共查询到20条相似文献,搜索用时 0 毫秒
1.
Physostigmine (AntiliriumR) has been reported to reverse benzodiazepine- induced sleep or coma in man and prevent death in animals. Accordingly, we investigated the effect of Antilirium upon benzodiazepine binding to both rat and human brain. We report that Antilirium inhibits 3H-diazepam and 3H-flunitrazepam binding in a dose-dependent manner. The degree of inhibition of binding by Antilirium correlates with the affinity of benzodiazepine for its “receptor” such that diazepam is more affected than flunitrazepam. The inhibition is rapid but the kinetics are complex with only doses of Antilirium showing competitive inhibition when studied at equilibrium. These results may explain, at least in part, the effectiveness of Antilirium at reversing benzodiazepine-induced hypnosis without necessarily implicating a cholinergic mechanism. 相似文献
2.
Electrically evoked release of dopamine from the caudate nucleus is reduced by the dopamine receptor agonists, apomorphine and bromocriptine, and facilitated by neuroleptic drugs, which act as dopamine autoreceptor antagonists. The potencies of chlorpromazine, fluphenazine, levomepromazine and their hydroxy-metabolites in modulating electrically evoked release of dopamine were examined by superfusion of rabbit caudate nucleus slices pre-incubated with 3H-dopamine. O-Desmethyl levomepromazine, 3-hydroxy- and 7-hydroxy metabolites of chlorpromazine and levomepromazine facilitated electrically evoked release of 3H-dopamine, having potencies similar to that of the parent compounds. 7-Hydroxy fluphenazine was less active than fluphenazine in this system. These results indicate that phenolic metabolites of chlorpromazine and levomepromazine, but not of fluphenazine, may contribute to effects of the drugs mediated by presynaptic dopamine receptors. 相似文献
3.
m-Chlorophenylpiperazine and m-trifluoromethylphenylpiperazine, two compounds that act as agonists at central serotonin receptors mediating certain neuroendocrine, behavioral and serotonin turnover effects, lacked appreciable agonist activity at serotonin receptors mediating contraction of the rat jugular vein. Instead, these compounds were potent antagonists of serotonin-induced contraction of the jugular vein. Apparently these non-indole compounds affect serotonin receptors in various tissues differently, being agonists in brain but mainly antagonists at some peripheral serotonin receptor sites. 相似文献
4.
Using Positron Emission Tomography (PET) and specific radioligands, dopaminergic D2 (DA-D2 receptors) and benzodiazepine receptors (BZ-receptors) were studied in living animals during normal and pathological conditions. In vivo characterization of both receptors was performed using two highly specific antagonists namely: 11C-Ro 15 1788 for BZ-receptors and 76 Br-Bromospiperone for DA-D2 receptors. Changes in 11c-Ro 15 1788 specific binding to BZ-receptors were observed during convulsive seizures. After MPTP treatment, a decrease in the 76 Br-Bromospiperone striatal specific binding was observed, correlated with the establishment of a Parkinson-like syndrome. 相似文献
5.
The interaction of propyl β-carboline-3-carboxylate (PCC) with benzodiazepine receptors in the cerebral cortex of the rat was investigated by direct measurements of [3H]PCC binding and by competitive inhibition of [3H]flunitrazepam (FLU) binding. Initial experiments showed that [3H]PCC binding exhibited characteristics of saturability, stereospecificity and a pharmacological specificity remarkably similar to that of [3H]FLU binding. Analysis of [3H]PCC binding isotherms and PCC/[3H]PCC competition curves revealed the presence of a small population of super high affinity PCC binding sites (KSH = 30–100 pM) which represents approximately 3–6% of the total sites. When measured by competitive inhibition of [3H]FLU binding, receptor occupancy by PCC was generally consistent with that determined by direct measurements of [3H]PCC binding. Analysis of the PCC/[3H]FLU competition curve revealed the presence of two major populations of high and low affinity PCC binding sites with dissociation constants of 0.54 and 10 nM and relative abundances of 52 and 45%, respectively. Collectively, the results of the [3H]PCC binding isotherm, PCC/[3H]PCC competition curve and PCC/[3H]FLU competition curve are internally consistent when rationalized in terms of three populations of benzodiazepine receptors - super high, high, and low affinity - each having different affinities for PCC and equal affinity for FLU. The effects of γ-aminobutyric acid (GABA) on PCC and FLU binding were investigated, and it was observed that GABA enhanced the binding of FLU to the various receptor subtypes whereas no significant effect of GABA on the binding of PCC was detected. 相似文献
6.
