首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
A series of thin-layer Chromatographic (TLC) systems were employed to study the effects of dibutyryl cyclic AMP (db-cAMP) on the metabolism of 3H-tyrosine in neuroblastoma cultures. The neuroblastoma monolayer cultures incubated with radiolabelled tyrosine synthesized di-hydroxyphenylalanine (DOPA), dopamine (DA), and norepinephrine (NE), in confirmation of previous reports identifying these compounds in neuroblastoma cultures. In addition, we found evidence suggesting the presence of metabolites of DA and NE, that is, homovanillic acid (HVA) and 3-methoxy-4-hydroxyphenylglycol (MHPG) together with 3-methoxy-4-hydroxymandelic acid (VMA). When these cultures were grown in the presence of db-cAMP for 3 days, tyrosine uptake was increased with a proportional increase in tyrosine hydroxylation. This effect persisted in the absence of db-cAMP, but it was not apparent with only 90 min exposure to db-cAMP. Suspension cultures showed the same baseline level of tyrosine uptake as did monolayer cultures, but the uptake in suspension cultures failed to increase with db-cAMP treatment. It is suggested that the db-cAMP induced differentiation of the neuroblastoma cells in monolayer cultures was associated with induction of a tyrosine uptake system.  相似文献   

2.
The total 24 hour urinary outputs of the catecholamines norepinephrine (NE), epinephrine (E), dopamine (DA) and the DA metabolite homovanillic acid (HVA) were measured in hypertensive fawn-hooded rats and compared to the ancestral strain of normotensive Wistar rats. The hypertensive fawn-hooded rats demonstrated significantly higher urinary outputs of the catecholamines NE and DA, and of the DA metabolite HVA. Following treatment with the antihypertensive, debrisoquin sulfate, the blood pressure of the fawn-hooded rats decreased until it approached the levels observed in normotensive Wistar rats. By inhibiting sympathetic nervous activity and monoamine oxidase, the debrisoquin treatment significantly decreased the output of DA, NE and HVA but not E. The data suggest the fawn-hooded rat is a model of neurogenic hypertension which is characterized by an increased sympathetic output.  相似文献   

3.
In conscious animals, handling and immobilization increase plasma levels of the catecholamines norepinephrine (NE) and epinephrine (EPI). This study examined plasma concentrations of endogenous compounds related to catecholamine synthesis and metabolism during and after exposure to these stressors in conscious rats. Plasma levels of 3,4-dihydroxyphenylalanine (DOPA), NE, EPI, and dopamine (DA), the deaminated catechol metabolites 3,4-dihydroxyphenylglycol (DHPG), and 3,4-dihydroxyphenylacetic acid (DOPAC), and their O-methylated derivatives methoxyhydroxyphenylglycol (MHPG) and homovanillic acid (HVA) were measured using liquid chromatography with electrochemical detection at 1, 3, 5, 20, 60, and 120 min of immobilization. By 1 min of immobilization, plasma NE and EPI levels had already reached peak values, and plasma levels of DOPA, DHPG, DOPAC, and MHPG were increased significantly from baseline, whereas plasma DA and HVA levels were unchanged. During the remainder of the immobilization period, the increased levels of DOPA, NE, and EPI were maintained, whereas levels of the metabolites progressively increased. In animals immobilized briefly (5 min), elevated concentrations of the metabolites persisted after release from the restraint, whereas DOPA and catecholamine levels returned to baseline. Gentle handling for 1 min also significantly increased plasma levels of DOPA, NE, EPI, and the NE metabolites DHPG and MHPG, without increasing levels of DA or HVA. The results show that in conscious rats, immobilization or even gentle handling rapidly increases plasma levels of catecholamines, the catecholamine precursor DOPA, and metabolites of NE and DA, indicating rapid increases in the synthesis, release, reuptake, and metabolism of catecholamines.  相似文献   

