首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The thermosensation mechanism plays critical roles in various animals living in different thermal environment. We focused on an axolotl, which is a tailed amphibian originally from Lake Xochimilco area in the Vally of Mexico, and examined its behavior response to heat stimulation. Mild heat at 33 °C induced noxious locomotive activity to axolotls, but the noxious response of another tailed amphibian, Iberian ribbed newt, was not observed at 33 °C. To explore the mechanism for the temperature sensitivity of axolotls, we isolated a cDNA of TRPV1. Using the degenerate primer PCR method, we identified the DNA fragment encoding axolotl TRPV1 (axTRPV1), and then cloned a full-length cDNA. We studied the chemical and thermal sensitivities of axTRPV1 by two-electrode voltage clamp method using Xenopus oocyte expression system. Capsaicin, acid, and 2-aminoethoxydiphenylborane apparently activated axTRPV1 channels in a dose-dependent manner. The analysis of thermal sensitivity showed that axTRPV1 was significantly activated by heat but not by cold. The average temperature threshold for heat-activation was 30.95 ± 0.12 °C. This thermal activation threshold of axTRPV1 is unique and significantly low, when compared with the known thresholds of TRPV1s from various animals. Further, this threshold of axTRPV1 is well consistent with the observation of heat-induced behavior of axolotls at 33 °C, demonstrating that axolotl shows noxious response to mild heat mediated through axTRPV1.  相似文献   

2.
To evaluate the involvement of the mitogen-activated protein kinase (MAPK) cascade in orofacial neuropathic pain mechanisms, this study assessed nocifensive behavior evoked by mechanical or thermal stimulation of the whisker pad skin, phosphorylation of extracellular signal-regulated kinase (ERK) in trigeminal spinal subnucleus caudalis (Vc) neurons, and Vc neuronal responses to mechanical or thermal stimulation of the whisker pad skin in rats with the chronic constriction nerve injury of the infraorbital nerve (ION-CCI). The mechanical and thermal nocifensive behavior was significantly enhanced on the side ipsilateral to the ION-CCI compared to the contralateral whisker pad or sham rats. ION-CCI rats had an increased number of phosphorylated ERK immunoreactive (pERK-IR) cells which also manifested NeuN-IR but not GFAP-IR and Iba1-IR, and were significantly more in ION-CCI rats compared with sham rats following noxious but not non-noxious mechanical stimulation. After intrathecal administration of the MEK1 inhibitor PD98059 in ION-CCI rats, the number of pERK-IR cells after noxious stimulation and the enhanced thermal nocifensive behavior but not the mechanical nocifensive behavior were significantly reduced in ION-CCI rats. The enhanced background activities, afterdischarges and responses of wide dynamic range neurons to noxious mechanical and thermal stimulation in ION-CCI rats were significantly depressed following i.t. administration of PD98059, whereas responses to non-noxious mechanical and thermal stimulation were not altered. The present findings suggest that pERK-IR neurons in the Vc play a pivotal role in the development of thermal hypersensitivity in the face following trigeminal nerve injury.  相似文献   

3.
Using mRNA differential display, we found that the gene for NAD(+)-dependent glycerol phosphate dehydrogenase (GPDH; EC 1.1.1.8) is induced in rat brain following seizure activity. Northern blot and in situ hybridization analysis confirmed the differential display results; they also showed, in a separate model of neuronal activation, that after thermal noxious stimulation of the hind-paws, a similar increase in GPDH mRNA occurs in the areas of somatotopic projection in the lumbar spinal cord. Surprisingly, administration of analgesic doses of morphine or the nonsteroidal antiinflammatory drugs aspirin, metamizol (dipyrone), and indomethacin also increased GPDH mRNA levels in rat spinal cord. The opioid receptor antagonist naloxone completely blocked morphine induction of GPDH but had no effect on GPDH induction by noxious heat stimulation or metamizol treatment, implicating different mechanisms of GPDH induction. Nevertheless, in all cases, induction of the GPDH gene requires adrenal steroids and new protein synthesis, as the induction was blocked in adrenalectomized rats and by cycloheximide treatment, respectively. Our results suggest that the induction of the GPDH gene upon peripheral noxious stimulation is related to the endogenous response to pain as it is mimicked by exogenously applied analgesic drugs.  相似文献   