Peripheral-type benzodiazepine receptors were identified initially as binding sites in peripheral tissues with markedly different drug specificity than the central type receptors. The density of peripheral receptors varies greatly among tissue with selective localization within organs. Steroid producing areas of glands, such as the adrenal, testes and ovary, are highly enriched in these receptors. Intracellular localizations provide further insight into function with peripheral receptors largely if not exclusively associated with outer membranes of mitochondria. Purification of the peripheral receptor protein from rat kidney mitochondria reveals two apparent subunits with molecular weights of about 30 and 18 kD respectively. This complex is functionally intact as determined by its ability to reversibly bink PK-11195 Ro5-4864, and PK-14105 with high affinity and specificity.Acknowledgements: Supported by USPHS grant DA-00266, Research Scientist Award DA-00074 to S.H.S. and a gift of the Bristol Myers Company.Special issue dedicated to Dr. Erminio Costa. 相似文献
7.
Regulation of renal peripheral benzodiazepine receptors by anion transport inhibitors 总被引:2,自引:0,他引:2
The in vitro and in vivo regulation of [3H]Ro 5-4864 binding to peripheral benzodiazepine receptors (PBR) by ion transport/exchange inhibitors was studied in the kidney. The potencies of 9-anthroic acid, furosemide, bumetanide, hydrochlorothiazide and SITS as inhibitors of [3H]Ro 5-4864 binding to renal membranes were consistent with their actions as anion transport inhibitors (Ki approximately equal to 30 - 130 microM). In contrast, spironolactone, amiloride, acetazolamide, and ouabain were less potent (Ki = 100-1000 microM). Administration of furosemide to rats for five days resulted in a profound diuresis (approximately equal to 350% increase in urine volume) accompanied by a significant increase in PBR density (43%) that was apparent by the fifth day of treatment. Administration of hydrochlorothiazide or Ro 5-4864 for five days also caused diuresis and increased renal PBR density. Both the diuresis and increased density of PBR produced by Ro 5-4864 were blocked by coadministration of PK 11195, which alone had no effect on either PBR density or urine volume. The equilibrium binding constants of [3H]Ro 5-4864 to cardiac membranes were unaffected by administration of any of these drugs. These findings suggest that renal PBR may be selectively modulated in vivo and in vitro by administration of ion transport/exchange inhibitors. 相似文献
8.
Moshe Gavish 《The Journal of steroid biochemistry and molecular biology》1995,53(1-6):57-59
Central benzodiazepine (BZ) receptors are located only in the central nervous system and mediate the clinical effects obtained by various BZs. In addition, there is another receptor that binds BZs with different drug specificities, which is located mainly on the outer mitochondrial membrane of various peripheral tissues. Peripheral BZ receptors (PBR) are composed of three subunits: an isoquinoline binding site, a voltage-dependent anion channel, and an adenine nucleotide carrier, with molecular weights of 18, 32, and 30 kDa, respectively. Complementary DNA of the isoquinoline binding subunit has been cloned in rat, calf, and human. The major role of PBR is in the regulation of steroid biosynthesis. Various PBR ligands stimulate the conversion of cholesterol into pregnenolone and the production of steroid hormones. The naturally occurring diazepam-binding inhibitor stimulates in vivo steroidogenesis via binding to PBR. In the female, PBR density is increased in rat and human ovary proportional with greater cell maturation and differentiation. In the male, testosterone modulates PBR density in the genital tract. These results show the strong relationship between PBR and the endocrine system. 相似文献
9.
M Husmann J Lehmann B Hoffmann T Hermann M Tzukerman M Pfahl 《Molecular and cellular biology》1991,11(8):4097-4103
10.
《Neurochemistry international》1987,10(2):179-184
[3H]flunitrazepam binding was assayed in retinae of 25-day-old rats subjected either to unilateral enucleation at day 15, to intracranial unilateral cutting of the optic nerve at day 17, or to unilateral ablation of the visual cortex at day 17 postnatally.Unilateral enucleation resulted in an enhanced [3H]flunitrazepam binding in the retina of the remaining eye by 23% (P < 0.002, two-tailed Student t-test) as compared to unoperated controls.In rats with one optic nerve cut shortly before the optic chiasm, benzodiazepine binding in the retina of the lesioned side was significantly higher by 20.4 ± 7.6% (P < 0.02, N = 10, paired test) in comparison to that in the retina with the intact optic nerve.Unilateral visual cortex ablation resulted in a 13% decrease (P < 0.02) in [3H]flunitrazepam binding in the retina contralateral to the brain lesion.In the lesioned rats of all three groups, the retinal benzodiazepine receptors were no longer capable of being modified by light/dark adaptation as is observed in normal rats. Our data suggest that (i) rat retinal benzodiazepine receptors are under a control from the visual cortex, and (ii) the benzodiazepine receptors of both eyes seem to be mutually tuned, presumably via a cortico-retinal feedback loop and an interhemispheric cortico-cortical information transfer. 相似文献
11.
