首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cyclic AMP dependent regulation of mitosis in human lymphoid cells   总被引:6,自引:0,他引:6  
Intracellular levels of cyclic AMP (cAMP), cAMP-dependent phosphodiesterase activity, and adenylate cyclase activity are examined in an established line of human lymphoid cells synchronized by either excess thymidine or by colcemid treatment. cAMP levels and adenylate cyclase activities during the two G periods are high when compared with the values in M. cAMP-dependent phosphodiesterase activity, which is low during early G 2, is shown to increase during G 2 and reach a maximum activity during M. Agents such as dibutyryl cAMP, 1-methyl-3-isobutyl xanthine, noradrenaline, and isopropyl noradrenaline, which increase the levels of intracellular cAMP were examined to determine their effects on mitosis and on DNA synthesis. In thymidine-synchronized cells the onset of mitosis is prevented by increasing or maintaining high levels of cAMP during G 2. The specificity of inhibition of DNA synthesis or mitosis by dibutyryl cAMP is a function of the time, during the cell cycle, when the analogue is added. The elevation of cAMP by methyl xanthine results in a more general inhibition of nucleic acid synthesis and mitosis. Although both catecholamine hormones inhibit mitosis, isopropylnoradrenaline also inhibits DNA synthesis while noradrenaline treatment does not result in such inhibition.  相似文献   

2.
We have examined the regulation of two key enzymes that control polyamine biosynthesis-L-ornithine decarboxylase (ODC) and S-adenosylmethionine decarboxylase (SAMDC) - by agents increasing cAMP in S49 lymphoma cells. Incubation of wild type S49 cells with beta-adrenergic agonists (terbutaline or isoproterenol) inhibited ODC and SAMDC activities rapidly (less than 2 hr). more quickly than these agents arrested the cells in the G1 phase of the cell cycle. The beta-adrenergic antagonist propranolol blocked inhibition of ODC activity produced by isoproterenol, but only if added simultaneously or less than 4 hr after the agonist. Incubation of wild type S49 cells with cholera toxin or PGE1 also inhibited ODC activity. Decreases in ODC activity produced by beta-adrenergic agonists, cholera toxin, PGE1 or dibutyryl cAMP were all enhanced by the phosphodiesterase inhibitor Ro 20-1724. Results of studies of ODC and SAMDC activity in S49 variants having lesions in the pathway of cAMP generation and action were as follows: kin- cells (which lack cAMP-dependent protein kinase activity) showed no inhibition of ODC by any agent; AC- cells (which have absent nucleotide coupling units in their adenylate cyclase system) only demonstrated inhibition in response to dibutyryl cAMP; UNC cells (which have deficient coupling of hormone receptors and adenylate cyclase) only demonstrated inhibition in response to dibutyryl cAMP and cholera toxin, and beta-depleted cells (which have a decreased number of beta-adrenergic receptors) responded as did wild type cells except for absent response to isoproterenol. We conclude that inhibition of ODC and SAMDC activity in S49 cells is an early response to agents that increase cAMP and that this action occurs via the "classical" pathways of activation of adenylate cyclase and protein kinase. These results in S49 cells contrast with evidence in other systems in which cAMP has been suggested to enhance polyamine biosynthesis, perhaps through alternative mechanisms.  相似文献   

3.
In Dictyostelium discoideum cells the enzyme adenylate cyclase is functionally coupled to cell surface receptors for cAMP. Coupling is known to involve one or more G-proteins. Receptor-mediated activation of adenylate cyclase is subject to adaptation. In this study we employ an electropermeabilized cell system to investigate regulation of D. discoideum adenylate cyclase. Conditions for selective permeabilization of the plasma membrane have been described by C.D. Schoen, J. C. Arents, T. Bruin, and R. Van Driel (1989, Exp. Cell Res. 181, 51-62). Only small pores are created in the membrane, allowing exchange of exclusively low molecular weight substances like nucleotides, and preventing the loss of macromolecules. Under these conditions functional protein-protein interactions are likely to remain intact. Adenylate cyclase in permeabilized cells was activated by the cAMP receptor agonist 2'-deoxy cAMP and by the nonhydrolyzable GTP-analogue GTP gamma S, which activates G-proteins. The time course of the adenylate cyclase reaction in permeabilized cells was similar to that of intact cells. Maximal adenylate cyclase activity was observed if cAMP receptor agonist or GTP-analogue was added just before cell permeabilization. If these activators were added after permeabilization adenylate cyclase was stimulated in a suboptimal way. The sensitivity of adenylate cyclase activity for receptor occupation was found to decay more rapidly than that for G-protein activation. Importantly, the adenylate cyclase reaction in permeabilized cells was subject to an adaptation-like process that was characterized by a time course similar to adaptation in vivo. In vitro adaptation was not affected by cAMP receptor agonists or by G-protein activation. Evidently electropermeabilized cells constitute an excellent system for investigating the positive and negative regulation of D. discoideum adenylate cyclase.  相似文献   

