presence of cytokines. We observed significant phenotypic and functional improvement of expanded cells. In 10 days, 800-fold expansion of colony-forming unit-granulocyte erythrocyte monocyte megakaryocyte (CFU-GEMM) was observed in the cultured cells. No apparent activation of cell cycle was observed, but CD29 and very late antigen-4 (VLA-4) expression was increased, as compared to the normal BM cells. A fraction of the expanded cells became verapamil sensitive, suggesting upregulation of multi-drug resistant gene(s), as found in the primitive hematopoietic stem cells (HSCs). Competitive repopulation assay confirmed that HSCs compartment was amplified during culture. Overall, our study clearly demonstrated that ex vivo culture of murine HSCs in the presence of fibronectin and laminin resulted in expansion of primitive stem cells and improvement in the marrow engraftibility.  相似文献   

13.
14.
We investigated the role of homeobox B4 (HOXB4) mRNA/protein expression induced by human cytomegalovirus (HCMV) and/or all-trans retinoic acid (ATRA) in proliferation and committed differentiation of human cord blood hematopoietic stem cells (HSCs) into colony-forming-units of T-lymphocyte (CFU-TL) and erythroid (CFU-E) progenitors in vitro. Twelve cord blood samples were collected from the fetal placenta umbilical vein and cultured in vitro. The proliferation and differentiation of cord blood HSCs into CFU-TL and CFU-E were continuously disrupted with HCMV-AD169 and/or 6 × 10(-8) mol/l of ATRA. HOXB4 mRNA/protein expression in CFU-TL and CFU-E was detected in control, ATRA, HCMV and ATRA + HCMV groups on days 3, 7, and 12 of culture by fluorescent qRT-PCR/western blot. We found that HOXB4 mRNA/protein expression was detectable on day 3, increased on day 7 and was highest on day 12. HOXB4 mRNA/protein expression in HCMV group was downregulated compared with control group (P < 0.05). However, the levels were significantly upregulated in HCMV + ATRA group compared with HCMV group (P < 0.05). We concluded that the abnormal HOXB4 mRNA/protein expression induced by HCMV could play a role in hematopoietic damage. ATRA, at the concentration used, significantly up-regulated HOXB4 mRNA/protein expression in normal lymphocyte and erythrocyte progenitor cells as well as in HCMV-infected cells.  相似文献   

15.
The molecular basis governing functional behavior of human hematopoietic stem cells (HSCs) is largely unknown. Here, using in vitro and in vivo assays, we isolate and define progenitors versus repopulating HSCs from multiple stages of human development for global gene expression profiling. Accounting for both the hierarchical relationship between repopulating cells and their progenitors, and the enhanced HSC function unique to early stages of ontogeny, the human homologs of Hairy Enhancer of Split-1 (HES-1) and Hepatocyte Leukemia Factor (HLF) were identified as candidate regulators of HSCs. Transgenic human hematopoietic cells expressing HES-1 or HLF demonstrated enhanced in vivo reconstitution ability that correlated to increased cycling frequency and inhibition of apoptosis, respectively. Our report identifies regulatory factors involved in HSC function that elicit their effect through independent systems, suggesting that a unique orchestration of pathways fundamental to all human cells is capable of controlling stem cell behavior.  相似文献   

16.
The in vivo regulation of hematopoietic stem cell (HSC) function is poorly understood. Here, we show that hematopoietic repopulation can be augmented by administration of a glycogen synthase kinase-3 (GSK-3) inhibitor to recipient mice transplanted with mouse or human HSCs. GSK-3 inhibitor treatment improved neutrophil and megakaryocyte recovery, recipient survival and resulted in enhanced sustained long-term repopulation. The output of primitive Lin(-)c-Kit(+)Sca-1(+) cells and progenitors from HSCs increased upon GSK-3 inhibitor treatment without altering secondary repopulating ability, suggesting that the HSC pool is maintained while overall hematopoietic reconstitution is increased. GSK-3 inhibitors were found to modulate gene targets of Wnt, Hedgehog and Notch pathways in cells comprising the primitive hematopoietic compartment without affecting mature cells. Our study establishes GSK-3 as a specific in vivo modulator of HSC activity, and suggests that administration of GSK-3 inhibitors may provide a clinical means to directly enhance the repopulating capacity of transplanted HSCs.  相似文献   

