首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Macromolecular composition of bacteria   总被引:6,自引:0,他引:6  
Equations are presented that describe the macromolecular composition in exponential bacterial cultures as functions of five parameters: doubling time of the culture (τ), protein per origin of replication (P0), chromosome replication time (C-period), peptide chain elongation rate (cp), and the time between termination of replication and cell division (D-period). Implicit in the value for some of these parameters is a specific macromolecular control system: the control of the growth rate (τ), the timing of initiation of rounds of chromosome replication (P0), and the regulation of cell division (D). The utility of these relations is illustrated by using updated measurements of the macromolecular composition of E. coli B/r to calculate values for the fundamental parameters and to predict the composition of a mutant which has a defect in the control of DNA replication. Furthermore, the meaning of several often-cited physiological parameters (RNA/protein, RNA/cell and RNA/genome) is examined. The relations presented here show that these parameters and their variation with growth rate are not directly relevant to arguments about control of ribosome synthesis or culture growth.  相似文献   

2.
Extensive cell division after synchronization ofEscherichia coli 15 TAU by arginine and uracil starvation occurs only when DNA synthesis is permitted to proceed by at least a short pulse of thymine applied between 30 and 60 min after transfer of synchronized culture to thymine-free medium with arginine and uracil. The time schedule of synchronized cell division in dependence on the schedule of intervals of DNA synthesis and inhibition of DNA synthesis was determined. The termination of replication cycles which were not completed to the very end during arginine and uracil starvation seems to be the decisive event for subsequent cell division after synchronization.  相似文献   

3.
The relationship between the DNA content of an average bacterial cell in an exponential culture, the velocity of chromosome rePlication (C), the time between replication termination and cell division (D), and the doubling time (τ), originally derived by Cooper and Helmstetter, is shown to be independent of two assumptions made by those authors. That is, it is not necessary to assume an ideal age distribution of cells in an exponential culture, and replication need not initiate synchronously at every DNA origin sequence within the cell. This implies that the relationship has a more general validity than has been previously supposed, and that agreement of observations on exponential cultures with the Cooper-Helmstetter theory cannot be taken to prove the assumptions on which that theory was originally based.  相似文献   

4.
Cell division and DNA synthesis were measured in synchronous cultures of E. coll B/r growing in glucose minimal medium at 37 °. The kinetic curves were analysed in order to find the variability of replication initiation, termination, and cell division events during the cell cycle. It is inferred that under the conditions used, cells begin to divide 17 min (D0 = minimum D-period) after each termination of chromosome replication with a constant probability per unit of time (half-life = 4·5–6 min). This randomness produces an asymmetric frequency distribution of D-periods, similar but mirror-symmetric frequency distributions of initiation and termination periods, a symmetric, non-Gaussian distribution of interdivision intervals, and complex kinetic changes in the rate of DNA synthesis as a function of cell age. The results suggest that replication and division are precisely controlled with respect to mass accumulation, and the apparent variability of cell cycle events would only result from the use of the time of cell separation as a reference point for the definition of cell age rather than initiation or termination of replication.  相似文献   

5.
Summary Values of the D period, between termination of chromosome replication and cell division, were determined from measurements of residual cell division after exposure of exponential phase cultures of Escherichia coli B/r and K12 and of Salmonella typhimurium to chloramphenicol. The results obtained by this method were compared with earlier results for E. coli B/r obtained from measurements of DNA content per cell and were found to be almost identical. For each, values of the D period were independent of growth rate, and the average value of D=26.1±1.2 min obtained by residual division is in good agreement with the value of 25 min obtained earlier. These results indicate that the method of residual division provides a good measure of the duration of the D period. Values of D were also independent of growth rate for each of the other strains.This work supported by the U.S. Atomic Energy Commission.  相似文献   

6.
The relationship between chromosome replication and cell division was investigated in a thymineless mutant of Escherichia coli B/r. Examination of the changes in average cell mass and DNA content of exponential cultures resulting from changes in the thymine concentration in the growth medium suggested that as the replication time (C) is increased there is a decrease in the period between termination of a round of replication and the subsequent cell division (D). Observations on the pattern of DNA synthesis during the division cycle were consistent with this relationship. Nevertheless, the kinetics of transition of exponential cultures moving between steady states of growth with differing replication velocities provided evidence to support the view that the time of cell division is determined by termination of rounds of replication under steady-state conditions.  相似文献   

