共查询到20条相似文献,搜索用时 0 毫秒
1.
Ilka Wittig 《BBA》2009,1787(6):672-680
Mitochondrial ATP synthase is mostly isolated in monomeric form, but in the inner mitochondrial membrane it seems to dimerize and to form higher oligomeric structures from dimeric building blocks. Following a period of electron microscopic single particle analyses that revealed an angular orientation of the membrane parts of monomeric ATP synthases in the dimeric structures, and after extensive studies of the monomer-monomer interface, the focus now shifts to the potentially dynamic state of the oligomeric structures, their potential involvement in metabolic regulation of mitochondria and cells, and to newly identified interactions like physical associations of complexes IV and V. Similarly, larger structures like respiratory strings that have been postulated to form from individual respiratory complexes and their supercomplexes, the respirasomes, come into the focus. Progress by structural investigations is paralleled by insights into the functional roles of respirasomes including substrate channelling and stabilization of individual complexes. Cardiolipin was found to be important for the structural stability of respirasomes which in turn is required to maintain cells and tissues in a healthy state. Defects in cardiolipin remodeling cause devastating diseases like Barth syndrome. Novel species-specific roles of respirasomes for the stability of respiratory complexes have been identified, and potential additional roles may be deduced from newly observed interactions of respirasomes with components of the protein import machinery and with the ADP/ATP translocator. 相似文献
2.
Genes for bacterial and mitochondrial ATP synthase 总被引:1,自引:0,他引:1
3.
The peripheral stalk of the mitochondrial ATP synthase 总被引:9,自引:0,他引:9
The peripheral stalk of F-ATPases is an essential component of these enzymes. It extends from the membrane distal point of the F1 catalytic domain along the surface of the F1 domain with subunit a in the membrane domain. Then, it reaches down some 45 A to the membrane surface, and traverses the membrane, where it is associated with the a-subunit. Its role is to act as a stator to hold the catalytic alpha3beta3 subcomplex and the a-subunit static relative to the rotary element of the enzyme, which consists of the c-ring in the membrane and the attached central stalk. The central stalk extends up about 45 A from the membrane surface and then penetrates into the alpha3beta3 subcomplex along its central axis. The mitochondrial peripheral stalk is an assembly of single copies of the oligomycin sensitivity conferral protein (the OSCP) and subunits b, d and F6. In the F-ATPase in Escherichia coli, its composition is simpler, and it consists of a single copy of the delta-subunit with two copies of subunit b. In some bacteria and in chloroplasts, the two copies of subunit b are replaced by single copies of the related proteins b and b' (known as subunits I and II in chloroplasts). As summarized in this review, considerable progress has been made towards establishing the structure and biophysical properties of the peripheral stalk in both the mitochondrial and bacterial enzymes. However, key issues are unresolved, and so our understanding of the role of the peripheral stalk and the mechanism of synthesis of ATP are incomplete. 相似文献
4.
Structural organization of mitochondrial ATP synthase 总被引:1,自引:0,他引:1
Specific modules and subcomplexes like F(1) and F(0)-parts, F(1)-c subcomplexes, peripheral and central stalks, and the rotor part comprising a ring of c-subunits with attached subunits gamma, delta, and epsilon can be identified in yeast and mammalian ATP synthase. Four subunits, alpha(3)beta(3), OSCP, and h, seem to form a structural entity at the extramembranous rotor/stator interface (gamma/alpha(3)beta(3)) to hold and stabilize the rotor in the holo-enzyme. The intramembranous rotor/stator interface (c-ring/a-subunit) must be dynamic to guarantee unhindered rotation. Unexpectedly, a c(10)a-assembly could be isolated with almost quantitive yield suggesting that an intermediate step in the rotating mechanism was frozen under the conditions used. Isolation of dimeric a-subunit and (c(10))(2)a(2)-complex from dimeric ATP synthase suggested that the a-subunit stabilizes the same monomer-monomer interface that had been shown to involve also subunits e, g, b, i, and h. The natural inhibitor protein Inh1 does not favor oligomerization of yeast ATP synthase. Other candidates for the oligomerization of dimeric ATP synthase building blocks are discussed, e.g. the transporters for inorganic phosphate and ADP/ATP that had been identified as constituents of ATP synthasomes. Independent approaches are presented that support previous reports on the existence of ATP synthasomes in the mitochondrial membrane. 相似文献
5.