4.
Norepinephrine (NE), dopamine (DA) and its metabolites homovanillic acid (HVA) and 3, 4-dihydroxyphenylacetic acid (DOPAC) were analyzed in human ventral spinal nerve roots and peripheral nerves by gas chromatography-mass spectrometry. High concentrations of DA and HVA were found in almost all tissues analyzed. The concentration of DA and HVA was usually higher than in blood. In vagus nerve and in some spinal nerve roots, the concentration of DA was higher than that of NE, while in other nerves (splanchnic nerve and genitofemoral nerve) DA represented 20 or more percent of NE. The concentration of HVA was usually higher than the concentration of DA indicating that a large portion of DA in peripheral nerves is catabolized and not converted to NE. High concentrations of DA and HVA in human peripheral nerves indicate that a wide distribution of peripheral DA-containing nerves might exist. The distribution of DA in different nerves suggests an association of potential DA-containing nerves with the autonomic nervous system.  相似文献   

5.
At high doses quipazine, a serotonergic agonist, induces a dose-dependent reduction of homovanillic acid (HVA) and of dihydroxyphenylacetic acid (DOPAC) levels in rat striatum, and reduces the conversion of tyrosine into dopamine. These effects are not mediated by a serotonergic-dopaminergic interaction as they are not antagonized by pretreatment with the serotonin antagonist methergoline. Neither are they caused by direct action on dopamine receptors as the drug does not antagonize the increase in HVA induced by haloperidol. 3-methoxytyramine (3MT), a DA metabolite which is the expression of DA present in the synaptic cleft, is high after quipazine treatment, but this is not because of monoamine oxidase inhibition. The increase in 3MT is already evident shortly after quipazine administration, while the effect on HVA and DOPAC levels appears later. The different effects of quipazine on DA metabolites and the temporal sequence of their appearance suggest that the lowered levels of acidic metabolites are an index of reduced DA turnover secondary to the increase in DA at the receptor sites caused by quipazine.  相似文献   

6.
为探讨贯叶连翘对慢性应激大鼠生长和脑单胺类神经递质的影响,用15只大鼠设置对照组、应激组和贯叶连翘组3组实验。应激组和贯叶连翘组均进行7天的应激刺激后,贯叶连翘组灌胃贯叶连翘10d。实验结束后,取3组大鼠的脑组织,用高效液相色谱法测定高香草酸(HVA)、去甲肾上腺素(NE)、多巴胺(DA)和5-羟色胺(5-HT)的含量。结果表明,应激组大鼠日增重明显低于对照组;而贯叶连翘组大鼠的日增重明显高于应激组。应激组大鼠海马、纹状体和前额叶中的HVA、NE、DA和5-HT与对照组间均无显著差异。贯叶连翘组大鼠纹状体中的DA含量明显高于应激组;而前额叶中的DA则明显低于应激组。因此,贯叶连翘对慢性应激引起的大鼠生长受抑有缓解作用,对其脑内单胺类神经递质有部分调节作用。  相似文献   

7.
张峰  李发曾 《动物学研究》2006,27(6):621-625
为探讨合欢花对慢性应激大鼠生长和脑单胺类神经递质的影响,采用15只大鼠,设置了对照组、应激组和合欢花组3组实验。应激组和合欢花组均接受7天的应激刺激,之后合欢花组再灌胃合欢花10天。实验结束后,取3组大鼠的脑组织,用高效液相色谱法测定高香草酸(HVA)、去甲肾上腺素(NE)、多巴胺(DA)和5-羟色胺(5-HT)的含量。结果表明,应激组大鼠日增重显著低于对照组(P=0.011);而合欢花组大鼠的日增重极显著高于应激组(P=0.002)。应激组大鼠海马、纹状体和前额叶中的HVA含量与对照组相比,虽有升高的趋势,但无显著差异;两组间的NE、DA和5-HT也无显著差异。合欢花组大鼠海马中的HVA、DA含量明显高于应激组,而前额叶中的多巴胺和5-羟色胺,以及纹状体中的5-羟色胺均明显低于应激组。这表明合欢花对慢性应激引起的大鼠生长受抑有缓解作用,对其脑内单胺类神经递质有调节作用。  相似文献   

