首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Most human tumors, including most male genital tumors, exhibit an exponential increase in incidence with advancing age of the host. This exponential age-incidence pattern can be explained by the accumulation of mutations in the stem cells of the tissues of tumor origin. The age-incidence pattern for testicular tumors, however, is unique with a large linear increase in incidence from age 14 to 30 and a linear decline in incidence from age 30 to 60. After age 60, the incidence of testicular tumors remains low and constant. The probability of testicular tumorigenesis is determined by the susceptibility of male germ cells to neoplastic mutation and/or the neoplastic mutagenicity of the male germ cell environment. Since there is no evidence for an environmental mutagen which is specific for male germ cells, and since male germ cells are unusually susceptible to mutation, we interpret the variation in testicular tumor incidence with age as a reflection of the susceptibility of male germ cells to neoplastic mutation. Cell are most susceptible to mutation during genome replication and we propose a model for testicular tumorigenesis which is consistent with the available data on male germ cell proliferation and with the data on testicular tumor incidence.  相似文献   

2.
X-irradiation of BALB/c mice in the second month of life induced a high incidence of generalized lymphatic leukemia of T-cell origin, beginning at 7 months of age. Infectious ecotropic murine leukemia virus (B-tropic predominant over N-tropic) was isolable from all tumor extracts but exhibited a wide titer range among individual leukemias. Detection of infectious xenotropic virus usually required extensive amplification on indicator cells. Dual-tropic (mink cell focus-forming) virus has not been found in the leukemias. Expression of ecotropic virus in tail extracts prepared at 6.5 months of age, although greatly enhanced compared with unirradiated controls, was not found to be prognostic of tumor development in individual mice. We conclude that leukemogenesis does not show a simple dependence on infectious murine leukemia virus expression in these mice.  相似文献   

3.
Interleukin-34 (IL-34) is a cytokine consisting of a 39kD homodimer, shown to be a ligand for both the Macrophage Colony Stimulating Factor (M-CSF/CSF-1) receptor and the Receptor-like protein tyrosine phosphatase-zeta (RPTP-ƺ). IL-34 has been shown to promote monocyte viability and proliferation as well as the differentiation of bone marrow cells into macrophage progenitors. Published work on IL-34 involves its effects on normal hematopoietic and osteoclast progenitors. However, it is not known whether IL-34 has biologic effects in cancer, including leukemia. Here we report that the biological effects of IL-34 include induction of differential expression of Interleukins-1α and -1β as well as induction of differentiation of U937, HL-60 and THP-1 leukemia cell lines demonstrating monocyte-like characteristics. The ability of IL-34 to induce monocytic-like differentiation is supported by strong morphological and functional evidence. Cell surface markers of myeloid lineage, CD64 and CD86, remain constant while the levels of CD11b and CD71 decline with IL-34 treatment. IL-34 also induced increases in CD14 and CD68 expression, further supporting maturation toward monocytic character. IL-34-induced differentiated U937 and THP-1 cell lines exhibited biological functions such as endocytosis and respiratory burst activities. Collectively, we conclude that while IL-34 does not induce cell growth or proliferation, it is able to induce differentiation of leukemia cell lines from monoblastic precursor cells towards monocyte- and macrophage-like cells, mediated through the JAK/STAT and PI3K/Akt pathways. To our knowledge, this is the first report that IL-34 induces differentiation in human leukemic cells, let alone any cancer model.  相似文献   

4.
microRNA (miRNA)在奶山羊雄性生殖细胞和精子发生过程有重要的调控功能。为研究miR-34c对雄性生殖干细胞增殖与分化中的作用,本文利用视黄酸效应基因8(Stra8)在雄性生殖细胞中随年龄增长,以其表达量上调的表达特征为指针,使用实时定量PCR技术筛选分析miRNAs。结果发现,miR-34c与Stra8的表达规律基本一致。在无精症奶山羊的睾丸组织中,发现miR-34c在无精症奶山羊睾丸组织中表达缺失。利用miR-34c模拟物及抑制剂转染奶山羊雄性生殖干细胞,体外转染miR-34c模拟物及其抑制剂,发现miR-34c能够下调Rarg、Stra8与c-Myc基因的表达,减缓奶山羊雄性生殖干细胞的增殖。结果提示,miR-34c可能具有调控奶山羊雄性生殖干细胞的减数分裂的作用,同时抑制其增殖。  相似文献   