4.
Functional magnetic resonance imaging (fMRI) in rodents enables non-invasive studies of brain function in response to peripheral input or at rest. In this study we describe a thermal stimulation paradigm using infrared laser diodes to apply noxious heat to the forepaw of mice in order to study nociceptive processing. Stimulation at 45 and 46°C led to robust BOLD signal changes in various brain structures including the somatosensory cortices and the thalamus. The BOLD signal amplitude scaled with the temperature applied but not with the area irradiated by the laser beam. To demonstrate the specificity of the paradigm for assessing nociceptive signaling we administered the quaternary lidocaine derivative QX-314 to the forepaws, which due to its positive charge cannot readily cross biological membranes. However, upon activation of TRPV1 channels following the administration of capsaicin the BOLD signal was largely abolished, indicative of a selective block of the C-fiber nociceptors due to QX-314 having entered the cells via the now open TRPV1 channels. This demonstrates that the cerebral BOLD response to thermal noxious paw stimulation is specifically mediated by C-fibers.  相似文献   

5.
电针刺激可在大鼠脊髓诱发Fos样蛋白的生成   总被引:6,自引:1,他引:5  
纪如荣  王晓民 《生理学报》1992,44(4):394-400
本研究利用Fos蛋白的免疫组织化学方法首次报道电针“三阴交”穴位可在大鼠脊髓诱发原癌基因c-fos的表达。电针后大量Fos免疫反应(FLI)细胞出现在脊髓腰膨大的背、腹角,但标记最密集区为背角Ⅲ,Ⅳ层。在动物足部注射福尔马林产生的伤害性刺激亦可在脊髓腰膨大背、腹角诱发大量FLI细胞,但以背角Ⅰ,Ⅱ层标记最为密集。因此电针和伤害性刺激引起的脊髓c-fos表达在分布上是不同的。电针诱发的Foc蛋白可能参与针刺镇痛。  相似文献   

6.
Anesthesia is used widely in animal research, but there are diverse opinions regarding acceptable anesthetic depth. Excessive anesthesia is associated with increased morbidity and mortality. Traditionally, researchers have been taught that animal movement during surgical and experimental procedures indicates that the animal is 'underanesthetized.' Complex movement, however, can be initiated and propagated within the spinal cord, with little input from supraspinal structures. For example, frogs with high spinal-cord transections still maintain the wiping reflex, whereby the hindlimb can move to the forelimb to wipe away a noxious stimulus. Rats that have been decerebrated can perform complex tasks, such as grooming. Brain-dead humans can have spontaneous movement of the arms, legs, and head. Consistent with these phenomena, emerging evidence suggests that, in anesthetized animals, movement in response to noxious stimulation is abolished primarily via anesthetic action in the spinal cord. When isoflurane, halothane, or thiopental is delivered selectively to the brain circulation in goats, substantially greater anesthetic concentrations in brain are needed to ablate movement, as compared with those required upon delivery of anesthetic to the entire body. Rats that have had a precollicular decerebration require the same isoflurane concentrations to prevent movement as compared to intact rats. Furthermore, data from both humans and animals indicate that memory and awareness are ablated at anesthetic concentrations that are < 50% of those needed to abolish movement. Collectively, these data indicate that animals can be anesthetized at depths that, although they do not abolish movement, still produce unconsciousness and amnesia.  相似文献   