8.
The present studies examined the role of endogenous dopamine (DA) in methamphetamine (METH)-induced dopaminergic neurotoxicity while controlling for temperature-related neuroprotective effects of the test compounds, reserpine and alpha-methyl-p-tyrosine (AMPT). To determine if the vesicular pool of DA was essential for the expression of METH-induced DA neurotoxicity, reserpine (3 mg/kg, given iintraperitoneally 24-26 h prior to METH) was given prior to a toxic dose regimen of METH. Despite severe striatal DA deficits during the period of METH exposure, mice treated with reserpine prior to METH developed long-term reductions in striatal DA axonal markers, suggesting that vesicular DA stores were not crucial for the development of METH neurotoxicity, but leaving open the possibility that cytoplasmic DA might be involved. To evaluate this possibility, cytoplasmic DA stores were depleted with AMPT prior to METH administration. When this study was carried out at 28 degrees C, complete neuroprotection was observed, likely due to lingering effects on core temperature because when the same study was repeated at 33 degrees C (to eliminate AMPT's hypothermic effect in METH-treated animals), the previously observed neuroprotection was no longer evident. In the third and final set of experiments, mice were pretreated with a combination of reserpine and AMPT, to deplete both vesicular and cytoplasmic DA pools, and to reduce striatal DA levels to negligible values during the period of METH administration (< 0.05%). When core temperature differences were eliminated by raising ambient temperature, METH-induced DA neurotoxic changes were evident in mice pretreated with reserpine and AMPT. Collectively, these findings bring into question the view that endogenous DA plays an essential role in METH-induced DA neurotoxicity.  相似文献   

9.
The effect of chronic treatment with tyroxine (T4) or propylthiouracile (PTU) on the turnover of norepinephrine (NE), dopamine (DA) and 5-hydroxytryptamine (5-HT) has been studied in various areas of the rat brain (brain stem, hypothalamus, striatum and "rest of the brain"). The turnover of NE and DA was determined by the decay in endogenous levels after inhibition of tyrosine hydroxylase by alpha-methylparatyrosine and the turnover of 5-HT was evaluated by the initial accumulation of endogenous 5-HT after inhibition of monoamine oxydase by pargyline. T4 treatment accelerated the release of DA from the striatum but had no significant effects on NA release in the various cerebral areas : nevertheless the NE endogenous level was significantly reduced in the brain stem. PTU treatment delayed the release of DA and NA only from the "rest of the brain". Concerning 5-HT, the only significant variation was observed in the hypothalamus of PTU-treated rats and implied increased turnover. The possible relations between the changes in cerebral monoamines turnover and the behavioural alterations which are observed in thyroid disfunction are discussed.  相似文献   

10.
K A Young  R E Wilcox 《Life sciences》1991,48(19):1845-1852
We kinetically characterized D2 receptors in thalami pooled from a group of Sprague-Dawley rats and then determined thalamic levels of dopamine (DA), homovanillic acid (HVA), dihydroxyphenylacetic acid (DOPAC), and norepinephrine (NE) in relation to a measure of thalamic DA D2 receptor densities in another group of rats. The equilibrium dissociation constant (kd) was estimated as 0.1 nM by three independent methods, while the Bmax for thalamic D2 receptors was found to be 6.4 fmol/mg p using 3H-spiperone as ligand and ketanserin to occlude 5HT2 binding. Kinetic constants were in agreement with previously reported kinetic data from rodent caudate-putamen. This suggests that thalamic D2 receptors are similar to D2 receptors from other brain areas. Mean thalamic levels of DA (22.6 ng/mg p), DOPAC (1.19 ng/mg p) and HVA (0.31 ng/mg p) concur with previous reports of a sparse distribution of thalamic DA neurons. D2 receptor densities were positively correlated with DA metabolites DOPAC (P less than .05; r = 0.423) and HVA (P less than .05; r = 0.368), but not DA or NE. These results establish fundamental characteristics of thalamic DA neurotransmission to assist in the investigation of behavioral pharmacology of this area.  相似文献   