4.
Interleukin 6 (IL-6; also referred to as interferon-beta 2, 26-kDa protein, and B cell stimulatory factor 2) is a cytokine whose actions include a stimulation of immunoglobulin synthesis, enhancement of B cell growth, and modulation of acute phase protein synthesis by hepatocytes. Synthesis of IL-6 is stimulated by interleukin 1 (IL-1), tumor necrosis factor (TNF), or platelet-derived growth factor. We examined the role of the cyclic AMP (cAMP)-dependent signal transduction pathway in IL-6 gene expression. Several activators of adenylate cyclase, including prostaglandin E1, forskolin, and cholera toxin, as well as the phosphodiesterase inhibitor isobutylmethylxanthine and the cAMP analog dibutyryl cAMP, shared the ability to cause a dramatic and sustained increase in IL-6 mRNA levels in human FS-4 fibroblasts. Actinomycin D treatment abolished this enhancement. Treatments that increased intracellular cAMP also stimulated the secretion of the IL-6 protein in a biologically active form. Increased intracellular cAMP appears to enhance IL-6 gene expression by a protein kinase C-independent mechanism because down-regulation of protein kinase C by a chronic exposure of cells to a high dose of 12-O-tetradecanoylphorbol 13-acetate did not abolish the enhancement of IL-6 expression by treatments that increase cAMP. IL-1 and TNF too increased IL-6 mRNA levels by a protein kinase C-independent mechanism. Our results suggest a role for the cAMP-dependent pathway(s) in IL-6 gene activation by TNF and IL-1.  相似文献   

5.
Treatment of cultured mouse adrenal cells Y1 with ACTH induced cell refractoriness to further hormonal stimulation. When ACTH was added to the cells every 2 hours the first addition increased the levels of 20αOH-progesterone and cAMP secreted into the medium. Upon the second and third additions of ACTH the levels of 20αOH-progesterone and cAMP secreted were greatly diminished and upon the fourth addition of ACTH were absent. Prolonged incubation (14 hours) with different concentrations of ACTH (5 × 10?11 M to 10?6 M) induced a dose-related steroidogenic refractoriness to further ACTH stimulation, 10?8 M ACTH inducing complete refractoriness. The number of ACTH binding sites of cell particles prepared from desensitized cells was similar to that of the control but ACTH failed to stimulate the adenylate cyclase of desensitized cells, whereas the enzyme responded fully to NaF and Gpp(NH)p. The cAMP phosphodiesterase activity was similar in both desensitized and control cells. In addition the steroidogenic response to dibutyryl cAMP of desensitized cells was abolished. Thus, ACTH-induced adrenal cell desensitization seems to be related to at least two phenomena : a defect in the “coupling” between the hormone-receptor sites and the adenylate cyclase and an alteration of certain steps beyond cAMP formation.  相似文献   

6.
A chemically defined in vitro differentiating condition was used to study the potential role of cyclic AMP (cAMP) and adenylate cyclase activators on the transformation of Trypanosoma cruzi epimastigotes to the infective metacyclic trypomastigotes (metacyclogenesis). It was observed that both addition of cAMP analogs or adenylate cyclase activators to the differentiating medium stimulated the transformation of epimastigotes to metacyclic trypomastigotes. These results were further corroborated by showing that inhibitors of cAMP phosphodiesterase were stimulatory while activators of this enzyme inhibited the metacyclogenesis process. On the other hand, inhibitors of calmodulin inhibited the transformation of epimastigotes to metacyclic trypomastigotes, suggesting that T. cruzi adenylate cyclase might be activated by calmodulin. In addition, the results strongly suggest that guanine nucleotide binding proteins are involved in T. cruzi adenylate cyclase activation. This system may be useful for studying cell differentiation mechanisms in eukaryotes.  相似文献   

