首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
1. The effect of two series of hydrophilic and hydrophobic polymers on the stability, conductivity and permeability towards water and leucine of black lipid membranes and liposomes is reported. 2. The changes in properties of these membrane preparations is related to bulk phase viscosity and dielectric measurements together with monolayer studies. 3. The hydrophobic polymers dramatically increase membrane stability, had no effect on conductivity, but increased the permeability coefficient of leucine. 4. The hydrophilic polymers produced minor, but significant changes to membrane properties. 5. It is concluded that not only basic polymers but also neutral and acidic macromolecules can interact strongly with lipid membranes.  相似文献   

4.
5.
By the addition of n-butyl bromide to a 1:19 copolymer of 4-vinylpyridine and styrene, water-insoluble, strong polyelectrolytes can be prepared. The addition of a hydrocarbon plasticizer permits the casting of flexible films in which large polycations are immobilized but in which bromide ions (or other small anions) are free to move. Electrical measurements on these membranes showed that they could be represented by a complex admittance: an electrolytic conductance in parallel with a pure A. C. impedance. The latter gives a circular arc when real component is plotted against imaginary. These synthetic membranes thus resemble in their electrical behavior that found by Cole for a variety of biological membranes.  相似文献   

6.
Summary The equations of membrane potential developed by Kobatake and coworkers have been applied to the literature data on the resting membrane potential of the crayfish andMyxicola axons to derive values for the surface charge density present on the axon membranes. Some shortcomings of the method are briefly discussed. The value for the surface charge density derived for the squid axon membrane agreed with a similar value derived from measurements of shifts in Na and/or potassium conductance-voltage relations following changes in the concentration of calcium in the solutions bathing the axons.  相似文献   

7.
Fluorescent probe techniques were used to evaluate the effect of propoxycaine.HCl on the physical properties (transbilayer asymmetric lateral and rotational mobilities, annular lipid fluidity and protein distribution) of synaptosomal plasma membrane vesicles (SPMVs) isolated from bovine cerebral cortex. An experimental procedure was used based on selective quenching of both 1,3-di(1-pyrenyl)propane (Py-3-Py) and 1,6-diphenyl-1,3,5-hexatriene (DPH) by trinitrophenyl groups, and radiationless energy transfer (RET) from the tryptophans of membrane proteins to Py-3-Py. Propoxycaine.HCl increased the bulk lateral and rotational mobilities, and annular lipid fluidity in SPMVs lipid bilayers, and had a greater fluidizing effect on the inner monolayer than that of the outer monolayer. The magnitude of increasing effect on annular lipid fluidity in SPMVs lipid bilayer induced by propoxycaine.HCl was significantly far greater than magnitude of increasing effect of the drug on the lateral and rotational mobilities of SPMVs lipid bilayer. It also caused membrane proteins to cluster. These effects of propoxycaine.HCl on neuronal membranes may be responsible for some, though not all, of the local anesthetic actions of propoxycaine.HCl.  相似文献   

8.
9.
10.
11.
Summary The cyclic polyether XXXII, a neutral, lipid soluble molecule, produces large increases in the conductance of bilayer membranes formed from a variety of lipids. The conductance increases linearly with the concentration of alkali metal cation but with the square, and at higher concentrations the cube, of the polyether concentration. This implies that two or three polyether molecules combine with a single cation to carry it across the membrane. In the presence of XXXII the bilayer is permeable solely to cations and the membrane potential is described by an equation of the Goldman-Hodgkin-Katz type. The permeability ratios determined from potential measurements are independent of salt concentration, decrease in the sequence Cs>Rb>K>NH4>Na>Li(1.0,0.25, 0.15, 0.075, 0.007, 0.0013) and are equal to the conductance ratios at low (e.g. 10–3 m) salt concentration. At higher salt concentrations, the permeability and conductance ratios are not equal and maxima in the conductancevs. salt concentration curves are observed. Both these phenomena are postulated to be caused by the formation of relatively impermeant 11 polyether cation complexes in the aqueous phase. The 11 aqueous association constants deduced from bilayer measurements decrease in the sequence K>Rb>Na>NH4>Cs>Li (120, 34, 26, 19, 12, 4 liters per mole) and agree quantitatively with the literature values for the more water soluble polyether XXXI, which lacks only thet-butyl groups of XXXII.  相似文献   

12.
Summary This paper, the last in a series of three, characterizes the electrical properties of phospholipid bilayer membranes exposed to aqueous solutions containing nonactin, monactin, dinactin, and trinactin and Li+, Na+, K+, Rb+, Cs+, and NH 4 + ions. Not only are both the membrane resistance at zero current and the membrane potential at zero current found to depend on the aqueous concentrations of antibiotic and ions in the manner expected from the theory of the first paper, but also these measurements are demonstrated to be related to each other in the manner required by this theory for neutral carriers. To verify that these antibiotics indeed are free to move as carriers of cations, cholesterol was added to the lipid to increase the viscosity of the interior of the membrane. Cholesterol decreased by several orders of magnitude the ability of the macrotetralide antibiotics to lower the membrane resistance; nevertheless, the permeability ratios and conductance ratios remained exactly the same as in cholesterolfree membranes. These findings are expected for the carrier mechanism postulated in the first paper and serve to verify it. Lastly, the observed effects of nonactin, monactin, dinactin, and trinactin on bilayers are compared with those predicted in the preceding paper from the salt-extraction equilibrium constants measured there; and a close agreement is found. These results show that the theory of the first paper satisfactorily predicts the effects of the macrotetralide actin antibiotics on the electrical properties of phospholipid bilayer membranes, using only the thermodynamic constants measured in the second paper. It therefore seems reasonable to conclude that these antibiotics produce their characteristic effects on membranes by solubilizing cations therein as mobile positively charged complexes.This work was carried out largely at the University of Chicago with the support of U. S. Public Health Service Grant GM 14404-02/03 and of National Science Foundation Grant GB 6685.  相似文献   