11.
Nicotine, one of the most widespread drugs of abuse, has long been shown to impact areas of the brain involved in addiction and reward. Recent research, however, has begun to explore the positive effects that nicotine may have on learning and memory. The mechanisms by which nicotine interacts with areas of cognitive function are relatively unknown. Therefore, this paper is part of an ongoing study to evaluate regional effects of nicotine enhancement of cognitive function. Nicotine-induced changes in the levels of three neurotransmitters, dopamine (DA), serotonin (5-HT), norepinepherine (NE), their metabolites, homovanillic acid (HVA), dihydroxyphenylacetic acid (DOPAC), 5-hydroxyindoleacetic acid (5-HIAA), and their precursor, L-DOPA, were evaluated in the ventral and dorsal hippocampus (VH and DH), prefrontal and medial temporal cortex (PFC and MTC), and the ventral tegmental area (VTA) using in vivo microdialysis in awake, freely moving, male Sprague-Dawley rats. The animals were treated with acute nicotine (0.5 mg/kg, s.c.) halfway through the 300-min experimental period. The reuptake blockers, desipramine (100 microM) and fluoxetine (30 microM), were given to increase the levels of NE and 5-HT so that they could be detected. Overall, a nicotine-induced DA increase was found in some areas, and this increase was potentiated by desipramine and fluoxetine. The two DA metabolites, HVA and DOPAC, increased in all the areas throughout the experiments, both with and without the inhibitors, indicating a rapid metabolism of the released DA. The increase in these metabolites was greater than the increase in DA. 5-HT was increased in the DH, MTC, and VTA in the presence of fluoxetine; its metabolite, 5-HIAA, was increased in the presence and absence of fluoxetine. Except in the VTA, NE levels increased to a similar extent with desipramine and fluoxetine. Overall, nicotine appeared to increase the release and turnover of these three neurotransmitters, which was indicated by significant increases in their metabolites. Furthermore, DA, and especially HVA and DOPAC, increased for the 150 min following nicotine administration; 5-HT and NE changes were shorter in duration. As gas chromatography experiments showed that nicotine levels in the brain decreased by 75% after 150 min, this may indicate that DA is more susceptible to lower levels of nicotine than 5-HT or NE. In conclusion, acute nicotine administration caused alterations in the levels of DA, 5-HT, and NE, and in the metabolism of DA and 5-HT, in brain areas that are involved in cognitive processes.  相似文献   

12.
13.
We tested the hypothesis that there is an orderly progressive increase in neurotransmitters in the brains of fetal and neonatal sheep. The pregnant ewes or newborns were killed with an intravenous overdose of pentobarbitone. Brains were removed immediately and frozen at -80 degrees C for later dissection and measurement of norepinephrine (NE), dopamine (DA), serotonin (5HT), homovanillic acid (HVA) and hydroxyindole acetic acid (HIAA). Fetuses were studied at 130-135 days gestation (term gestation 147 days), 140-145 days gestation and 1-5 days after birth. The only compound that was significantly different at the three ages was HIAA. Significant regional differences for NE, DA, and HVA, but not for 5HT were demonstrated.  相似文献   

14.
SELECTIVE INCREASE OF BRAIN DOPAMINE SYNTHESIS BY SULPIRIDE   总被引:4,自引:3,他引:1  
—Sulpiride (5–200 mg/kg) increases brain HVA and DOPAC levels, causes no change in dopamine concentration, does not interfere with the outflow of HVA from the CNS and enhances the disappearance of brain dopamine after inhibition of tyrosine hydroxylase. The compound influences neither 5-HT nor NE metabolism. The central action of sulpiride differs from that of classic neuroleptics in that this drug stimulates dopamine turnover without producing catalepsy.  相似文献   

