首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The interactions between insects and their plant host have been implicated in driving diversification of both players. Early arguments highlighted the role of ecological opportunity, with the idea that insects “escape and radiate” on new hosts, with subsequent hypotheses focusing on the interplay between host shifting and host tracking, coupled with isolation and fusion, in generating diversity. Because it is rarely possible to capture the initial stages of diversification, it is particularly difficult to ascertain the relative roles of geographic isolation versus host shifts in initiating the process. The current study examines genetic diversity between populations and hosts within a single species of endemic Hawaiian planthopper, Nesosydne umbratica (Hemiptera, Delphacidae). Given that the species was known as a host generalist occupying unrelated hosts, Clermontia (Campanulaceae) and Pipturus (Urticaceae), we set out to determine the relative importance of geography and host in structuring populations in the early stages of differentiation on the youngest islands of the Hawaiian chain. Results from extensive exon capture data showed that N. umbratica is highly structured, both by geography, with discrete populations on each volcano, and by host plant, with parallel radiations on Clermontia and Pipturus leading to extensive co‐occurrence. The marked genetic structure suggests that populations can readily become established on novel hosts provided opportunity; subsequent adaptation allows monopolization of the new host. The results support the role of geographic isolation in structuring populations and with host shifts occurring as discrete events that facilitate subsequent parallel geographic range expansion.  相似文献   

2.
Apicomplexan protozoan parasites include some of the most globally important human and animal pathogens, all of which have obligatory sexual cycles in their definitive hosts. Despite their importance and the relevance of understanding the population genetic structure and role of genetic exchange in generating diversity, population genetic analysis has largely been restricted to Plasmodium spp. and Toxoplasma gondii. These species show a considerable diversity of population structure suggesting different strategies for transmission and survival in mammalian hosts. We have undertaken a population genetic analysis of a further apicomplexan species (Cryptosporidium parvum) to extend our understanding of the diversity of genetic structures and test whether it has a clonal population structure. Nothing is known about the population structure of this parasite. We have analyzed 180 parasite isolates from both humans and cattle derived from a single discrete geographical area, using three minisatellite and four microsatellite markers that define 38 multilocus genotypes. Analysis of linkage disequilibria between pairs of loci combined with measures of genetic distance and similarity provides evidence that the sample comprises four genetically isolated populations. One group of human isolates consists primarily of two closely related multilocus genotypes (clonal), while the major subtypes of a second group, common to both humans and animals, show a panmictic population structure. The data provide an important step in understanding the role of genetic exchange in these parasites, which is an essential prerequisite for determining the value of multilocus genotyping for the analysis of sources of human infection as well as future molecular epidemiological studies.  相似文献   

3.
A central paradigm of life-history theory is the existence of resource mediated trade-offs among different traits that contribute to fitness, yet observations inconsistent with this tenet are not uncommon. We previously found a clonal population of the aphid Myzus persicae to exhibit positive genetic correlations among major components of fitness, resulting in strong heritable fitness differences on a common host. This raises the question of how this genetic variation is maintained. One hypothesis states that variation for resource acquisition on different hosts may override variation for allocation, predicting strong fitness differences within hosts as a rule, but changes in fitness hierarchies across hosts due to trade-offs. Therefore, we carried out a life-table experiment with 17 clones of M. persicae, reared on three unrelated host plants: radish, common lambsquarters and black nightshade. We estimated the broad-sense heritabilities of six life-history traits on each host, the genetic correlations among traits within hosts, and the genetic correlations among traits on different hosts (cross-environment genetic correlations). The three plants represented radically different environments with strong effects on performance of M. persicae, yet we detected little evidence for trade-offs. Fitness components were positively correlated within hosts but also between the two more benign hosts (radish and lambsquarters), as well as between those and another host tested earlier. The comparison with the most stressful host, nightshade, was hampered by low survival. Survival on nightshade also exhibited genetic variation but was unrelated to fitness on other hosts. Acknowledging that the number of environments was necessarily limited in a quantitative genetic experiment, we suggest that the rather consistent fitness hierarchies across very different plants provided little evidence to support the idea that the clonal variation for life-history traits and their covariance structure are maintained by strong genotypexenvironment interactions with respect to hosts. Alternative explanations are discussed.  相似文献   

