首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The bacterium Azospirillum brasilense has been frequently studied in laboratory experiments. It performs movements in space where long forward and backward runs on a straight line occur simultaneously with slow changes of direction of the line. A model is presented in which a correlated random walk on a line is joined to diffusion on a sphere of directions. For this transport system, a hierarchy of moment approximations is derived, ranging from a hyperbolic system with four dependent variables to a scalar damped wave equation (telegraph equation) and then to a single diffusion equation for particle density. The original parameters are compounded in the diffusion quotient. The effects of these parameters, such as particle speed or turning rate, on the diffusion coefficient are discussed in detail.  相似文献   

2.
We derive a closed master equation for an individual-based population model in continuous space and time. The model and master equation include Brownian motion, reproduction via binary fission, and an interaction-dependent death rate moderated by a competition kernel. Using simulations we compare this individual-based model with the simplest approximation, the spatial logistic equation. In the limit of strong diffusion the spatial logistic equation is a good approximation to the model. However, in the limit of weak diffusion the spatial logistic equation is inaccurate because of spontaneous clustering driven by reproduction. The weak-diffusion limit can be partially analyzed using an exact solution of the master equation applicable to a competition kernel with infinite range. This analysis shows that in the case of a top-hat kernel, reducing the diffusion can increase the total population. For a Gaussian kernel, reduced diffusion invariably reduces the total population. These theoretical results are confirmed by simulation.  相似文献   

3.
Orientational exchange approach to fluorescence anisotropy decay.   总被引:1,自引:1,他引:0       下载免费PDF全文
Fluorescence depolarization is a powerful technique in resolving dynamics of molecular systems. Data obtained in fluorescence depolarization experiments are highly complex. Mathematical models for analyzing data from depolarization due to rotational motion have been largely based on the rotational diffusion equation. These results have been verified by Monte Carlo simulations. It has been implicitly stated that a 90 degrees jump model between predefined orientations such as presented by G. Weber (1971. J. Chem. Phys. 55:2399-2411) should, for the specific case of fluorescence depolarization, give the same answer as the diffusion equation. Since the highly symmetric cases considered by G. Weber gave the same result as the diffusion equation, it has been desirable to use this method in cases where depolarization arises from both discrete processes and rotational diffusion. We have derived, in a compartmental formalism, the general result for excitation and emission dipoles not necessarily coincident with any of the principal rotational axes of the fluorophore from this exchange model, and have found it to be different from that of the diffusion equation approach. We have also verified this difference with a Monte Carlo simulation of our exchange model. This derivation allows us to define the limits of validity of the 90 degrees exchanges to model rotational diffusion. Also, for systems where movements may be jumps between a few preferred orientations, the actual physical mechanism of depolarization may not be accurately represented by continuous diffusion. The compartmental formalism developed here can be used to easily combine rotational motions with discrete position jumps or other level kinetics.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
An existing arthropod predator-prey model incorporating age structure in the carnivore through the use of the von Foerster equation is extended to include the effects of intraspecific carnivore interaction and passive diffusion or migration. A linear stability analysis of the community equilibrium point of that differential-integral equation system is performed and the resulting secular equation analyzed by the method of D-partitions. These stability results are then compared to those obtained by employing an analogous differential equation model without age structure, in particular as they relate to the so-called paradox of enrichment. In the absence of passive diffusion, it is shown that, unlike for a differential equation model, the paradox of enrichment can occur even with a carnivore which exhibits intraspecific competition. This destabilizing effect of age structure is seen to occur most dramatically when interspecific interactions are large, while the effect of passive diffusion is to offset that tendency and restabilize the system. These predictions are in accordance with relevant experimental evidence involving mites.  相似文献   

5.
The practice of calculating the diffusion contribution to the total pressure-driven flow of water through a tight membrane by using the self-diffusion coefficient for tritiated water is examined by a theoretical analysis. Equations of motion for water and membrane in pressure-driven water flow and water, membrane, and tritiated water in self-diffusion of tritiated water are adapted from Bearman and Kirkwood (1958). These equations of motion are used to develop an equation for the pressure-driven flow of water. Because of the lack of specific information about the detailed structure of most membranes, as well as considerations of the need to eliminate some of the mathematical difficulties, an "equivalent capillary" model is used to find a solution to the equation of motion. The use of the equivalent capillary model and possible ambiguities in distinctions between diffusion and hydrodynamic flow are discussed  相似文献   