15.
The plasma concentration of the dopamine (DA) metabolite, homovanillic acid (HVA), is used as an indicator of central nervous system dopaminergic activity. Using percutaneously inserted catheters we were able to obtain blood samples simultaneously from the right and left internal jugular veins. Veno-arterial HVA plasma concentration differences combined with adjusted organ plasma flows were used, according to the Fick Principle, to determine the HVA overflow from the brain. The HVA overflow from the liver was also measured. HVA overflow from the brain represented 12% of the total body HVA production. A similar amount was released from the liver, illustrating the limited validity of peripheral plasma HVA measurements as an indicator of central dopaminergic activity. HVA release from the human brain displayed a degree of asymmetry, the overflow into the left internal jugular vein being 36% greater than that into the right. Cerebral venous blood flow scans indicated that cortical cerebral regions drained preferentially into the right internal jugular; by inference the higher HVA overflow on the left originated from dopamine-rich subcortical brain areas. Since HVA in plasma may arise from the metabolism of DA existing either as a neurotransmitter or a norepinephrine (NE) precursor we measured the internal jugular vein plasma concentrations of NE, and its metabolite dihydroxyphenylglycol (DHPG), to determine whether they displayed a similar pattern of release to HVA. The overflow of both NE and DHPG into the right internal jugular vein was approximately double that on the left. Since the overflow of HVA did not parallel that of NE and DHPG it may be inferred that the origin of much of the subcortically produced HVA is from dopaminergic neurons and not from the metabolism of precursor DA in noradrenergic neurones or cerebrovascular sympathetic nerves.  相似文献   

16.
To elucidate catecholamine (CA) secretory dynamics in neuroblastoma, urinary excretion of CAs and their metabolites was serially measured in 6 patients aged 3 months to 3 years before and during treatment. After tumor extirpation, increased urinary CAs were promptly normalized; the reduction reflected the amount of CA production from the tumor. Urinary dopamine (DA) showed the most prominent reduction, whereas DA content in the tumor was very small, indicating that the DA produced was immediately released from the tumor and metabolized in extra-tumor tissues. In contrast, patients receiving chemotherapy continued to excrete excess DA and homovanillic acid (HVA), which were increased further at recidivation. One patient showed an inverse correlation between DA and norepinephrine (NE) excretion; a decrease in DA was associated with an increase in NE and plasma DA-beta-hydroxylase (DBH) activity. A similar inverse correlation was also noted between NE and vanillylmandelic acid (VMA) or 3-methoxy-4-hydroxyphenylglycol (MHPG) excretion, while HVA and dihydroxyphenylacetic acid (DOPAC) were positively correlated with DA excretion. Urinary HVA and VMA were lineally correlated but in a patient excreting an enormous amount of DA, urinary VMA was markedly suppressed in terms of HVA excretion. Excessive DA induced an increase in renal water output but did not enhance Na and K excretion. These results indicate that endogenous DA overload in neuroblastoma inhibits NE production by suppressing DBH activity as well as by forming VMA and MHPG. This precursor regulation appears to be the characteristic of the CA metabolic pathway.  相似文献   

17.
Central dopamine (DA) and 5-hydroxytryptamine (5-HT) metabolism was monitored in conscious, freely moving rats by determination of levels of the DA metabolites 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) and the 5-HT metabolite 5-hydroxyindoleacetic acid (5-HIAA) in CSF samples withdrawn repeatedly from the cisterna magna and treated with acid to hydrolyse DOPAC and HVA conjugates. The effect of tyrosine on DA metabolism was investigated. Time courses of metabolite concentrations in individual rats in a quiet room showed that tyrosine (20, 50, or 200 mg/kg i.p.) was without significant effect; brain changes were essentially in agreement. However, the increases of CSF DOPAC and HVA levels that occurred on immobilisation for 2 h were further enhanced by tyrosine (200 mg/kg). The associated increases of 5-HIAA level were unaffected. The corresponding increases of DA metabolite concentrations in the brains of immobilised rats given tyrosine were less marked than the CSF changes and only reached significance for "rest of brain" DOPAC. The CSF studies revealed large interindividual variation in the magnitude and duration of the effects of immobilisation on transmitter amine metabolism. These results may help toward the elucidation of possible relationships between the neurochemical and behavioural effects of stress.  相似文献   