7.
Herpesvirus infection has been shown to alter the cholesteryl ester cycle in avian arterial smooth muscle cells, resulting in cytoplasmic cholesteryl ester accumulation (Hajjar, D. P., Falcone, D. J., Fabricant, C. G., and Fabricant, J. (1985) J. Biol. Chem. 260, 6124-6128). In this study, we attempted to define some of the regulatory mechanisms associated with the control of cytoplasmic cholesteryl esterase in Marek's disease herpesvirus (MDV)-infected cells. We found that cholesteryl esterase activity in MDV-infected cells could not be activated by dibutyryl cyclic AMP, dibutyryl cyclic AMP added together with protein kinase, or agonists of adenylate cyclase. Activation of cytoplasmic cholesteryl esterase activity occurred in uninfected cells and in cells infected with a control virus, turkey herpesvirus. Furthermore, the rate of cholesterol efflux from arterial smooth muscle cells challenged with dibutyryl cyclic AMP was unchanged in MDV-infected cells as compared to uninfected or turkey herpesvirus-infected cells in which efflux was increased. We propose that the reduced cytoplasmic cholesteryl esterase activity in lipid-laden, herpesvirus-infected cells is due partly to its inability to be activated by the cyclic AMP-protein kinase mechanism. This may contribute to the pathologic changes seen in MDV-infected arterial cells, including accumulation of intracellular cholesteryl esters.  相似文献   

8.
We have recently shown that atrial natriuretic factor (ANF) inhibits adenylate cyclase activity in rat platelets where only one population of ANF receptors (ANF-R2) is present, indicating that ANF-R2 receptors may be coupled to the adenylate cyclase/cAMP system. In the present studies, we have used ring-deleted peptides which have been reported to interact with ANF-R2 receptors also called clearance receptors (C-ANF) without affecting the guanylate cyclase/cGMP system, to examine if these peptides can also inhibit the adenylate cyclase/cAMP system. Ring-deleted analog C-ANF4-23 like ANF99-126 inhibited the adenylate cyclase activity in a concentration-dependent manner in rat aorta, brain striatum, anterior pituitary, and adrenal cortical membranes. The maximal inhibition was about 50-60% with an apparent Ki between 0.1 and 1 nM. In addition, C-ANF4-23 also decreased the cAMP levels in vascular smooth muscle cells in a concentration-dependent manner without affecting the cGMP levels. The maximal decrease observed was about 60% with an apparent Ki of about 1 nM. Furthermore, C-ANF4-23 was also able to inhibit cAMP levels and progesterone secretion stimulated by luteinizing hormone in MA-10 cell line. Other smaller fragments of ANF with ring deletions were also able to inhibit the adenylate cyclase activity as well as cAMP levels. Furthermore, the stimulatory effects of various agonists such as 5'-(N-ethyl)carboxamidoadenosine, dopamine, and forskolin on adenylate cyclase activity and cAMP levels were also significantly inhibited by C-ANF4-23. The inhibitory effect of C-ANF4-23 on adenylate cyclase was dependent on the presence of GTP and was attenuated by pertussis toxin treatment. These results indicate that ANF-R2 receptors or so-called C-ANF receptors are coupled to the adenylate cyclase/cAMP signal transduction system through inhibitory guanine nucleotide regulatory protein.  相似文献   

9.
Responsiveness of Dictyostelium discoideum amoebae to cAMP, a chemotactic mediator, was investigated in a strain defective in cAMP-phosphodiesterase production. Cells were subjected to a high cAMP signal (10(-6) M) in the presence or absence of exogenous phosphodiesterase, and the changes of intracellular cAMP and cGMP concentrations and of adenylate cyclase activity were measured. In the presence of cAMP hydrolysis, both adenylate and guanylate cyclases are transiently activated. In the absence of hydrolysis, the high and constant extracellular cAMP concentration is sufficient to elicit a re-activation of adenylate cyclase a few minutes after the first transient response. In contrast, levels of cGMP remain basal for at least 20 min after termination of the initial response to the cAMP addition.  相似文献   

10.
The adenylate cyclase activity and cyclic nucleotide content in excised human adrenal tumours (Icenko-Cushing syndrome) were determined. The experimental data were compared to those obtained for hyperplastic adrenals. All adrenal tumours under study revealed a decreased cAMP level, an increased cGMP level and a resulting decrease of the cAMP/cGMP ratio. In malignant adrenal tumours the adenylate cyclase activity was sharply increased in comparison with that in hyperplastic adrenals. In the majority of malignant tumours the adenylate cyclase response to ACTH was either altogether absent or sharply decreased. In benign adrenal tumours the basal activity of the enzyme was unchanged and the enzyme response to ACTH was essentially normal. The decrease of adenylate cyclase response to ACTH in malignant tumours is apparently not due to the impaired catalytic activity of the enzyme, since its response to stimulation by sodium fluoride remains unaffected. In some tumours (one malignant and two benign ones) a non-specific stimulation of adenylate cyclase by hormones, which are not natural activators of the enzyme was observed. It was assumed that these changes are due to the damage of hormonal receptors in adrenal tumours.  相似文献   