6.
An exotic, specialist seed chalcid, Megastigmus schimitscheki, has been introduced along with its cedar host seeds from Turkey to southeastern France during the early 1990s. It is now expanding in plantations of Atlas Cedar (Cedrus atlantica). We propose a model to predict the expansion and impact of this insect. This model couples a time-discrete equation for the ovo-larval stage with a two-dimensional reaction-diffusion equation for the adult stage, through a formula linking the solution of the reaction-diffusion equation to a seed attack rate. Two main diffusion operators, of Fokker-Planck and Fickian types, are tested. We show that taking account of the dependence of the insect mobility with respect to spatial heterogeneity, and choosing the appropriate diffusion operator, are critical factors for obtaining good predictions.  相似文献   

7.
In this paper mesoscopic (individual based) and macroscopic (population based) models for mesenchymal motion of cells in fibre networks are developed. Mesenchymal motion is a form of cellular movement that occurs in three-dimensions through tissues formed from fibre networks, for example the invasion of tumor metastases through collagen networks. The movement of cells is guided by the directionality of the network and in addition, the network is degraded by proteases. The main results of this paper are derivations of mesoscopic and macroscopic models for mesenchymal motion in a timely varying network tissue. The mesoscopic model is based on a transport equation for correlated random walk and the macroscopic model has the form of a drift-diffusion equation where the mean drift velocity is given by the mean orientation of the tissue and the diffusion tensor is given by the variance-covariance matrix of the tissue orientations. The transport equation as well as the drift-diffusion limit are coupled to a differential equation that describes the tissue changes explicitly, where we distinguish the cases of directed and undirected tissues. As a result the drift velocity and the diffusion tensor are timely varying. We discuss relations to existing models and possible applications.Dedicated to K.P. Hadeler, a great scientist, teacher, and friend.  相似文献   

8.
L Iu Zaval'ski? 《Biofizika》1988,33(2):328-332
On the basis of a kinetic model of bacterial chemotactic movement the system of differential equations was reduced to describe the phenomenon of bacterial bonds migration. It follows that Keller-Segel equation is a private case of a more general "diffusion approximation" of the kinetic model. The functional parameters of the reduced equation for E. coli K-12 are estimated.  相似文献   

9.
The effects of demographic and environmental stochasticity on the qualitative behavior of a mathematical model from tumor immunology are studied. The model is defined in terms of a stochastic differential equation whose solution is a limiting diffusion process to a branching process with random environments.  相似文献   

10.
In the 1960s molecular population geneticists used Monte Carlo experiments to evaluate particular diffusion equation models. In this paper I examine the nature of this comparative evaluation and argue for three claims: first, Monte Carlo experiments are genuine experiments: second, Monte Carlo experiments can provide an important meansfor evaluating the adequacy of highly idealized theoretical models; and, third, the evaluation of the computational adequacy of a diffusion model with Monte Carlo experiments is significantlydifferent from the evaluation of the emperical adequacy of the same diffusion model.  相似文献   

11.
Current models of vegetation pattern formation rely on a system of weakly nonlinear reaction–diffusion equations that are coupled by their source terms. While these equations, which are used to describe a spatiotemporal planar evolution of biomass and soil water, qualitatively capture the emergence of various types of vegetation patterns in arid environments, they are phenomenological and have a limited predictive power. We ameliorate these limitations by deriving the vertically averaged Richards’ equation to describe flow (as opposed to “diffusion”) of water in partially saturated soils. This establishes conditions under which this nonlinear equation reduces to its weakly nonlinear reaction–diffusion counterpart used in the previous models, thus relating their unphysical parameters (e.g., diffusion coefficient) to the measurable soil properties (e.g., hydraulic conductivity) used to parameterize the Richards equation. Our model is valid for both flat and sloping landscapes and can handle arbitrary topography and boundary conditions. The result is a model that relates the environmental conditions (e.g., precipitation rate, runoff and soil properties) to formation of multiple patterns observed in nature (such as stripes, labyrinth and spots).  相似文献   