18.
The effects on rat striatal dopamine (DA) metabolism of systemic and local administration of CGP 28014, an inhibitor of catechol-O-methyl-transferase (COMT), were studied by in vivo microdialysis. CGP 28014 (30 mg/kg i.p.) significantly reduced the levels of homovanillic acid (HVA), but did not modify DA and 3,4-dihydroxyphenylacetic acid (DOPAC). The intrastriatal administration (via the microdialysis probe) of 5, 7.5, 10, and 20 mM of CGP 28014 elicited a concentration-dependent, several-fold increase in extracellular DA but did not alter the levels of HVA and DOPAC. Thus, the effects of CGP 28014 observed after i.p. injection (decrease in HVA levels) are different from those measured after intrastriatal administration (increase in DA release). Therefore, the inhibition of COMT is likely to be due to the action of a metabolite of CGP 28014 formed in the periphery and not in the brain.  相似文献   

19.
Rat brain monoamine and serotonin S2 receptor changes during pregnancy   总被引:1,自引:0,他引:1  
The concentrations of noradrenaline (NA), dopamine (DA), serotonin (5-HT), and their metabolites were determined in 5 brain areas of non-pregnant, 15 and 20 day pregnant and 4 day post-partum rats. Striatal 5-HT content was significantly lower in 15 and 20 day pregnant rats than in estrous controls. A significant decrease in striatal and frontal cortex 5-hydroxyindole-3-acetic acid (5-HIAA) concentration was observed in 15 day pregnant rats. Significant increases in hypothalamic and hippocampal NA levels were observed at 4 days post-partum. Frontal cortex serotonin S2 receptorKd was reduced in 4 day post-partum rats. There was no significant change in S2 receptorB max during pregnancy. Levels of progesterone were negatively correlated with striatal DA, homovanillic acid (HVA), 5-HT, and 5-HIAA levels, hypothalamic DA, hippocampal 5-HT, and frontal cortex 5-HIAA values as well as striatal HVA to DA, and HVA to 3,4-dihydroxyphenylacetic acid (DOPAC) ratios and amygdaloid HVA to DOPAC ratios. The limbic neurotransmitter changes might possibly contribute to mood changes which occur during pregnancy and post-partum.  相似文献   

20.
Effects of Light on Dopamine Metabolism in the Chick Retina   总被引:5,自引:4,他引:1  
The effect of prolonged exposure to light on the activity of dopaminergic neurons and dopamine (DA) metabolism of chick retinae was investigated. alpha-Fluoromethyldopa, a potent and specific irreversible inactivator of aromatic amino acid decarboxylase, was used to assess DA turnover after inhibition of synthesis, and also to assess in vivo tyrosine hydroxylase activity by dihydroxyphenylalanine accumulation. After 48 h of light exposure, retinal DNA in 12-day-old chicks was about 30% higher (p less than 0.005) whereas dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) were elevated two to three times (p less than 0.005) the level of controls kept in the dark for the same period. DA turnover was about twofold faster in the light (t 1/2 = 31 min) than in the dark (t 1/2 = 65 min). Tyrosine hydroxylase, assayed in vitro with saturating levels of cofactor and substrate, increased by about 50% after light exposure. The apparent tyrosine hydroxylase activity in vivo was approximately sixfold higher in the light than the dark. These results are interpreted and discussed in terms of the regulation of DA synthesis, and the use of DOPAC and HVA as indices of DA function in the retina.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号