11.
To test the hypothesis that phosphatidic acid (PhA) is involved in the carbachol inhibition of hormone stimulated accumulation of cAMP we observed the effects of PhA on PGE1-stimulation of cAMP in WI-38 fibroblasts. PhA inhibited PGE1-stimulated cAMP accumulation of WI-38 fibroblasts; maximum inhibition (approximately 50-80%) occurred at a PhA concentration of 1.0 microM and significant inhibition was observed with a concentration of 0.1 microM. The full effects of PhA were evident within 15 sec after the co-addition of PGE1 and PhA. Addition of PhA to cells which had been pre-stimulated with PGE1 resulted in the rapid decay of cAMP levels to a new steady state level with a t 1/2 of approximately 65 sec. The inhibition produced by PhA did not appear to be simply attributable to a depolarization or increased intracellular Ca2+, since addition of either KCl or the Ca2+ ionophore A23187 did not lower PGE1-stimulated cAMP accumulation. When intact cells were pretreated with PhA then lysed and adenylate cyclase immediately assayed, no detectable changes in broken cell adenylate cyclase activities were observed. Also, PhA added directly to adenylate cyclase assays at concentrations as high as 100 microM produced no detectable inhibition of the membrane fraction adenylate cyclase activities. Nonetheless, our results suggest that adenylate cyclase activity in intact cells may be directly affected by physiological levels of PhA . Further, the similarities of carbachol [Butcher, R. W., Journal of Cyclic Nucleotide Research, 4:411 (1978)] and PhA inhibition support the hypothesis that carbachol (acetylcholine) exerts its effect on adenylate cyclase through alterations of the plasma membrane phospholipid composition.  相似文献   

12.
We have previously reported that free radical-treated vascular smooth muscle cells (SMC) lead to cholesterol accumulation in vitro. In the current study, we investigated the effects of oxidative stress on cyclic AMP concentration and cAMP-dependent enzymes involved in cholesterol homeostasis in A7r5 cells. Under our conditions of a mild oxidative stress, namely with no change in cell viability, we found that free radicals, initiated using azobis-amidinopropane dihydrochloride (AAPH), resulted in a dose-dependent decrease in cellular cAMP which was opposed by vitamin E preincubation. Although the addition of adenylate cyclase activators (carbacyclin and forskolin) increased cAMP levels it did not succeed in restoring the AAPH-induced decrease. The oxidative stress-induced increase in activities of 3-hydroxy-3-methylglutaryl coenzyme A reductase and of acyl coenzyme A: cholesterol acyltransferase and the decrease in neutral cholesteryl ester hydrolase activity were suppressed by addition of dibutyryl cAMP. Taken together, these results strongly suggest that free radicals reduce cAMP concentrations by altering cell membrane adenylate cyclase activity. The changes of cAMP-dependent enzymes induced by oxidative stress resulting in cholesterol accumulation might be one of the processes leading to SMC-derived foam cells depicted in atheroma plaque. Moreover, if extrapolated to in vivo, these data may explain in part the beneficial effects of antioxidants in the reduction of cardiovascular diseases.  相似文献   

13.
Cyclic AMP has been implicated in the regulation of the immunologic release of histamine from lung and other tissues and cell types. The mechanism whereby intracellular levels of cAMP are altered during mediator release was investigated. Measurements of histamine, adenylate cyclase, and cAMP phosphodiesterase activities were made in actively and passively sensitized guinea pig lung after challenge with antigen. A transient decrease in basal adenylate cyclase activity occurred which returned to control levels after histamine release. There was no change in cAMP phosphodiesterase activity determined at substrate concentrations of 1 mM and 0.01 mM. The adenylate cyclase response did not occur under the following conditions: 1) incubation of nonsensitized lung with antigen, 2) incubation of sensitized lung with antigen in the absence of extracellular calcium, and 3) incubation of nonsensitized lung with compound 48/80. These observations indicate 1) the adenylate cyclase response and the immunologic release of histamine are intimately related, and 2) the reduction in intracellular levels of cAMP which have been reported to occur during immunologic histamine release are mediated via adenylate cyclase.  相似文献   