4.
Although the ‘universal’ genetic code is widespread among life-forms, a number of diverse lineages have evolved unique codon reassignments. The proteomes of these organisms and organelles must, by necessity, use the same codon assignments. Likewise, for an exogenous genetic element, such as an infecting viral genome, to be accurately and completely expressed with the host's translation system, it must employ the same genetic code. This raises a number of intriguing questions regarding the origin and evolution of viruses. In particular, it is extremely unlikely that viruses of hosts utilizing the universal genetic code would emerge, via cross-species transmission, in hosts utilizing alternative codes, and vice versa. Consequently, more parsimonious scenarios for the origins of such viruses include the prolonged co-evolution of viruses with cellular life, or the escape of genetic material from host genomes. Further, we raise the possibility that emerging viruses provide the selection pressure favoring the use of alternative codes in potential hosts, such that the evolution of a variant genetic code acts as a unique and powerful antiviral strategy. As such, in the face of new emerging viruses, hosts with codon reassignments would have a significant selective advantage compared to hosts utilizing the universal code.  相似文献   

5.
Endosymbionts and their hosts have inherently ambiguous relationships as symbionts typically depend upon their hosts for shelter, nutrition, and reproduction. Endosymbionts can acquire these needs by two alternative strategies: exploitation and cooperation. Parasites exploit hosts to advance their own reproduction at the cost of host fitness. In contrast, mutualists increase their reproductive output by increasing host fitness. Very often the distinction between parasites and mutualists is not discrete but rather contingent on the environment in which the interaction occurs, and can shift along a continuous scale from parasitism to mutualism. The cost benefit dynamics at any point along this continuum are of particular interest as they establish the likelihood of an interaction persisting or breaking down. Here we show how the interaction between the yeast Saccharomyces cerevisiae and an endosymbiotic killer virus is strongly dependent on both host ploidy and environmental pH. Additionally we elucidate the mechanisms underlying the ploidy-dependent interaction. Understanding these dynamics in the short-term is key to understanding how genetic and environmental factors impact community diversity.  相似文献   

6.
Trade-offs and the evolution of host specialization   总被引:7,自引:1,他引:6  
Summary Trade-offs in performance on different hosts are thought to promote the evolution of host specificity by blocking host shifts. Yet, in contrast, most experiments using phytophagous insects have shown performance on alternative hosts to be uncorrelated or positively correlated. Recent quantitative genetic models based on mutation—selection balance indicate that underlying constraints on the simultaneous maximization of different components of fitness may not always generate negative genetic correlations. We suggest an alternative or additional explanation for the lack of observed negative genetic correlations. If performance is polygenically controlled and some performance loci possess only antagonistically pleiotropic alleles, then the expression of trade-offs in performance will vary over time in populations. Consequently, a trade-off will be seen only in populations that have adapted to two hosts and are at or close to genetic equilibrium. Therefore, studies testing performance on a novel as compared with a normal host will generally yield non-negative genetic correlations between performance on the two hosts. The results of published studies are consistent with the predictions of this hypothesis.  相似文献   

7.
Synthesium pontoporiae, exclusive parasite of the endangered dolphin, Pontoporia blainvillei, is endemic and restricted to the South Atlantic and belongs to the Brachycladiidae family Odhner, 1905. The study of this family has been limited by the difficulty of accessing the parasites from their marine mammal hosts and as a consequence there is a paucity of genetic information available. Herein we present a genetic analysis using 18S rDNA sequences of S. pontoporiae and S. tursionis and the ND3 mtDNA sequence of S. pontoporiae. The genetic analysis of 18S rDNA sequences of brachycladiids and acanthocolpids determined two major clusters associated with their definitive hosts, marine mammals and fishes, respectively. Considering the tree topology of brachycladiids ND3 mtDNA gene, two clusters were defined, one with the Synthesium species. This work contributes with fundamental genetic information on S. pontoporiae, and suggests a Brachycladiidae genetic evolution related to their hosts.  相似文献   