Peripheral benzodiazepine receptors and mitochondrial function 总被引:20,自引:0,他引:20
For over 20 years, numerous investigations have focused on elucidating the function of the peripheral benzodiazepine receptor (PBR). This relatively small protein (18kDa) arouses great interest because of its association with numerous biological functions, including the regulation of cellular proliferation, immunomodulation, porphyrin transport and heme biosynthesis, anion transport, regulation of steroidogenesis and apoptosis. Although the receptor was first identified as a binding site for the benzodiazepine, diazepam, in peripheral organ systems, the PBR was subsequently found to be distinct from the central benzodiazepine receptor (CBR) in terms of its pharmacological profile, structure, subcellular localization, tissue distribution and physiological functions. The PBR is widely expressed throughout the body, with high densities found in steroid-producing tissues. In contrast, its expression in the CNS is restricted to ependymal cells and glia. The benzodiazepine Ro5-4864 and the isoquinoline carboxamide PK11195 exhibit nanomolar affinity for the PBR, and are the archtypic pharmacological tools for characterizing the receptor and its function. Primary among these functions are its regulation of steroidogenesis and apoptosis, which reflect its mitochondrial localization and involvement in oxidative processes. This review will evaluate the basic pharmacology and molecular biology of the PBR, and highlight its role in regulating mitochondrial function, the mitochondrial transmembrane potential and its sensitivity to reactive oxygen species (ROS), and neurosteroid synthesis, processes relevant to the pathogenesis of a number of neurological and neuropsychiatric disorders. 相似文献
12.
Protection of soluble benzodiazepine receptors from heat inactivation by GABAergic ligands 总被引:1,自引:0,他引:1
M Gavish 《Life sciences》1983,33(15):1479-1483
Benzodiazepine receptors were solubilized from calf brain cortex by the ionic detergent deoxycholate and by the nonionic detergent Triton X-100. Approximately 90% of the soluble benzodiazepine receptors of both preparations were heat inactivated within 30 min at 55 degrees C. 100 microM of gamma-aminobutyric acid (GABA) protected 80% of Triton X-100 solubilized benzodiazepine receptors and 56% of the deoxycholate soluble benzodiazepine receptors from heat inactivation. Time course of heat inactivation showed that the deoxycholate soluble receptors are more sensitive to heat than the Triton X-100 soluble receptors. 相似文献
13.
Benzodiazepine receptor binding has been measured in soluble brain extracts with 3H-flunitrazepam as a ligand. Binding to soluble receptors is enhanced by GABAergic agonists with potencies and maximal augmentation essentially the same as on membrane bound benzodiazepine receptors. The GABA induced increase of binding to soluble receptors is reversed by the GABA antagonist bicuculline. 相似文献
14.
E E Vasar L K Riago A Kh Soosaar A M Nurk M O Ma?mets 《Biulleten' eksperimental'no? biologii i meditsiny》1985,100(12):711-713
Subcutaneous administration of caerulein (100-500 micrograms/kg) significantly reduced the development of picrotoxin (8 mg/kg) seizures in male mice. The same doses of caerulein inhibited 3H-flunitrazepam binding in in vivo experiments. Proglumide, an antagonist of cholecystokinin receptors, in low dose (5 mg/kg) potentiated the effects of caerulein (100 micrograms/kg), whereas the administration of proglumide in high dose (25 mg/kg) reduced the action of caerulein on 3H-flunitrazepam binding and picrotoxin seizures. Caerulein (5-1000 nM) decreased 3H-flunitrazepam binding in in vitro experiments only after supplementation of the binding medium with 120 mM NaCl and 5mM KCl. The results suggest the possible interaction of caerulein with chloride ionophor. It seems probable that the direct interaction of caerulein with chloride ionophor in involved in the inhibitory effect of caerulein on picrotoxin seizures and 3H-flunitrazepam binding. 相似文献
15.
R T McCabe B R de Costa R L Miller R H Havunjian K C Rice P Skolnick 《FASEB journal》1990,4(11):2934-2940
Fluorescein conjugates of the high-affinity benzodiazepine receptor ligands Ro 15-1788 and Ro 7-1986 were synthesized. The binding of these fluorescent ligands (BD 621 and BD 607) to benzodiazepine receptors was characterized by direct fluorescence measurement. Both the equilibrium dissociation constants (KD) of BD 621 and BD 607 and the maximum number of binding sites (Bmax) estimated by fluorescence monitoring were consistent with values obtained by using radioligand binding techniques. The binding of BD 621 and BD 607 assessed by fluorescence measurement was reversible, abolished by photoaffinity labeling with Ro 15-4513, and unaffected by a variety of substances that do not bind to benzodiazepine receptors. The potencies of chemically diverse benzodiazepine receptor compounds to inhibit fluorescent ligand binding were highly correlated (r = 0.94, P less than 0.001), with potencies obtained from radioligand binding techniques. These findings demonstrate the feasibility of using direct fluorescence measurement techniques to quantitate ligand-receptor interactions. 相似文献
16.