7.
Peripheral and central aspects of trigeminal nociceptive systems   总被引:2,自引:0,他引:2  
Three aspects of trigeminal pain are considered: the peripheral mechanisms of pain from teeth and from the cornea, and the role of the trigeminal brainstem nuclei in pain. Pain is probably the only sensation that can be evoked by stimulation of dentin or dental pulp in man. Five nerve-endings enter dentinal tubules from the pulp but do not extend into the outer dentine, which is nevertheless sensitive. In teeth of limited growth in experimental animals, the dental pulp is supplied by A beta, A delta and C fibres and these are associated with two categories of receptor: one responds to cooling and to other stimuli that cause displacement of the contents of the dentinal tubules such as probing and drying the dentine, and the other group responds most vigorously to heating. Some cold sensitive units have A beta fibres and the evidence suggests that stimulation of these is capable of evoking both muscle reflexes and pain and, near threshold, 'pre-pain' sensations. Thermal stimulation of the cornea produces sensations of pain and, with less intense stimuli, irritation, Mechanical stimulation also produces pain but it is not clear whether, below the pain threshold, such stimuli produce touch sensation or some other sensation related to pain. Histologically, the nerve-endings in the corneal epithelium consist of fine, bare processes closely associated with the surface of the epithelial cells. Recordings in experimental animals have shown that many of the receptors respond to several different forms of stimulus and their properties correlate well with those predicted from psychophysical experiments in man. The results of trigeminal tractotomy in man and recordings from the trigeminal brainstem nuclei in anaesthetized animals, have generally indicated that nucleus caudalis is the main relay in the pain pathway from the face and associated structures. Recent observations have, however, shown that tractotomy does not produce complete analgesia of this region and responses to thermal stimulation of teeth and noxious stimulation of other oro-facial tissues have been recorded from the more rostral parts of the brainstem nuclear complex. The surgical procedures employed to set up an animal for stereotaxic recording may induce long-lasting depression in the excitability of neurons in these nuclei, which masks some of their properties. The mechanism of this depression has not been established.  相似文献   

8.
胃肠道伤害性刺激诱导中缝背核触液神经元Fos表达   总被引:3,自引:0,他引:3  
本文以CB-HRP逆行追踪和原癌基因c-fos表达技术相结合,观察胃肠道伤害性刺激后中缝背核触液神经元Fos的表达。在中缝背核发现三种标记神经元,包括CB-HRP逆行标记神经元(308)、Fos阳性神经元(42)和CB-HRP/Fos双重标记神经元(5)。本研究提示中缝背核含有一些具有双重功能的神经元,它们既在脑-脑脊液神经体液回路中传递信息,又在胃肠道伤害性刺激的中枢传递和功能调控中起一定的作用  相似文献   

9.
The immobility response (IR) was studied in rabbits to evaluate its analgesic properties and reliability as a method of restraint. The participation of the endogenous opioid system in IR was studied indirectly by evaluating the effects of the narcotic antagonist naloxone on this phenomenon. Twenty-four adult New Zealand White rabbits were subjected to six noxious stimuli while restrained by IR and while restrained under control conditions. Testing on each animal was repeated under both conditions following the administration of naloxone. The noxious stimuli consisted of three levels of electric shock (10 volts, 30 volts, and 50 volts) applied to the shaved forearm, and mechanical pressure applied to the pinna, front toe, and hind toe. Withdrawal and changes in blood pressure, heart rate, and respiration were used as indicators of pain perception. Distress associated with noxious electrical and pressure stimulation was significantly reduced by IR, which suggested that the phenomenon does have a significant analgesic component. However, the rabbits showed wide variability in their susceptibility to IR induction, and even animals which did not withdraw in response to noxious stimulation under IR sometimes exhibited physiological changes suggestive of distress. Therefore, IR should not be considered as a reliable or humane alternative to analgesic/anesthetic drugs for laboratory rabbits. Naloxone had little effect on IR or IR-associated analgesia.  相似文献   

10.
The effects of innocuous and noxious sural nerve stimulation on the SEP scalp topography were examined in 15 human subjects. This analysis focused on the 6 stable periods (i.e., consecutive time points where the topography did not change) that were identified in the companion paper (Dowman 1994). Stable period 1 (SP1: 58–90 msec post stimulus), SP4 (178–222 msec) and SP5 (223–277 msec) showed amplitude-stimulus intensity relationships that are similar to those of neurons involved in the sensory-discriminative aspects of innocuous somatosensation. The SP1 topographic pattern showed little or no change across the innocuous and noxious stimulus levels, which together with the amplitude data suggests that SP1 is largely generated by neurons involved in innocuous somatosensation. The SP4 topographic pattern did not change appreciably across the innocuous and noxious stimulus levels, but its aplitude decreased with increasing noxious stimulation. These data suggest that SP4 is generated by neurons involved in innocuous somatosensation and that noxious inputs inhibit these cells. There were differences in the SP5 topographic patterns evoked at the innocuous and the noxious stimulus levels, which suggest SP5 also receives a contribution from neurons involved in noxious somatosensation. SP3 (135–157 msec) and SP6 (282–339 msec) are probably generated by neurons involved in noxious somatosensation. The topographic patterns of both were different at innocuous and noxious levels. SP3's amplitude-stimulus intensity function suggests that it is generated by neurons that respond to noxious inputs in a non-graded fashion. The amplitude and offset latency of SP6 increased with increasing noxious stimulation, which suggests that SP6 is generated by neurons that respond to noxious inputs in a graded fashion.  相似文献   