8.
Wolbachia bacteria are obligatory intracellular parasites of arthropods and have been detected in about 70 species of parasitic wasps and three parasitoid flies. Wolbachia are transmitted cytoplasmically (maternally) and modify host reproduction in different ways to enhance their own transmission: parthenogenesis induction (PI), cytoplasmic incompatibility (CI), or feminization (F) of genetic males. Only PI and CI are known in parasitoids. PI-Wolbachia cause thelytoky in otherwise arrhenotokous parasitoids by generating diploid (rather than haploid) unfertilized wasp eggs. CI-Wolbachia cause incompatibility of crosses between infected males and uninfected females because the paternally derived chromosomes fail to decondense and are destroyed after syngamy. More complex situations arise when hosts harbor multiple infections, which can lead to bidirectional incompatibility and may be involved in parasitoid speciation. The relative fitness of infected and uninfected hosts is important to the population dynamics of Wolbachia, and more data are needed. Evolutionary conflict should be common between host genes, Wolbachia genes, and other "selfish" genetic elements. Wolbachia-specific PCR primers are now available for several genes with different rates of evolution. These primers will permit rapid screening in future studies of spatial and temporal patterns of single and multiple infection. Molecular phylogenies show that CI- and PI-Wolbachia do not form discrete clades. In combination with experimental transfection data, this result suggests that host reproductive alterations depend on the interaction between attributes of both Wolbachia and host. Moreover, Wolbachia isolates from closely related hosts do not usually cluster together, and phylogenies suggest that Wolbachia may have radiated after their arthropod hosts. Both results support considerable horizontal transmission of Wolbachia between host species over evolutionary time. Natural horizontal transmisson between parasitoids and their hosts, or with entomoparasitic nematodes or ectoparasitic mites, remains a tantalizing but equivocal possibility. Received: November 27, 1998 / Accepted: January 15, 1999  相似文献   

9.
Nonrandom recruitment of parasites among hosts can lead to genetic differentiation among hosts and mating dynamics that promote inbreeding. It has been hypothesized that strictly aquatic parasites with intermediate hosts will behave as panmictic populations among hosts because ample opportunity exists for random mixing of unrelated individuals during transmission to the definitive host. A previous allozyme study on the marine trematode Lecithochirium fusiforme did not support this hypothesis; in that, there was genetic differentiation among, and significant heterozygote deficiencies within, definitive hosts. We revisit this system and use microsatellites to obtain multilocus genotypes. Our goal was to determine whether cryptic subgroups and/or the presence of clones could account for the apparent deviation from 'panmixia'. We find strong evidence for cryptic subdivision (three genetic clusters) that causes the Wahlund effect and differentiation among definitive hosts. After accounting for these cryptic groups, we see panmictic genetic structure among definitive hosts that is consistent with the 'high mixing in aquatic habitats' hypothesis. We see evidence for cotransmission of clones in all three clusters, but this level of clonal structure did not have a major impact in causing deviations from Hardy-Weinberg equilibrium, and only affected genetic differentiation among hosts in one cluster. A cursory examination of the data may have led to incorrect conclusions about nonrandom transmission. However, it is obvious in this system that there is more than meets the eye in relation to the actual make-up of parasite populations. In general, the methods we employ will be useful for elucidating hidden patterns in other organisms where cryptic structure may be common (e.g. those with limited morphology or complex life histories).  相似文献   