17.
A major goal in haematopoietic stem cell (HSC) research is to define conditions for the expansion of HSCs or multipotent progenitor cells (MPPs). Since human HSCs/MPPs cannot be isolated, NOD/SCID repopulating cell (SRC) assays emerged as the standard for the quantification of very primitive haematopoietic cell. However, in addition to HSCs/MPPs, lympho-myeloid primed progenitors (LMPPs) were recently found to contain SRC activities, challenging this assay as clear HSC/MPP readout. Because our revised model of human haematopoiesis predicts that HSCs/MPPs can be identified as CD133+CD34+ cells containing erythroid potentials, we investigated the potential of human mesenchymal and conventional murine stromal cells to support expansion of HSCs/MPPs. Even though all stromal cells supported expansion of CD133+CD34+ progenitors with long-term myeloid and long-term lymphoid potentials, erythroid potentials were exclusively found within erythro-myeloid CD133lowCD34+ cell fractions. Thus, our data demonstrate that against the prevailing assumption co-cultures on human mesenchymal and murine stromal cells neither promote expansion nor maintenance of HSCs and MPPs.  相似文献   

18.
Roles for c-Myc in self-renewal of hematopoietic stem cells   总被引:12,自引:0,他引:12  
Notch and HOXB4 have been reported to expand hematopoietic stem cells (HSCs) in vitro. However, their critical effector molecules remain undetermined. We found that the expression of c-myc, cyclin D2, cyclin D3, cyclin E, and E2F1 was induced or enhanced during Notch1- or HOXB4-induced self-renewal of murine HSCs. Since c-Myc can act as a primary regulator of G(1)/S transition, we examined whether c-Myc alone can induce self-renewal of HSCs. In culture with stem cell factor, FLT3 ligand, and IL-6, a 4-hydroxytamoxifen-inducible form of c-Myc (Myc/ERT) enabled murine Lin(-)Sca-1(+) HSCs to proliferate with the surface phenotype compatible with HSCs for more than 28 days. c-Myc activated by 4-hydroxytamoxifen augmented telomerase activities and increased the number of CFU-Mix about 2-fold in colony assays. Also, in reconstitution assays, HSCs expanded by c-Myc could reconstitute hematopoiesis for more than 6 months. As for the mechanism of c-myc induction by Notch1, we found that activated forms of Notch1 (NotchIC) and its downstream effector recombination signal-binding protein-J kappa (RBP-VP16) can activate the c-myc promoter through the element between -195 bp and -161 bp by inducing the DNA-binding complex. Together, these results suggest that c-Myc can support self-renewal of HSCs as a downstream mediator of Notch and HOXB4.  相似文献   

19.
20.
Porphyrias are a group of disorders due to a genetic deficiency in one of the heme biosynthetic pathway enzymes. Congenital erythropoietic porphyria (CEP) is the most severe type characterized by a deficiency in uroporphyrinogen III synthase (UROS) activity. Bone marrow transplantation represents a curative treatment for patients, as long as human leucocyte antigen-compatible donor is available. We used a recently obtained murine model to check the feasibility of gene therapy in this disease. Lentivirus-mediated transfer of the human UROS cDNA into hematopoietic stem cells (HSCs) from Uros(mut 248) mice resulted in a complete and long-term enzymatic, metabolic and phenotypic correction of the disease, favored by a survival advantage of corrected red blood cells. These results demonstrate for the first time that the cure of this mouse model of CEP at moderate transduction level supports the proof of concept of a gene therapy in this disease by transplantation of genetically modified HSCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号