14.
Proliferation of normal (not immunized intentionally) murine spleen cells was elicited with concanavalin A, supernatant fluid from cultures of EL-4 cells, human recombinant interleukin 2 (IL-2), or a mixture of phorbol ester and calcium ionophore A23187. IL-2-induced proliferation was inhibited by membrane-permeable dibutyryl cyclic adenosine monophosphate (cAMP) or by the adenylate cyclase activator forskolin. Consistent with these observations was the finding that stimulation with IL-2 decreased and forskolin increased the intracellular content of cAMP. IL-2-induced proliferation, as well as that induced by concanavalin A or phorbol-ionophore mixture, was inhibited by monoclonal antibodies specific for L3T4 or Lyt-2 cell surface markers. This inhibition was observed even when antibodies were added several hours after exposure of cells to IL-2. Notably, antibodies did not alter the intracellular content of cAMP. Thus, the experimental data failed to establish a functional linkage between the inhibitory effect of antibodies and the regulatory effect of the adenylate cyclase system. However, our results provide a rational basis for the postulation that antibodies, upon binding to their corresponding ligands, generate a negative signal that interferes with IL-2-induced proliferation. Therefore, L3T4 and Lyt-2 molecules appear to play an important role in the regulation of lymphocyte proliferation.  相似文献   

15.
Abstract Indomethacin was examined for its capacity to inhibit increases in adenosine-3',5'-monophosphate (cAMP) concentrations in Chinese hamster ovary (CHO) cells treated with cholera toxin. When added to the culture medium 1 h prior to cholera toxin (100 ng/ml), indomethacin (500 μg/ml) exhibited maximum protection against the typical increase in cAMP. Application of indomethacin at the same time as cholera toxin or up to 3 h after the toxin progressively decreased the drug's capacity to block further increases in cAMP. The drug appeared to block adenylate cyclase activity because addition of forskolin to drug-treated cells did not elicit a cAMP response. Binding of 125I-labeled cholera toxin to indomethacin-treated cells was also reduced by at least 50%. These data indicate that indomethacin's inhibitory effect on cAMP formation in cholera toxin-treated cells could be explained by its capacity to alter adenylate cyclase activity and cholera toxin binding.  相似文献   

16.
17.
We tested the hypothesis that the adenylate cyclase system and Na+, K(+)-ATPase are reciprocally related in rat pancreatic islets. We studied the effect of theophylline, caffeine, and dibutyryl cyclic AMP on Na+, K(+)-ATPase activity in a membrane preparation from collagenase-isolated rat islets. Theophylline, caffeine, or dibutyryl cyclic AMP, in concentrations of 1 mM, all inhibited Na+, K(+)-ATPase activity (44,62, and 43%, respectively). Kinetic analysis indicated that theophylline and dibutyryl cAMP inhibit Na+, K(+)-ATPase by different mechanisms; theophylline decreased Vmax and decreased apparent Km (ATP), whereas dibutyryl cAMP decreased Vmax and increased apparent Km (ATP). Similar inhibition of Na+, K(+)-ATPase by theophylline or dibutyryl cAMP was noted in a particulate fraction from rat kidney and in a purified porcine brain Na+, K(+)-ATPase preparation. The adenylate cyclase system and Na+, K(+)-ATPase may act reciprocally in pancreatic islets and in other tissues. In the beta cell this relationship may be essential in coordinating consumption of ATP in the stimulated, as opposed to the rest, state.  相似文献   

18.
Bovine parathyroid hormone (PTH), dibutyryl cAMP, and calcium each induce similar metabolic changes in isolated bone cells. PTH and calcium, but not dibutyryl cAMP, result in desensitization of osteoclastic and osteoblastic bone cells to PTH. In osteoblastic cells, calcium effects are specific for PTH receptor.adenylate cyclase complexes and responsiveness to other hormones is not reduced while in osteoclastic cells, small effects of high calcium on prostaglandin E1- and epinephrine-inducible cAMP accompany the large decreases seen in cAMP response to PTH. The membrane effects of calcium and of PTH appear to be independently regulated as PTH-induced desensitization can be initiated in the absence of calcium. In addition, calcium effects on PTH-sensitive adenylate cyclase follow a different calcium dose-response than PTH-like metabolic changes. These results suggest that the effect of calcium on the membrane is not directly related to its induction of PTH-like metabolic changes. A possible role of calcium as an in vivo regulator of bone cell sensitivity to PTH is discussed.  相似文献   

19.
Cytochemical investigations showed adenylate cyclase in the rabbit small intestine enterocytes to be activated both with cholera toxin and sodium fluoride. Following double stimulation of adenylate cyclase in the intestinal enterocytes by the mentioned two substances maximal critical levels of cAMP were attained resulting in self-inhibition of adenylate cyclase; in this case only a low adenylate cyclase activity, if any, could be demonstrated by electron microscopy.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号