10.
Summary The genetic and plastic components of polyphagy were investigated in a population ofLymantria dispar, the gypsy moth. A simple genetic experiment assessed the expression of (1) genetic variability in life history traits within each of four environments, (2) genetic variability in diet breadth, expressed as a change in the ranks of family performance across hosts, and (3) homeostasis (equivalent performance by a family across hosts) versus phenotypic plasticity (variable performance by a family across hosts). Sibs from each of 14 families, randomly selected from a single population, were reared on four diets: two natural hosts — chestnut and red oak, and two synthetic hosts — a standard laboratory diet and a low-protein version of this diet. Average population performance, measured in terms of development time and pupal weight, was better on standard laboratory diet than on low-protein diet, and was equal on chestnut and red oak for pupal weight, but better on chestnut oak for development time. Average population performance provided no information about the genetic component of host use ability. The gypsy moth expressed genetic variation in development time within each host environment and in pupal weight within natural host environments. Phenotypic plasticity was expressed by a significant number of families in development time and pupal weight across synthetic hosts and, to a lesser extent, across natural hosts. It was only across natural hosts that genetic variation in diet breadth was expressed, and this was confined to females. Genetic variability in diet breadth may be maintained in this species as a consequence of the unpredictability of its food sources.  相似文献   

11.
For parasites that require multiple hosts to complete their development, genetic interplay with one host may impact parasite transmission and establishment in subsequent hosts. In this study, we used microsatellite loci to address whether the genetic background of snail intermediate hosts influences life-history traits and transmission patterns of dioecious trematode parasites in their definitive hosts. We performed experimental Schistosoma mansoni infections utilizing two allopatric populations of Biomphalaria glabrata snails and assessed intensities and sex ratios of adult parasites in mouse definitive hosts. Our results suggest that the genetic background of hosts at one point in a parasite’s life cycle can influence the intensities and sex ratios of worms in subsequent hosts.  相似文献   

12.
Biochemical differentiation in bile duct cestodes and their marsupial hosts   总被引:4,自引:0,他引:4  
Isozyme electrophoresis was used to assess possible cospeciation of parasites (cestodes of the Progamotaenia festiva complex) and their hosts (Australian diprotodont marsupials) and to compare the extent of interspecific genetic diversity of the parasites and their hosts. On the basis of morphology, there are three species in the complex, although electrophoresis revealed 14 distinct genetic types, most of which were host specific, although there were three cases of apparent host switching. The evolutionary relationships among the parasites were only partially concordant with those among the hosts. Moreover, the extent of electrophoretic diversity among the parasites was much higher than that among hosts.   相似文献   

13.
Trypanosoma cruzi is an evolutionarily ancient parasitic protozoan endemic to the Americas. Multiple genetic and phenotypic markers indicate that this parasite is highly diverse, with several divergent and discrete major genotypes reported. Infection multiclonality has been observed among numerous metazoan and unicellular endoparasitic species. However, few studies report the complexity of mixed infections within an individual host in any detail or consider their ecological and biological implications. Here we report extraordinary genetic diversity within single reservoir hosts of T. cruzi I using nine polymorphic microsatellite markers across 211 clones from eight mammals from three different sylvatic foci in South America. Forty-nine distinct multilocus genotypes were defined, with as many as 10 isolated from the same host. We discuss our data in the light of previous population genetic studies of this and related parasitic protozoa and contrast high levels of diversity within each host with the precarious nature of T. cruzi contaminative vectorial transmission. Finally, we propose that non-neutral processes could easily account for the diversity we observe and suggest a functional link with survival in the host.  相似文献   