The mitochondrial ATP synthase (F(1)-F(0) complex) of Saccharomces cerevisiae is a composite of different structural and functional units that jointly couple ATP synthesis and hydrolysis to proton transfer across the inner membrane. In organello, pulse labelling and pulse-chase experiments have enabled us to track the mitochondrially encoded Atp6p, Atp8p and Atp9p subunits of F(0) and to identify different assembly intermediates into which they are assimilated. Surprisingly, these core subunits of F(0) segregated into two different assembly intermediates one of which is composed of Atp6p, Atp8p, at least two stator subunits, and the Atp10p chaperone while the second consists of the F(1) ATPase and Atp9p ring. These studies show that assembly of the ATP synthase is not a single linear process, as previously thought, but rather involves two separate but coordinately regulated pathways that converge at the end stage. 相似文献
6.
M T Tuena Gómez-Puyou O B Martins A Gómez-Puyou 《Biochimie et biologie cellulaire》1988,66(7):677-682
A brief summary of the factors that control synthesis and hydrolysis of ATP by the mitochondrial H+-ATP synthase is made. Particular emphasis is placed on the role of the natural ATPase inhibitor protein. It is clear from the existing data obtained with a number of agents that there is no correlation between variations of the rate of ATP hydrolysis and ATP synthesis as driven by respiration. The mechanism by which each condition differentially affects the two activities is not entirely known. For the case of the natural ATPase inhibitor protein, it appears that the protein controls the kinetics of the enzyme. This control seems essential for achieving maximal accumulation of ATP during electron transport in systems that contain relatively high concentrations of ATP. 相似文献
7.
Noreen Williams 《Journal of bioenergetics and biomembranes》1994,26(2):173-178
The structure and regulation of theTrypanosoma brucei mitochondrial ATP synthase is reviewed. This enzyme complex which catalyzes the synthesis and hydrolysis of ATP within the mitochondrion is a multisubunit complex which is regulated in several ways. Several lines of evidence have shown that the ATP synthase is regulated through the life cycle ofTrypanosoma brucei. The enzyme complex is present at maximal levels in the procyclic form where mitochondrial activity is the highest and cytochromes and Kreb's cycle components are present. The levels of the ATP synthase are decreased in the bloodstream forms where the levels of the mitochondrial cytochromes are absent or substantially decreased. In recent preliminary work we have shown the presence of an ATP synthase inhibitor peptide which may indicate an additional level of complexity to the regulation. 相似文献
8.
Paumard P Vaillier J Coulary B Schaeffer J Soubannier V Mueller DM Brèthes D di Rago JP Velours J 《The EMBO journal》2002,21(3):221-230
The inner membrane of the mitochondrion folds inwards, forming the cristae. This folding allows a greater amount of membrane to be packed into the mitochondrion. The data in this study demonstrate that subunits e and g of the mitochondrial ATP synthase are involved in generating mitochondrial cristae morphology. These two subunits are non-essential components of ATP synthase and are required for the dimerization and oligomerization of ATP synthase. Mitochondria of yeast cells deficient in either subunits e or g were found to have numerous digitations and onion-like structures that correspond to an uncontrolled biogenesis and/or folding of the inner mitochondrial membrane. The present data show that there is a link between dimerization of the mitochondrial ATP synthase and cristae morphology. A model is proposed of the assembly of ATP synthase dimers, taking into account the oligomerization of the yeast enzyme and earlier data on the ultrastructure of mitochondrial cristae, which suggests that the association of ATP synthase dimers is involved in the control of the biogenesis of the inner mitochondrial membrane. 相似文献
9.