7.
A method using 5-bromouracil photolysis induction with 313 nm radiation was employed to estimate the variation in the period between successive rounds of DNA replication in rapidly growing cultures of Escherichia coliBrTT The coefficient of variation of this period was 9.3%, which is significantly less than the corresponding value of about 20% reported for variation in the cell interdivision period. Thus chromosome replication is much more tightly controlled than is cell division. The reduced variability of the DNA replication cycle indicates that the period (D) between termination of a round of DNA replication and cell division and the following period ending in initiation of the next round of DNA replication (B) are riot independent of each other but tend to have compensatory variations. The results suggest that other events in the cell cycle are related more closely to DNA replication rather than to the much less regular event of cell division.  相似文献   

8.
A method of computer analysis was developed to evaluate the kinetic changes in the rate of cell division in non-synchronous cultures of E. coli resulting from changes in the velocity or initiation of chromosome replication. This method takes into account that the cell division pathway in E. coli includes a reaction of indeterminate length described by a probability function that applies to the cell population. The analysis yields a hypothetical cell number kinetics as it would be observed if the stochastic element in the division pathway were absent. Since this derived cell number curve responds to experimentally induced perturbations of replication at defined times whereas the actual cell number curve reflects these perturbations only in a blurred fashion, replication and division events can be precisely correlated with this method. The method was applied to the evaluation of thymine starvation experiments with two Thy- derivatives of E. coli B/r; one of the strains has a mutationally altered (60% increased) cell mass at initiation of chromosome replication. In both strains, the stochastic phase of the cell cycle had the same half-life value of 10 min and began 18 min after each termination of replication. This suggests that the time of cell division is linked to replication, not to cell mass or length. This interpretation is supported by results of experiments in which the rate of cell growth was altered at the time of thymine starvation.  相似文献   

9.
It is generally accepted that during fast growth of Escherichia coli, the time (D) between the end of a round of DNA replication and cell division is constant. This concept is not consistent with the fact that average cell mass of a culture is an exponential function of the growth rate, if it is also accepted that average cell mass per origin of DNA replication (Mi) changes with growth rate and negative exponential cell age distribution is taken into account. Data obtained from cell composition analysis of E. coli OV-2 have shown that not only (Mi) but also D varied with growth rate at generation times () between 54 and 30 min. E. coli OV-2 is a thymine auxotroph in which the replication time (C) can be lengthened, without inducing changes in , by growth with limiting amounts of thymine. This property has been used to study the relationship between cell size and division from cell composition measurements during growth with different amounts of thymine. When C increased, average cell mass at the end of a round of DNA replication also increased while D decreased, but only the time lapse (d) between the end of a replication round and cell constriction initiation appeared to be affected because the constriction period remained fairly constant. We propose that the rate at which cells proceed to constriction initiation from the end of replication is regulated by cell mass at this event, big cells having shorter d times than small cells.Abbreviations OD450 and OD630 Optical density at a given wavelength in nm Dedicated to Dr. John Ingraham to honor him for his many contributions to Science  相似文献   

10.
Average cell mass is shown to be inversely related to the concentration of thymine in the growth medium of a thy strain of Escherichia coli. The kinetics of the transition from one steady-state average cell mass to another was followed in an attempt to determine the relationship between the chromosome replication time and the time between completion of a round of chromosome replication and the subsequent cell division. Differences in average cell mass are shown to be associated with similar differences in average cell volume. Changes in volume associated with changes in thymine concentration are shown to be due primarily to differences in the width of cells. It is proposed that extension in length of the cell envelope occurs at a linear rate which is proportional to the growth rate and which doubles at the time of termination of rounds of replication. Changes in volume not associated with a change in growth rate are therefore accommodated by a change in cell width. Conditions are described under which average cell mass can continue to increase in successive generations and no steady-state average cell mass is achieved.  相似文献   

11.
Unlike bacteria such as Escherichia coli and Bacillus subtilis, several species of freshwater cyanobacteria are known to contain multiple chromosomal copies per cell, at all stages of their cell cycle. We have characterized the replication of multi-copy chromosomes in the cyanobacterium Synechococcus elongatus PCC 7942 (hereafter Synechococcus 7942). In Synechococcus 7942, the replication of multi-copy chromosome is asynchronous, not only among cells but also among multi-copy chromosomes. This suggests that DNA replication is not tightly coupled to cell division in Synechococcus 7942. To address this hypothesis, we analysed the relationship between DNA replication and cell doubling at various growth phases of Synechococcus 7942 cell culture. Three distinct growth phases were characterised in Synechococcus 7942 batch culture: lag phase, exponential phase, and arithmetic (linear) phase. The chromosomal copy number was significantly higher during the lag phase than during the exponential and linear phases. Likewise, DNA replication activity was higher in the lag phase cells than in the exponential and linear phase cells, and the lag phase cells were more sensitive to nalidixic acid, a DNA gyrase inhibitor, than cells in other growth phases. To elucidate physiological differences in Synechococcus 7942 during the lag phase, we analysed the metabolome at each growth phase. In addition, we assessed the accumulation of central carbon metabolites, amino acids, and DNA precursors at each phase. The results of these analyses suggest that Synechococcus 7942 cells prepare for cell division during the lag phase by initiating intensive chromosomal DNA replication and accumulating metabolites necessary for the subsequent cell division and elongation steps that occur during the exponential growth and linear phases.  相似文献   