12.
Sedimentation velocity is one of the best-suited physical methods for determining the size and shape of macromolecular substances or their complexes in the range from 1 to several thousand kDa. The moving boundary in sedimentation velocity runs can be described by the Lamm differential equation. Fitting of suitable model functions or solutions of the Lamm equation to the moving boundary is used to obtain directly sedimentation and diffusion coefficients, thus allowing quick determination of size, shape and other parameters of macromolecules. Here we present a new approximate whole boundary solution of the Lamm equation that simultaneously allows the specification of sedimentation and diffusion coefficients with deviations smaller than 1% from the expected values.  相似文献   

13.
The theory of electrotonus, which has been well developed for small cylinders, is extended: the fundamental potential equations for a membrane of arbitrary shape are derived, and solutions are found for cylindrical and spherical geometries. If two purely conductive media are separated by a resistance-capacitance membrane, then Laplace's equation describes the potential in either medium, and two boundary equations relate the transmembrane potential to applied currents and to currents flowing into the membrane from each medium. The core conductor model, on which most previous work on cylindrical electrotonus has been based, gives rise to a one dimensional diffusion equation, the cable equation, for the transmembrane potential in a small cylinder. Under the assumptions of the core conductor model the more general equations developed here are shown to reduce to the cable equation. The two theories agree well in predicting the transmembrane potential in a small cylinder owing to an applied current step, and the extracellular potential for this cylinder is estimated numerically from the general theory. A detailed proof is given for the isopotentiality of a spherical soma membrane.  相似文献   

14.
The response behaviors in many two-alternative choice tasks are well described by so-called sequential sampling models. In these models, the evidence for each one of the two alternatives accumulates over time until it reaches a threshold, at which point a response is made. At the neurophysiological level, single neuron data recorded while monkeys are engaged in two-alternative choice tasks are well described by winner-take-all network models in which the two choices are represented in the firing rates of separate populations of neurons. Here, we show that such nonlinear network models can generally be reduced to a one-dimensional nonlinear diffusion equation, which bears functional resemblance to standard sequential sampling models of behavior. This reduction gives the functional dependence of performance and reaction-times on external inputs in the original system, irrespective of the system details. What is more, the nonlinear diffusion equation can provide excellent fits to behavioral data from two-choice decision making tasks by varying these external inputs. This suggests that changes in behavior under various experimental conditions, e.g. changes in stimulus coherence or response deadline, are driven by internal modulation of afferent inputs to putative decision making circuits in the brain. For certain model systems one can analytically derive the nonlinear diffusion equation, thereby mapping the original system parameters onto the diffusion equation coefficients. Here, we illustrate this with three model systems including coupled rate equations and a network of spiking neurons.  相似文献   

15.
We present a simplified model to identify and analyze the important variables governing the diffusion of substances from pipettes into canine cardiac Purkinje cells in the whole cell patch clamp configuration. We show that diffusion of substances through the pipette is the major barrier for equilibration of the pipette and cellular contents. We solve numerically the one-dimensional diffusion equation for different pipette geometries, and we derive a simple analytic equation which allows one to estimate the time necessary to reach the steady state of intracellular concentration. The time constant of the transient to steady state is given by a pipette geometric factor times the cell volume divided by the diffusion coefficient of the substance of interest. The geometric factor is shown to be given by the ratio of pipette resistance to the resistivity of the filling solution. Additionally from our modeling, we concluded that pipette perfusion at distances greater than 20 microns from the pipette tip would not substantially reduce the time necessary to achieve the steady state.  相似文献   

16.
We investigate the detailed connection between the Wright-Fisher model of random genetic drift and the diffusion approximation, under the assumption that selection and drift are weak and so cause small changes over a single generation. A representation of the mathematics underlying the Wright-Fisher model is introduced which allows the connection to be made with the corresponding mathematics underlying the diffusion approximation. Two ‘hybrid’ models are also introduced which lie ‘between’ the Wright-Fisher model and the diffusion approximation. In model 1 the relative allele frequency takes discrete values while time is continuous; in model 2 time is discrete and relative allele frequency is continuous. While both hybrid models appear to have a similar status and the same level of plausibility, the different nature of time and frequency in the two models leads to significant mathematical differences. Model 2 is mathematically inconsistent and has to be ruled out as being meaningful. Model 1 is used to clarify the content of Kimura's solution of the diffusion equation, which is shown to have the natural interpretation as describing only those populations where alleles are segregating. By contrast the Wright-Fisher model and the solution of the diffusion equation of McKane and Waxman cover populations of all categories, namely populations where alleles segregate, are lost, or fix.  相似文献   