11.
The effect of estradiol-17-beta on lipids of the ventricular myocardium of mice has been studied with a cytochemical technique in which malachite green was added to glutaraldehyde. This malachite green-glutaraldehyde fixative enhances the visualization of certain phospholipid-related elements. Estrogen induces an affinity of ventricular cardiac lipid inclusions for the cationic dye malachite green. The staining affinity is evidenced only in the estrous female, not in diestrus. In oophorectomized animals, malachite green staining is seen only following estradiol injection, but this effect is blocked by progesterone. In the male, ventricular lipids do not stain, nor do they develop malachite green affinity with estrogen stimulation. These results imply a blockade of the estradiol-mediated dye affinity by progesterone and testosterone. This reinforces the concept of the heart as a target organ for sex steroids and expands the previously described estrogen effects on myocardium.  相似文献   

12.
B R Sastry 《Life sciences》1979,24(23):2169-2177
In decerebrated spinal cats, the effects of iontophoretically applied acetylcholine (ACh) and substance P were examined on the responses of dorsal horn neurones to noxious stimulation and touch of the skin. Both agents, in amounts that did not have a significant direct effect on the neuronal firing rate, prolonged the response of the cells to noxious stimulation but did not alter that to touch stimulation. The peptide and ACh potentiated the late, but not the early, responses of dorsal horn neurones to sural Aδ and C afferent stimulation. Substance P-induced potentiation of the above responses was observed even when the agent did not produce a significant depolarization of nociceptive cells. In greater amounts, the peptide depolarized the neurones, an effect that was not associated with a detectable change in the membrane resistance. These results indicate that substance P facilitates nociceptive pathways by potentiating the subliminal fringe and, in greater amounts, by depolarizing the cells. The failure by the peptide to potentiate touch-induced excitation of the nociceptive neurones appears not to be due to the selectivity of the drug effect but due to the absence of subliminal fringe.  相似文献   

13.
The Drosophila TRPA channel Painless is required for the function of polymodal nociceptors which detect noxious heat and noxious mechanical stimuli. These functions of Painless are reminiscent of mammalian TRPA channels that have also been implicated in thermal and mechanical nociception. A popular hypothesis to explain the mechanosensory functions of certain TRP channels proposes that a string of ankyrin repeats at the amino termini of these channels acts as an intracellular spring that senses force. Here, we describe the identification of two previously unknown Painless protein isoforms which have fewer ankyrin repeats than the canonical Painless protein. We show that one of these Painless isoforms, that essentially lacks ankyrin repeats, is sufficient to rescue mechanical nociception phenotypes of painless mutant animals but does not rescue thermal nociception phenotypes. In contrast, canonical Painless, which contains Ankyrin repeats, is sufficient to largely rescue thermal nociception but is not capable of rescuing mechanical nociception. Thus, we propose that in the case of Painless, ankryin repeats are important for thermal nociception but not for mechanical nociception.  相似文献   