12.
In cultures of Escherichia coli 15 (thymine-, leucine-) which were incubated at high hydrostatic pressures, cell division occurred only at pressures below 430 atm but in a somewhat synchronous fashion at around 250 atm. The rate of leucine-14C incorporation into a macromolecular fraction of the cells diminished to a zero value at about 580 atm and that of uracil-14C incorporation to a zero value at about 770 atm. The rate of thymine-14C incorporation at pressures around 330 atm was that to be expected with a culture in which DNA synthesis is somewhat synchronous. At pressures above 500 atm, thymine-14C was incorporated only over the initial part of the pressure incubation and further incorporation under pressure was not observed no matter how long the duration of the incubation. We present evidence along several lines that the thymine incorporation kinetics reflect an effect of pressure on a locus at the origin (or termination) of a replication of the bacterial chromosome. The recovery of cell division and of the incorporation rates upon release of pressure were found to depend on the magnitude of the pressure and the duration of the pressure incubation.  相似文献   

13.
Thymine deprivation in thyA mutant E. coli causes thymineless death (TLD) and is the mode of action of popular antibacterial and anticancer drugs, yet the mechanisms of TLD are still unclear. TLD comprises three defined phases: resistance, rapid exponential death (RED) and survival, with the nature of the resistance phase and of the transition to the RED phase holding key to TLD pathology. We propose that a limited source of endogenous thymine maintains replication forks through the resistance phase. When this source ends, forks undergo futile break-repair cycle during the RED phase, eventually rendering the chromosome non-functional. Two obvious sources of the endogenous thymine are degradation of broken chromosomal DNA and recruitment of thymine from stable RNA. However, mutants that cannot degrade broken chromosomal DNA or lack ribo-thymine, instead of shortening the resistance phase, deepen the RED phase, meaning that only a small fraction of T-starved cells tap into these sources. Interestingly, the substantial chromosomal DNA accumulation during the resistance phase is negated during the RED phase, suggesting futile cycle of incorporation and excision of wrong nucleotides. We tested incorporation of dU or rU, finding some evidence for both, but DNA-dU incorporation accelerates TLD only when intracellular [dUTP] is increased by the dut mutation. In the dut ung mutant, with increased DNA-dU incorporation and no DNA-dU excision, replication is in fact rescued even without dT, but TLD still occurs, suggesting different mechanisms. Finally, we found that continuous DNA synthesis during thymine starvation makes chromosomal DNA increasingly single-stranded, and even the dut ung defect does not completely block this ss-gap accumulation. We propose that instability of single-strand gaps underlies the pathology of thymine starvation.  相似文献   

14.
A paper pile filtration technique was used to obtain synchronously dividing populations of E. coli strains B and B/r from cultures in the exponential growth phase. Three generations of highly phased cell division were obtained by rapid pressure filtration which selected approximately 1 per cent of the exponentially growing culture. The sensitivity of E. coli strain B to x-ray and UV inactivation as a function of the cell division cycle was determined on synchronous populations. E. coli strain B showed a sharp decrease in sensitivity to inactivation by both radiations in the middle of the division cycle, and a further decrease near the end of the cycle. The sensitivity of E. coli strain B/r to x-irradiation was also investigated. Only the mid-cycle decrease in sensitivity was found during the division cycle of this strain. It was concluded that the repetition of the observed sensitivity patterns in both strains through the first three cycles after synchronization indicates that the same basic sensitivity patterns are probably also present in the individual cells of an exponential phase culture.  相似文献   