14.
Orantes LC  Zhang W  Mian MA  Michel AP 《Heredity》2012,109(2):127-134
Heteroecious holocyclic aphids exhibit both sexual and asexual reproduction and alternate among primary and secondary hosts. Most of these aphids can feed on several related hosts, and invasions to new habitats may limit the number of suitable hosts. For example, the aphid specialist Aphis glycines survives only on the primary host buckthorn (Rhamnus spp.) and the secondary host soybean (Glycine max) in North America where it is invasive. Owing to this specialization and sparse primary host distribution, host colonization events could be localized and involve founder effects, impacting genetic diversity, population structure and adaptation. We characterized changes in the genetic diversity and structure across time among A. glycines populations. Populations were sampled from secondary hosts twice in the same geographical location: once after secondary colonization (early season), and again immediately before primary host colonization (late season). We tested for evidence of founder effects and genetic isolation in early season populations, and whether or not late-season dispersal restored genetic diversity and reduced fragmentation. A total of 24 single-nucleotide polymorphisms and 6 microsatellites were used for population genetic statistics. We found significantly lower levels of genotypic diversity and more genetic isolation among early season collections, indicating secondary host colonization occurred locally and involved founder effects. Pairwise F(ST) decreased from 0.046 to 0.017 in early and late collections, respectively, and while genetic relatedness significantly decreased with geographical distance in early season collections, no spatial structure was observed in late-season collections. Thus, late-season dispersal counteracts the secondary host colonization through homogenization and increases genetic diversity before primary host colonization.  相似文献   

15.
Staphylococcus aureus is one of the most important pathogens in humans and animals. In this study eighty strains were analyzed by RAPD-PCR to assess the genetic relationship between S. aureus isolates from bovine and human hosts. Results were compared with those obtained by biotyping. Fifty-two percent of the S. aureus isolates belonged to a host specific biotype (human, bovine and poultry). Bovine and human ecovars were the most prevalent. Dendrogram obtained by RAPD results showed that all the isolates clustered into eleven groups (A-K) at a relative genetic similarity of less than 30% when analyzed with the three primers. Group A clustered 95% of the human host isolates and the remaining groups (B-K) clustered the bovine host isolates. Principal coordinate analysis also showed that the isolates could be arbitrarily divided into two groups, bovine and human, by the second coordinate. Only 9 isolates (11%) were not clustered into these groups. The genetic diversity among the S. aureus isolates from bovine hosts is relatively low compared to that of isolates from human hosts. There were no statistically significant differences among isolated from bovine and human hosts. This study shows that RAPD-PCR assayed with three primers can be successfully applied to assess the genetic relationship of S. aureus isolates from different hosts.  相似文献   

16.
Life-cycle characteristics and habitat processes can potentially interact to determine gene flow and genetic structuring of parasitic species. In this comparative study, we analysed the genetic structure of two freshwater trematode species with different life histories using cytochrome c oxidase I gene (COI) sequences and examined the effect of a unidirectional river current on their genetic diversity at 10 sites along the river. We found moderate genetic structure consistent with an isolation-by-distance pattern among subpopulations of Coitocaecum parvum but not in Stegodexamene anguillae. These contrasting parasite population structures were consistent with the relative dispersal abilities of their most mobile hosts (i.e. their definitive hosts). Genetic diversity decreased, as a likely consequence of unidirectional river flow, with increasing distance upstream in C. parvum, which utilizes a definitive host with only restricted mobility. The absence of such a pattern in S. anguillae suggests that unidirectional river flow affects parasite species differently depending on the dispersal abilities of their most mobile host. In conclusion, genetic structure, genetic diversity loss and drift are stronger in parasites whose most mobile hosts have low dispersal abilities and small home ranges. An additional prediction can be made for parasites under unidirectional drift: those parasites that stay longer in their benthic intermediate host or have more than one benthic intermediate hosts would have relatively high local recruitment and hence increased retention of upstream genetic diversity.  相似文献   