Previous studies of the rate constants for the elementary steps of ATP hydrolysis by the soluble and membrane-bound forms of beef heart mitochondrial F1 supported the proposal that ATP is formed in high-affinity catalytic sites of the enzyme with little or no change in free energy and that the major requirement for energy in oxidative phosphorylation is for the release of product ATP.The affinity of the membrane-bound enzyme for ATP during NADH oxidation was calculated from the ratio of the rate constants for the forward binding step (k
+1) and the reverse dissociation step (k
–1).k
–1 was accelerated several orders of magnitude by NADH oxidation. In the presence of NADH and ADP an additional enhancement ofk
–1 was observed. These energy-dependent dissociations of ATP were sensitive to the uncoupler FCCP.k
+1 was affected little by NADH oxidation. The dissociation constant (K
d
ATP) increased many orders of magnitude during the transition from nonenergized to energized states. 相似文献
10.
Zancani M Casolo V Peresson C Federici G Urbani A Macrì F Vianello A 《Mitochondrion》2003,3(2):111-118
A soluble protein with a molecular mass of 55 kDa has been purified from etiolated pea stem mitochondria. The protein exhibits a Mg2+-requiring PPiase activity, with an optimum at pH 9.0, which is not stimulated by monovalent cations, but inhibited by F-, Ca2+, aminomethylenediphosphate and imidodiphosphate. The protein does not cross-react with polyclonal antibodies raised against vacuolar, mitochondrial or soluble PPiases, respectively. Conversely, it cross-reacts with an antibody for the alpha/beta-subunit of the ATP synthase from beef heart mitochondria. The purified protein has been analyzed by MALDI-TOF mass spectrometry and the results, covering the 30% of assigned sequence, indicate that it corresponds to the beta-subunit of the ATP synthase of pea mitochondria. It is suggested that this enzymatic protein may perform a dual function as soluble PPiase or as subunit of the more complex ATP synthase. 相似文献
11.
Mitochondrial F1Fo-ATP synthase is a molecular motor that couples the energy generated by oxidative metabolism to the synthesis of ATP. Direct visualization of the rotary action of the bacterial ATP synthase has been well characterized. However, direct observation of rotation of the mitochondrial enzyme has not been reported yet. Here, we describe two methods to reconstitute mitochondrial F1Fo-ATP synthase into lipid bilayers suitable for structure analysis by electron and atomic force microscopy (AFM). Proteoliposomes densely packed with bovine heart mitochondria F1Fo-ATP synthase were obtained upon detergent removal from ternary mixtures (lipid, detergent and protein). Two-dimensional crystals of recombinant hexahistidine-tagged yeast F1Fo-ATP synthase were grown using the supported monolayer technique. Because the hexahistidine-tag is located at the F1 catalytic subcomplex, ATP synthases were oriented unidirectionally in such two-dimensional crystals, exposing F1 to the lipid monolayer and the Fo membrane region to the bulk solution. This configuration opens a new avenue for the determination of the c-ring stoichiometry of unknown hexahistidine-tagged ATP synthases and the organization of the membrane intrinsic subunits within Fo by electron microscopy and AFM. 相似文献
12.
A Haid R J Schweyen H Bechmann F Kaudewitz M Solioz G Schatz 《European journal of biochemistry》1979,94(2):451-464
Mitochondrial mutants of Saccharomyces cerevisiae defective in cytochrome b were analyzed genetically and biochemically in order to elucidate the role of the mitochondrial genetic system in the biosynthesis of this cytochrome. The mutants mapped between OLI1 and OLI2 on mitochondrial DNA in a region called COB. A fine structure map of the COB region was constructed by rho- deletion mapping and recombination analysis. The combined genetic and biochemical data indicate that the COB region is mosaic and contains at least five distinct clusters of mutants, A-E, with A being closest to OLI2 and E being closest to OLI1. Clusters A, C and E are probably coding regions for apocytochrome b, whereas clusters B and D seem to be involved in as yet unknown functions. These conclusions rest on the following evidence. 1. Most mutants in clusters A, C and E have specifically lost cytochrome b. Many of them accumulate smaller mitochondrial translation products; some of these were identified as fragments of apocytochrome b by proteolytic fingerprinting. The molecular weight of these fragments depends on the map position of the mutant, increasing in the direction OLI2 leads to OLI1. The mutant closest to OLI1 accumulates an apocytochrome b which is slightly larger than that of wild type. 2. A mutant in cluster C exhibits a spectral absorption band of cytochrome b that is shifted 1.5 nm to the red. 3. Mutants in clusters B and D are pleiotropic. A majority of them are conditional and lack the absorption bands of both cytochrome b and cytochrome aa3; these mutants also fail to accumulate apocytochrome b and subunit I of cytochrome c oxidase and instead form a large number of abnormal translation products whose nature is unknown. 4. Zygotic complementation tests reveal at least two complementation groups: The first group includes all mutants in cluster B and the second group includes mutants in clusters (A + C + D + E). 相似文献
13.