13.
The effect of ethanol on the physical properties of neuronal membranes   总被引:1,自引:0,他引:1  
Intramolecular excimer formation of 1,3-di(1-pyrenyl) propane(Py-3-Py) and fluorescence polarization of 1,6-diphenyl-1,3,5-hexatriene (DPH) were used to evaluate the effect of ethanol on the rate and range of lateral and rotational mobilities of bulk bilayer structures of synaptosomal plasma membrane vesicles (SPMVs) from the bovine cerebral cortex. Ethanol increased the excimer to monomer fluorescence intensity ratio (I'/I) of Py-3-Py in the SPMVs. Selective quenching of both DPH and Py-3-Py by trinitrophenyl groups was used to examine the range of transbilayer asymmetric rotational mobility and the rate and range of transbilayer asymmetric lateral mobility of SPMVs. Ethanol increased the rotational and lateral mobility of the outer monolayer more than of the inner one. Thus ethanol has a selective fluidizing effect within the transbilayer domains of the SPMVs. Radiationless energy transfer from the tryptophans of membrane proteins to Py-3-Py was used to examine both the effect of ethanol on annular lipid fluidity and protein distribution in the SPMVs. Ethanol increased annular lipid fluidity and also caused membrane proteins to cluster. These effects on neuronal membranes may be responsible for some, though not all, of the general anesthetic actions of ethanol.  相似文献   

14.
15.
Zeta potential and discrete vs. uniform surface charges.   总被引:4,自引:0,他引:4       下载免费PDF全文
  相似文献   

16.
The adsorption to bilayer membranes of the thiadicarbocyanine dyes, diSCn(5), has been studied as a function of the membrane's surface-charge density, the aqueous ionic strength, and the length (n) of the hydrocarbon side chain of the dye. "Probe" measurements in planar bilayers, microelectrophoresis of liposomes, and measurement of changes in dye absorbance and fluorescence in liposomes were used to study dye adsorption to membranes. These measurements indicated that the membrane:water partition coefficient for the dye monomer increases with the length of the hydrocarbon side chain. However, the formation of large aggregates in the aqueous phase also increases with increasing chain length and ionic strength so that the actual dye adsorbing to the membrane goes through a maximum at high but not at low ionic strengths. More dye adsorbs to negatively charged than neutral membranes. Membrane-bound dye spectra were easily resolved in negatively charged liposomes where it was observed that these dyes could exist as monomers, dimers, and large aggregates. For diSC1(5) a spectral peak was observed at low but not high ionic strengths (i.e. the conditions in which this dye appears to form voltage-gated channels) corresponding to small aggregates which appeared to adsorb to the membrane. Finally, the adsorption of these dyes to membranes results in more positive electrostatic potentials composed primarily of dye-induced "boundary" potentials and somewhat less of "double-layer" potentials.  相似文献   

17.
The voltage-dependent activity of prestin, the outer hair cell (OHC) motor protein essential for its electromotility, enhances the mammalian inner ear's auditory sensitivity. We investigated the effect of prestin's activity on the plasma membrane's (PM) susceptibility to electroporation (EP) via cell-attached patch-clamping. Guinea pig OHCs, TSA201 cells, and prestin-transfected TSA cells were subjected to incremental 50 mus and/or 50 ms voltage pulse trains, or ramps, at rates from 10 V/s to 1 kV/s, to a maximum transmembrane potential of +/-1000 mV. EP was determined by an increase in capacitance to whole-cell levels. OHCs were probed at the prestin-rich lateral PM or prestin-devoid basal portion; TSA cells were patched at random points. OHCs were consistently electroporated with 50 ms pulses, with significant resistance to depolarizing pulses. Although EP rarely occurred with 50 mus pulses, prior stimulation with this protocol had a significant effect on the sensitivity to EP with 50 ms pulses, regardless of polarity or PM domain. Consistent with these results, resistance to EP with depolarizing 10-V/s ramps was also found. Our findings with TSA cells were comparable, showing resistance to EP with both depolarizing 50-ms pulses and 10 V/s ramps. We conclude prestin significantly affects susceptibility to EP, possibly via known biophysical influences on specific membrane capacitance and/or membrane stiffness.  相似文献   

18.
19.
At low concentrations (25–100 μM) methylmercury chloride caused a steady increase in the threshold for excitation and on eventual block of action potentials without changing the resting membrane potential in squid giant axons. In the axons exposed to 25 μM methylmercury chloride, peak transient and steady-state conductances were decreased by 58.8 ± 5.1% and 35.9 ± 4.3% (mean ± SEM, 4 axons), respectively and leakage conductance increased to about five times of the control value. Higher concentrations of methylmercury chloride decreased the resting membrane potential. A concentration of 0.5 mM depolarizing the nerve membrane by 16 ± 2 mV (mean ± SEM, 3 axons) in 40 minutes. These changes in ionic conductances and membrane potential were irreversible on washing the axon with drug-free sea water.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号