14.
In this article, we demonstrate assays to study thermal nociception in Drosophila larvae. One assay involves spatially-restricted (local) stimulation of thermal nociceptors while the second involves a wholesale (global) activation of most or all such neurons. Together, these techniques allow visualization and quantification of the behavioral functions of Drosophila nociceptive sensory neurons. The Drosophila larva is an established model system to study thermal nociception, a sensory response to potentially harmful temperatures that is evolutionarily conserved across species. The advantages of Drosophila for such studies are the relative simplicity of its nervous system and the sophistication of the genetic techniques that can be used to dissect the molecular basis of the underlying biology In Drosophila, as in all metazoans, the response to noxious thermal stimuli generally involves a "nocifensive" aversive withdrawal to the presented stimulus. Such stimuli are detected through free nerve endings or nociceptors and the amplitude of the organismal response depends on the number of nociceptors receiving the noxious stimulus. In Drosophila, it is the class IV dendritic arborization sensory neurons that detect noxious thermal and mechanical stimuli in addition to their recently discovered role as photoreceptors. These neurons, which have been very well studied at the developmental level, arborize over the barrier epidermal sheet and make contacts with nearly all epidermal cells. The single axon of each class IV neuron projects into the ventral nerve cord of the central nervous system where they may connect to second-order neurons that project to the brain. Under baseline conditions, nociceptive sensory neurons will not fire until a relatively high threshold is reached. The assays described here allow the investigator to quantify baseline behavioral responses or, presumably, the sensitization that ensues following tissue damage. Each assay provokes distinct but related locomotory behavioral responses to noxious thermal stimuli and permits the researcher to visualize and quantify various aspects of thermal nociception in Drosophila larvae. The assays can be applied to larvae of desired genotypes or to larvae raised under different environmental conditions that might impact nociception. Since thermal nociception is conserved across species, the findings gleaned from genetic dissection in Drosophila will likely inform our understanding of thermal nociception in other species, including vertebrates.  相似文献   

15.
Adenosine is a neuromodulator that operates via the most abundant inhibitory adenosine A1 receptors (A1Rs) and the less abundant, but widespread, facilitatory A2ARs. It is commonly assumed that A1Rs play a key role in neuroprotection since they decrease glutamate release and hyperpolarize neurons. In fact, A1R activation at the onset of neuronal injury attenuates brain damage, whereas its blockade exacerbates damage in adult animals. However, there is a down-regulation of central A1Rs in chronic noxious situations. In contrast, A2ARs are up-regulated in noxious brain conditions and their blockade confers robust brain neuroprotection in adult animals. The brain neuroprotective effect of A2AR antagonists is maintained in chronic noxious brain conditions without observable peripheral effects, thus justifying the interest of A2AR antagonists as novel protective agents in neurodegenerative diseases such as Parkinsons and Alzheimers disease, ischemic brain damage and epilepsy. The greater interest of A2AR blockade compared to A1R activation does not mean that A1R activation is irrelevant for a neuroprotective strategy. In fact, it is proposed that coupling A2AR antagonists with strategies aimed at bursting the levels of extracellular adenosine (by inhibiting adenosine kinase) to activate A1Rs might constitute the more robust brain neuroprotective strategy based on the adenosine neuromodulatory system. This strategy should be useful in adult animals and especially in the elderly (where brain pathologies are prevalent) but is not valid for fetus or newborns where the impact of adenosine receptors on brain damage is different.  相似文献   

16.
Animals with a severe reduction in the number of afferent C-fibres as a consequence of neonatal administration of capsaicin, exhibit a number of neurological and behavioral deficits including increased nociceptive thresholds, altered somato-visceral and viscero-visceral reflexes, depressed cardiovascular and respiratory reflexes and changes in the organisation of spinal cord sensory systems. The reduction in the number of C-fibres produced by neonatal capsaicin does not cause a decrease of similar magnitude in the number of dorsal horn cells driven by the surviving C-fibres. Twenty-two per cent of dorsal horn neurones in capsaicin treated animals respond to electrical stimulation of the surviving afferent C-fibres: a reduction of only 50% from control values. Inhibitory controls on afferent C-fibre evoked responses of dorsal horn neurones are weaker in capsaicin treated rate than in control animals. The cutaneous receptive fields of some dorsal horn neurones can increase in size following stimulation of afferent C-fibres. Tonic descending inhibition on C-fibre evoked responses of dorsal horn neurones is reduced in capsaicin treated rats: fewer neurones show tonic descending inhibition in these animals and those that do are subjected to less powerful inhibitions than similar neurones from control animals. However, some central inhibitory mechanism are unchanged after neonatal capsaicin treatment, specially those that do not involve afferent C-fibres. We suggest that the nervous system develops central inhibition in response to and directed towards the excitations mediated by its afferent drives. Therefore reduced central inhibition in response to a decreased number of afferent C-fibres can compensate for the lost capacity in the signalling of peripheral noxious events.  相似文献   