Mutations in the Saccharomyces cerevisiae ATP22 gene were previously shown to block assembly of the F0 component of the mitochondrial proton-translocating ATPase. Further inquiries into the function of Atp22p have revealed that it is essential for translation of subunit 6 of the mitochondrial ATPase. The mutant phenotype can be partially rescued by the presence in the same cell of wild-type mitochondrial DNA and a rho- deletion genome in which the 5'-UTR, first exon, and first intron of COX1 are fused to the fourth codon of ATP6. The COX1/ATP6 gene is transcribed and processed to the mature mRNA by splicing of the COX1 intron from the precursor. The hybrid protein translated from the novel mRNA is proteolytically cleaved at the normal site between residues 10 and 11 of the subunit 6 precursor, causing the release of the polypeptide encoded by the COX1 exon. The ability of the rho- suppressor genome to express subunit 6 in an atp22 null mutant constitutes strong evidence that translation of subunit 6 depends on the interaction of Atp22p with the 5'-UTR of the ATP6 mRNA. 相似文献
14.
We have determined the structure of intact ATP synthase from bovine heart mitochondria by electron cryomicroscopy of single particles. Docking of an atomic model of the F1-c10 subcomplex into a major segment of the map has allowed the 32 A resolution density to be interpreted as the F1-ATPase, a central and a peripheral stalk and an FO membrane region that is composed of two domains. One domain of FO corresponds to the ring of c-subunits, and the other probably contains the a-subunit, the transmembrane portion of the b-subunit and the remaining integral membrane proteins of FO. The peripheral stalk wraps around the molecule and connects the apex of F1 to the second domain of FO. The interaction of the peripheral stalk with F1-c10 implies that it binds to a non-catalytic alpha-beta interface in F1 and its inclination where it is not attached to F1 suggests that it has a flexible region that can serve as a stator during both ATP synthesis and ATP hydrolysis. 相似文献
15.
Effect of hydrostatic pressure on the mitochondrial ATP synthase 总被引:2,自引:0,他引:2
The effects of hydrostatic pressure on three different preparations of mitochondrial H+-ATPase were investigated by studies of the hydrolytic activity, of the spectral shift and quantum yield of the intrinsic protein fluorescence, and of filtration chromatography. Both membrane-bound and detergent-solubilized forms of the mitochondrial F0-F1 complex were reversibly inactivated in the pressure range of 600-1800 bar, whereas with soluble F1-ATPase the inactivation was irreversible. Pressure inactivation of soluble F1-ATPase was facilitated by decreasing the protein concentration, indicating that dissociation is an important factor. In the presence of 30% glycerol, soluble F1-ATPase becomes inactivated by pressure in a reversible fashion, recovering the original activity. ATPase activity measured in an aqueous medium returns to the original values when incubated under high pressure in a glycerol-containing medium without substrate and is even enhanced when Mg-ATP is present. ATP hydrolysis returns to 80% of its original value in the case of the F0-F1 complex. Fluorescence studies under pressure revealed a red shift in the spectral distribution of the emission of tyrosine fluorescence of soluble F1-ATPase. A decrease in the quantum yield of intrinsic fluorescence was also observed upon subjection to pressure. The fluorescence intensity decreased monotonically as a function of pressure when the sample was in an aqueous medium, whereas it presented a biphasic behavior in a 30% glycerol medium. Gel filtration studies demonstrated that the hydrodynamic properties of the F1-ATPase are preserved if the enzyme is subjected to pressure in the presence of glycerol but they are modified when the same procedure is performed in an aqueous medium.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
16.