15.
Synchronous cultures of Escherichia coli strain B/r were used to investigate the relationship between deoxyribonucleic acid (DNA) replication and cell division. We have determined that terminal steps in division can proceed in the absence of DNA synthesis. Inhibition of DNA replication with nalidixic acid prior to the start of a new round of replication does not stop cell division, which indicates that the start of the round is not essential in triggering cell division. Inhibition of DNA replication at any time prior to the termination of a round of replication completely blocks cell division, which suggests that there may be a link between the end of the replication cycle and the commitment of the cell to divide. Studies that use a temperature-sensitive mutant which is unable to synthesize DNA at the nonpermissive temperature are in complete agreement with those that use nalidixic acid to inhibit DNA synthesis. This adds support to the idea that the treatments employed limit their action to DNA synthesis. Investigation of minicell production indicates that the production of minicells is blocked when DNA synthesis is inhibited with nalidixic acid. Although nuclear segregation is not required for cell division, DNA synthesis is still required to trigger division. The evidence presented suggests strongly that (i) DNA synthesis is essential for cell division, (ii) the end of a round of replication triggers cell division, and (iii) there is considerable time lapse (one-half generation) between the completion of a round of DNA replication and physical separation of the cells.  相似文献   

16.
Germinating spores of the temperature-sensitive DNA initiation mutant of Bacillus subtilis, TsB134, were allowed to undergo a single round of replication, at a high and low level of thymine, by shifting to the non-permissive temperature shortly after its initiation. The rate of replication at the low thymine level was approximately half that at the other, but there was no significant difference in the rate of cell mass increase. The round of replication in each case was blocked at various stages by 6-(p-hydroxyphenylazo)uracil and outgrown cells examined at a later time for the frequency of central division septation. It was found that the same average amount of replication (fraction of the round) was required in both cases for premature division septation to proceed.  相似文献   

17.
During exponential growth some cells of E. coli undergo senescence mediated by asymmetric segregation of damaged components, particularly protein aggregates. We showed previously that functional cell division asymmetry in E. coli was responsive to the nutritional environment. Short term exposure as well as long term selection in low calorie environments led to greater cell division symmetry and decreased frequency of senescent cells as compared to high calorie environments. We show here that long term selection in low nutrient environment decreased protein aggregation as revealed by fluorescence microscopy and proportion of insoluble proteins. Across selection lines protein aggregation was correlated significantly positively with the RNA content, presumably indicating metabolic rate. This suggests that the effects of caloric restriction on cell division symmetry and aging in E. coli may work via altered protein handling mechanisms. The demonstrable effects of long term selection on protein aggregation suggest that protein aggregation is an evolvable phenomenon rather than being a passive inevitable process. The aggregated proteins progressively disappeared on facing starvation indicating degradation and recycling demonstrating that protein aggregation is a reversible process in E. coli.  相似文献   

18.
Spores of the temperature-sensitive DNA initiation mutants of Bacillus subtilis 168, TsB134 and dna-1(Ts), were allowed to germinate at 34 °C in the presence of [3H]thymine until after the start of the first round of replication. The [3H]-thymine was then replaced by non-radioactive thymine and the outgrowing spores transferred to a higher temperature (49 °C for TsB134, 45 °C for dna-1(Ts)) which had been shown to block completely the initiation of a second round of replication. Autoradiography of the colonies which developed under such conditions showed the majority to contain two grain clusters. In most cases the clusters were separated by a division septum. Thus, it appears that the temperature sensitive activity of the dna gene product in each case is not needed for either replication through the termination region of the chromosome or the ensuing segregation of the daughters.Further studies of the septation process showed that, when replication of the first round after germination was allowed to proceed to termination at the non-permissive temperature, a centrally located septum appeared readily in both mutants. On the other hand, at levels of thymine which prevented progress of the round to termination within the time of the experiment, central septation did not occur in colonies of the same length. Rather, asymmetrical septation occurred at a relatively low frequency. It appears that the formation of the central septum is coupled to termination and reflects normal division septation at the non-permissive temperature. It is concluded that in neither mutant does such septation require the action of the temperature-sensitive dna gene product at a late stage in the overall cycle.  相似文献   

19.
20.
The effects of inhibition of protein and RNA synthesis on initiation of chromosome replication in Escherichia coliBr were determined by measuring rates of DNA synthesis during the division cycle before and after addition of chloramphenicol and rifampicin. The ability of cells to initiate a round of replication depended upon the pattern of chromosome replication during the division cycle. Initiation in the presence of chloramphenicol (200 μ/ml) and rifampicin (100 gmg/ml) was observed only in slowly growing cells which normally initiated a new round between the end of the previous round and the subsequent division (i.e. in the D period of the division cycle). The cells that initiated were in the D period at the time of addition of the drugs. Rapidly growing cells which normally initiated before the D period and slowly growing cells which normally initiated after the D period did not initiate in the presence of the drugs. The contrasting effects of the drugs in cells possessing different chromosome replication patterns, and the coupling between septum-crosswall formation (the D period) and initiation suggest that the timing of initiation of chromosome replication in E. coli is controlled by the cell envelope.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号