17.
Neurones were recorded with extracellular micropipettes, in the parabrachial area located in the dorsolateral region of the pons of anaesthetized rats. All the neurones were identified by antidromic stimulation from the nucleus centralis of the amygdala. Numerous parabrachio-amygdala neurones (70%) were exclusively affected by noxious stimuli applied to several areas of the body. The rest of the neurones (30%) were not activated by any of these stimuli. The "nociceptive" neurones were classified in two groups: the neurones in the first group ("specific nociceptive", 55% of the whole population), responded to mechanical nociceptive and thermal nociceptive stimulation (threshold greater than 44 degrees C), with a strong and sustained activation. The neurones in the second group (15% of the whole population) responded by a strong inhibition to the nociceptive stimulation. Transcutaneous electrical stimulation demonstrated that the specific nociceptive parabrachial neurones received messages from A delta and C fibres. These results demonstrate that a spino-(trigemino)-ponto-amygdala nociceptive pathway exists which could be implicated in the emotional responses to noxious events.  相似文献   

18.
Zhao J  Hu JY  Zhang YQ  Zhao ZQ 《Neurochemical research》2008,33(10):2099-2106
Our previous results have shown that somatostatin receptor subtype SST2A is responsible for thermal, but not mechanical nociceptive transmission in the rat spinal cord. The present study was undertaken to further examine the ultrastructural localization of SST2A receptor in lamina II of the spinal dorsal horn and the role of SST2A receptor in thermal hyperalgesia following Complete Freund’s Adjuvant (CFA)-induced inflammation. We found that SST2A receptors in lamina II are located primarily in postsynaptic dendrites and soma, but not in axons or synaptic terminals. CFA-induced inflammation markedly increased SST2A receptor-like immunoreactivity in lamina II. Paw withdrawal latency (PWL) evoked by noxious heating was obviously shortened 1 h after intraplantar injection of CFA, exhibiting thermal hyperalgesia. Pre-blocking SST2A activity by intrathecal pre-administration of CYN154806, a broad-spectrum antagonist of SST2 receptor, or specific antiserum against SST2A receptor (anti-SST2A) significantly attenuated thermal hyperalgesia in a dose-dependent fashion in CFA-treated rats. But, administration of anti-SST2A or CYN154806 after CFA treatment had no effect upon thermal hyperalgesia. Intrathecal application of SST2A agonist SOM-14 at different doses prior to CFA treatment did not influence thermal hyperalgesia in inflamed rats, but at a low dose shortened PWL evoked by noxious heating in normal rats. These results suggest that spinal SST2A receptors play a key role in triggering the generation, but not maintenance, of thermal hyperalgesia evoked by CFA-induced inflammation. The up-regulation of SST2A receptors in the spinal cord may be one of the mechanisms underlying inflammation-induced thermal hyperalgesia. Special issue article in honor of Dr. Ji-Sheng Han. Jun Zhao and Jiang-Yuan Hu—contributed equally in this paper.  相似文献   

19.
20.
Previous studies have shown that voluntary movement diminishes the transmission of cutaneous afferent input through the dorsal column-medial lemniscal system, and also raises the threshold for detecting nonpainful, cutaneous stimuli (electrical shocks). Although there is some evidence that pain elicited by electrical stimulation is diminished during movement, no studies have tested the effect of movement on the perception of pain produced by natural stimulation. For this reason, we tested the effects of voluntary motor activity on the perception of noxious thermal stimuli in human volunteers. We first developed a motor paradigm in which the thermal stimulation could be applied to the immobile limb (isometric elbow flexion-extension). Both isometric and isotonic muscle contractions about the elbow increased the threshold for detecting weak cutaneous stimuli (electrical shocks) applied to the forearm, and to a lesser extent the detection of stimuli applied to the dorsum of the hand. Afterwards, noxious and innocuous heat stimuli were applied to the forearm during isometric contractions and at rest. Magnitude estimates for the intensity of the pain, as well as latency measures of the onset of pain, were recorded. We found no evidence that isometric motor activity diminished either the threshold for pain or the subjective intensity of the noxious and innocuous thermal stimuli. Thus, motor activity decreases the ability to detect weak low-threshold cutaneous inputs, but has no effect on the perception of warmth and heat pain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号