Factor B and the mitochondrial ATP synthase complex. 总被引:2,自引:0,他引:2
Factor B is a subunit of the mammalian ATP synthase complex, whose existence has been controversial. This paper describes the molecular and functional properties of a recombinant human factor B, which when added to bovine submitochondrial particles depleted of their factor B restores the energy coupling activity of the ATP synthase complexes. The mature human factor B has 175 amino acids and a molecular mass of 20,341 Da. The preparation is water-soluble, monomeric, and is inactivated by monothiol- and especially dithiol-modifying reagents, probably reacting at its cysteine residues Cys-92 and Cys-94. A likely factor B gene composed of 5 exons has been identified on chromosome 14q21.3, and the functional role of factor B in the mammalian ATP synthase complex has been discussed. 相似文献
17.
Considerable cumulative evidence has accrued suggesting a vital role for mitochondrial function in optimizing photosynthesis. Both pharmacological approaches using respiratory inhibitors and reverse genetic approaches have recently underscored the high degree of interconnection between photosynthesis and respiration--the major pathways of energy production which are largely confined to the plastid and mitochondria, respectively. Here recent studies into the nature of these interactions are reviewed, with particular focus on (i) the recently described link between the mitochondrial electron transport chain activity, ascorbate biosynthesis, and photosynthesis; and (ii) the contribution of mitochondrial metabolism to the photorespiratory process. Whilst there is increasing evidence of a role for ascorbate in co-ordinating the rates of respiration and photosynthesis, some data are presented here for plants grown under extreme environmental conditions that suggest that this relationship is not absolute. It thus seems likely that interactions between these compartments are perhaps more numerous and complicated than previously thought. This observation suggests that although the elucidation of the genetic bases of both photorespiration and the Wheeler-Smirnoff pathway of ascorbate biosynthesis has recently been completed, much further research is probably necessary in order to understand fully how energy metabolism is co-ordinated in the illuminated leaf. 相似文献
18.
Pagadala V Vistain L Symersky J Mueller DM 《Journal of bioenergetics and biomembranes》2011,43(4):333-347
The mitochondrial ATP synthase from yeast S. cerevisiae has been genetically modified, purified in a functional form, and characterized with regard to lipid requirement, compatibility with a variety of detergents, and the steric limit with rotation of the central stalk has been assessed. The ATP synthase has been modified on the N-terminus of the β-subunit to include a His(6) tag for Ni-chelate affinity purification. The enzyme is purified by a two-step procedure from submitochondrial particles and the resulting enzyme demonstrates lipid dependent oligomycin sensitive ATPase activity of 50 units/mg. The yeast ATP synthase shows a strong lipid selectivity, with cardiolipin (CL) being the most effective activating lipid and there are 30 moles CL bound per mole enzyme at saturation. Green Fluorescent Protein (GFP) has also been fused to the C-terminus of the ε-subunit to create a steric block for rotation of the central stalk. The ε-GFP fusion peptide is imported into the mitochondrion, assembled with the ATP synthase, and inhibits ATP synthetic and hydrolytic activity of the enzyme. F(1)F(o) ATP synthase with ε-GFP was purified to homogeneity and serves as an excellent enzyme for two- and three-dimensional crystallization studies. 相似文献
19.
The ATP synthase is a nanometric rotary machine that uses a transmembrane electrochemical gradient to form ATP. The structures of most components of the ATP synthase are known, and their organization has been elucidated. However, the supramolecular assembly of ATP synthases in biological membranes remains unknown. Here we show with submolecular resolution the organization of ATP synthases in the yeast mitochondrial inner membranes. The atomic force microscopy images we have obtained show how these molecules form dimers with characteristic 15 nm distance between the axes of their rotors through stereospecific interactions of the membrane embedded portions of their stators. A different interaction surface is responsible for the formation of rows of dimers. Such an organization elucidates the role of the ATP synthase in mitochondrial morphology. Some dimers have a different morphology with 10 nm stalk-to-stalk distance, in line with ATP synthases that are accessible to IF1 inhibition. Rotation torque compensation within ATP synthase dimers stabilizes the ATP synthase structure, in particular the stator-rotor interaction. 相似文献