17.
Antagonism of presynaptic adenosine receptors by theophylline 9-beta-D-riboside and 8-phenyltheophylline 总被引:2,自引:0,他引:2
A S Clanachan 《Canadian journal of physiology and pharmacology》1981,59(6):603-606
Theophylline 9-beta-D-riboside and 8-phenyltheophylline were evaluated as presynaptic adenosine receptor antagonists in the rat vas deferens in vitro. Stimulation of presynaptic adenosine receptors, which results in an inhibition of the twitch response to electrical field stimulation, was achieved with 2-chloroadenosine, an adenosine analogue that appears not to be a substrate for the adenosine transport system. The presynaptic inhibitory action of 2-chloroadenosine was antagonized by theophylline (10 and 100 microM) and by 8-phenyltheophylline (10 microM) but not by theophylline 9-beta-D-riboside (100 microM). It is concluded that the addition of a ribose moiety to theophylline does not enhance the antagonist potency of the molecule but actually renders the compound inactive. However, 8-phenyltheophylline is approximately three times more potent than theophylline at presynaptic adenosine receptors. 相似文献
18.
19.
R H Havunjian B R De Costa K C Rice P Skolnick 《The Journal of biological chemistry》1990,265(36):22181-22186
A conjugate of the high affinity benzodiazepine receptor ligand Ro 15-1788 and the fluorescent 7-nitrobenz-2-oxa-1,3-diazol-4-yl (NBD) moiety was synthesized. This novel compound (BD 623) exhibited excitation and emission maxima at 486 and 542 nm, respectively, and possessed fluorescent properties that are dependent upon the polarity of its environment. BD 623 bound reversibly to benzodiazepine receptors in the central nervous system with an apparent affinity (K(i) 5.7 nM) comparable to the parent imidazobenzodiazepine (K(d) 2.8 nM). Addition of BD 623 to a suspension of brain membranes resulted in a time-dependent quenching of its fluorescence. Fluorescence quenching of this compound was readily reversed by specific benzodiazepine receptor ligands but not by a variety of other substances. Moreover, inactivation of benzodiazepine receptors by photoaffinity labeling with Ro 15-4513 resulted in a reduction in the fluorescence quenching of BD 623 consistent with the reduction in density of benzodiazepine receptors measured using a radioreceptor assay. Monitoring of fluorescence/dequenching of BD 623 in real time permitted a quantitative characterization of the ligand-receptor interaction, with both the K(d) of BD 623 (13.9 nM) and K(i) of Ro 15-1788 (5.7 nM) comparable with the estimates obtained using radioreceptor techniques. These results indicate that application of fluorescence quenching techniques with BD 623 could prove a useful adjunct for the study of benzodiazepine receptors. BD 623 may serve as a prototype for the development of other fluorescent ligands to study ligand-receptor interactions. 相似文献
20.
S. A. Andronati V. M. Sava S. Yu. Makan T. A. Voronina L. N. Yakubovskaya A. S. Yavorskii K. S. Andronati 《Neurophysiology》1994,26(4):217-220
A metabolite of the anxiolytic, anticonvulsant, and soporific drug phenazepam, 3-oxyphenazepam (3-OPh), possesses strong anxiolytic action. In the present work, 3-OPh and its acetic, benzoic, nicotinic, hemisuccinic, hemiglutaric, and valproic esters were synthesized, and their interaction with benzodiazepine receptors of the rat central nervous system was investigated. The structure of the compounds is found to correlate with their affinity to benzodiazepine receptors (inhibition constants characterizing specific binding of3H-diazepam with the P fraction of synaptic membranes in the rat brain), as well as with their anxiolytic activities. The affinities of dicarbonic acid monoesters (hemisuccinate and, especially, hemiglutarate) and valproate were found to be lower than those of monocarbonic acid esters and 3-OPh itself. High pharmacological activity of 3-OPh hemisuccinate is hypothesized to be determined by its role as a 3-OPh precursor (the latter is a product of hemisuccinate hydrolysis).Neirofiziologiya/Neurophysiology, Vol. 26, No. 4, pp. 262–265, July–August, 1994. 相似文献