17.
The Smoluchowski equation for the bimolecular collision rate of dissolved oxygen molecules with spin labels yielded values for the diffusion constant of oxygen in water that are in agreement with the Stokes-Einstein equation (D infinity T/eta, where eta is the macroscopic viscosity) and with published values obtained by conventional methods. Heisenberg exchange at an interaction distance of 4.5 A occurs with a probability close to one for each encounter. In mixed hydrocarbons (olive oil, paraffin oils) and sec-butyl benzene, D infinity (T/eta)rho, where rho lies between 0.5 and 1. Oxygen diffuses in the hydrocarbons between 10 and 100 times more rapidly than predicted from the macroscopic viscosity. Similar results would be expected for diffusion of oxygen in model and biological membranes. Parallel measurements of rotational diffusion of the spin labels show little correlation with measurements of translational diffusion of oxygen. Dipolar interactions between spin labels and oxygen appear negligible except in the limit of highest viscosities.  相似文献   

18.
Fluorescence Recovery After Photobleaching (FRAP) using the confocal laser scanning microscope has become a standard method used to determine the diffusion coefficient and mobile fraction of cell surface proteins. A common experimental approach is to bleach a stripe on the cell surface and fit the ensuing FRAP curve to a 1D diffusion model. This model is derived from the time course of recovery to an infinitely long stripe bleached on an infinite flat plane. This choice of model dictates the use of a long bleach stripe. We demonstrate that, in the case of a long bleach stripe, the finite extent of the cell leads to significant errors in parameter estimation. We further show that these errors are reduced when a relatively small stripe is bleached. Unfortunately, diffusion to such a region is fundamentally two dimensional and therefore applying the 1D model of diffusion leads to significant errors. We derive an equation suitable for fitting to FRAP data acquired from small bleach regions and analyze its accuracy using simulated data. We propose that the use of a small bleach region along with a two dimensional diffusion model is the ideal protocol for cell surface FRAP.  相似文献   

19.
We have developed a model that predicts the distribution of carbon monoxide (CO) in the body resulting from acute inhalation exposures to CO. The model includes a lung compartment, arterial and venous blood compartments, and muscle and nonmuscle soft tissues with both vascular and nonvascular subcompartments. In the model, CO is allowed to diffuse between the vascular and nonvascular subcompartments of the tissues and to combine with myoglobin in the nonvascular subcompartment of muscle tissue. The oxyhemoglobin dissociation curve is represented by a modified Hill equation whose parameters are functions of the carboxyhemoglobin (HbCO) level. Values for skeletal muscle mass and cardiac output are calculated from prediction formulas based on age, weight, and height of individual subjects. We demonstrate that the model fits data from CO rebreathing studies when diffusion of CO into the muscle compartment is considered. The model also fits responses of HbCO to single or multiple exposures to CO lasting for a few minutes each. In addition, the model reproduces reported differences between arterial and venous HbCO levels and replicates predictions from the Coburn-Forster-Kane equation for CO exposures of a 1- to 83-h duration. In contrast to approaches based on the Coburn-Forster-Kane equation, the present model predicts uptake and distribution of CO in both vascular and tissue compartments during inhalation of either constant or variable levels of CO.  相似文献   

20.
R T Carr 《Biorheology》1989,26(5):907-920
Downstream from a microvascular bifurcation the distribution of blood cells in the vessel lumen is not symmetric. A diffusion process is used to model the rearrangement of red cells as blood flows between junctions in the microcirculation. A Fourier series approach is used to solve the model diffusion convection equation in slit geometry. Both flat and parabolic velocity profiles are considered. The eigenvalues, found using the Rayleigh-Ritz method, are used to find an upper bound on distance required for a symmetric red cell distribution to be obtained. The method has also been applied to cylindrical geometry and the computed symmetry recovery lengths are compared to distances between bifurcations measured in vivo. These estimates indicate that red cell distributions are frequently asymmetric in the microcirculation. Such asymmetries can have a strong effect on plasma skimming and material balance calculations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号