17.
Most models of quasi-species evolution predict that populations will evolve to occupy areas of sequence space with the greatest concentration of neutral sequences, thus minimizing the deleterious mutation rate and creating mutationally 'robust' genomes. In contrast, empirical studies of the principal model of quasi-species evolution, RNA viruses, suggest that the effects of deleterious mutations are more severe than in similar DNA-based microbes. We demonstrate that populations divided into discrete patches connected by dispersal may favour genotypes where the deleterious effect of non-neutral mutations is maximized. This effect is especially strong in the absence of back mutation and when the amount of time spent in hosts prior to dispersal is intermediate. Our results indicate that RNA viruses that produce acute infections initiated by a small number of virions are expected to evolve fragile genetic architectures when compared with other RNA viruses.  相似文献   

18.
Trade-offs in host-plant use are thought to promote the evolution of host specificity. However, usually either positive or no genetic correlations have been found. Whereas factors enhancing variation in overall viability have been claimed to mask negative genetic correlations, alternative hypotheses emphasize the sequential changes in genetic correlation in the course of host-range evolution. In this study, the genetic architectures of performances on different hosts were compared in two populations of the herbivorous ladybird beetle, Epilachna pustulosa, using three host plants, one being normal for both, one novel for only one population, and the other novel for both populations. The genetic correlations between larval periods on normal hosts were significantly positive whereas those between normal and novel hosts were not different from zero. There was no evidence for reduced genetic variation on the normal host-plants. These results suggest that the host-range is not restricted by the antagonistic genetic associations among exploitation abilities on different plant species, but rather that selection of different host-plants may improve the coordination between genes responsible for the use of different plants.  相似文献   

19.
Theoretical studies have indicated that the population genetics of host-parasite interactions may be highly dynamic. with parasites perpetually adapting to common host genotypes and hosts evolving resistance to common parasite genotypes. The present study examined temporal variation in resistance of hosts and infectivity of parasites within three populations of Daphnia magna infected with the sterilizing bacterium Pasteuria ramosa. Parasite isolates and host clones were collected in each of two years (1997, 1998) from one population; in two other populations, hosts were collected from both years, but parasites from only the first year. We then performed infection experiments (separately for each population) that exposed hosts to parasites from the same year or made combinations involving hosts and parasites from different years. In two populations, patterns were consistent with the evolution of host resistance: either infectivity or the speed with which parasites sterilized hosts declined from 1997 to 1998. In another population, infectivity, virulence, and parasite spore production did not vary among host-year or parasite-year. For this population, we also detected strong within-population genetic variation for resistance. Thus, in this case, genetic variability for fitness-related traits apparently did not translate into evolutionary change. We discuss a number of reasons why genetic change may not occur as expected in parasite-host systems, including negative correlations between resistance and other traits, gene flow, or that the dynamic process itself may obscure the detection of gene frequency changes.  相似文献   

20.
In this paper we develop a novel discrete, individual-based mathematical model to investigate the effect of parasitoid foraging strategies on the spatial and temporal dynamics of host-parasitoid systems. The model is used to compare na?ve or random search strategies with search strategies that depend on experience and sensitivity to semiochemicals in the environment. It focuses on simple mechanistic interactions between individual hosts, parasitoids, and an underlying field of a volatile semiochemical (emitted by the hosts during feeding) which acts as a chemoattractant for the parasitoids. The model addresses movement at different spatial scales, where scale of movement also depends on the internal state of an individual. Individual interactions between hosts and parasitoids are modelled at a discrete (micro-scale) level using probabilistic rules. The resulting within-generation dynamics produced by these interactions are then used to generate the population levels for successive generations. The model simulations examine the effect of various key parameters of the model on (i) the spatio-temporal patterns of hosts and parasitoids within generations; (ii) the population levels of the hosts and parasitoids between generations. Key results of the model simulations show that the following model parameters have an important effect on either the development of patchiness within generations or the stability/instability of the population levels between generations: (i) the rate of diffusion of the kairomones; (ii) the specific search strategy adopted by the parasitoids; (iii) the rate of host increase between successive generations. Finally, evolutionary aspects concerning competition between several parasitoid subpopulations adopting different search strategies are also examined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号