5.
T.M. Dexter  D. Scott  N.M. Teich 《Cell》1977,12(2):355-364
Long-term cultures of proliferating hematopoietic stem cells derived from bone marrow permit the study of the interaction between murine leukemia virus (MuLV) infection and the proliferation and differentiation of stem cells. We have used this system to analyze the replication of different biological variants of MuLV in bone marrow cells; the effect of MuLV infection upon pluripotent stem cell (CFU-S) proliferation; and the effect of MuLV on differentiation of CFU-S along different hematopoietic pathways. Two MuLV variants were studied in detail: the Moloney strain of lymphatic leukemia virus (Mol-MuLV) and the erythroleukemic Friend virus complex (FLV) consisting of the lymphoid leukemia helper virus and the defective spleen focus-forming virus (SFFV). Mol-MuLV and its sarcoma virus pseudotype, MSV(Mol-MuLV), replicate efficiently in the bone marrow cultures; however, CFU-S are lost more readily than in uninfected cultures, and the cultures are soon represented by a majority population of mononuclear macrophages. On the other hand, infection with FLV produces a prolonged survival of the spleen colony-forming cells, CFU-S, and CFU-C (the committed granulocytic precursor cells). Production of erythroleukemogenic SFFV is maintained in these cultures for more than 40 weeks. No erythroblastic differentiation was observed in vitro, however, neither erythroblast precursor cells (CFU-E) nor hemoglobin-producing cells could be detected. This suggests that the target cell for FLV is an earlier precursor cell.  相似文献   

6.
The molecular events that lead to the cancer-initiating cell involve critical mutations in genes regulating normal cell growth and differentiation. Cancer stem cells, or cancer initiating cells have been described in the context of acute myeloid leukemia, breast, brain, bone, lung, melanoma and prostate. These cells have been shown to be critical in tumor development and should harbor the mutations needed to initiate a tumor. The origin of the cancer stem cells is not clear. They may be derived from stem cell pools, progenitor cells or differentiated cells that undergo trans-differentiation processes. It has been suggested that cell fusion and/or horizontal gene transfer events, which may occur in tissue repair processes, also might play an important role in tumor initiation and progression. Fusion between somatic cells that have undergone a set of specific mutations and normal stem cells might explain the extensive chromosomal derangements seen in early tumors. Centrosome deregulation can be an integrating factor in many of the mechanisms involved in tumor development. The regulation of the balance between cell renewal and cell death is critical in cancer. Increased knowledge of developmental aspects in relation to self-renewal and differentiation, both under normal and deregulated conditions, will probably shed more light on the mechanisms that lead to tumor initiation and progression.  相似文献   

7.
Dendrogenin A (DDA) and dendrogenin B (DDB) are new aminoalkyl oxysterols which display re-differentiation of tumor cells of neuronal origin at nanomolar concentrations. We analyzed the influence of dendrogenins on adult mice neural stem cell proliferation, sphere formation and differentiation. DDA and DDB were found to have potent proliferative effects in neural stem cells. Additionally, they induce neuronal outgrowth from neurospheres during in vitro cultivation. Taken together, our results demonstrate a novel role for dendrogenins A and B in neural stem cell proliferation and differentiation which further increases their likely importance to compensate for neuronal cell loss in the brain.  相似文献   

8.
Wang Q  Li N  Wang X  Shen J  Hong X  Yu H  Zhang Y  Wan T  Zhang L  Wang J  Cao X 《Life sciences》2007,80(5):420-429
We report here the molecular cloning and characterization of a novel human gene (hMYADM) derived from a human bone marrow stromal cell (BMSC) cDNA library, which shares high homology with mouse myeloid-associated differentiation marker (MYADM). hMYADM is also closely related to many other eukaryotic proteins, which together form a novel and highly conserved MYADM-like family. hMYADM with 322-residue protein contains eight putative transmembrane segments and confocal microscopic analysis confirmed its membrane localization by using anti-hMYADM monoclonal antibody. hMYADM mRNA was selectively expressed in human monocytes, dendritic cells, promyeloid or monocytic leukemia cell lines, but not in CD4+, CD8+, CD19+ cells, nor in T cell leukemia or lymphocytic leukemia cell lines. hMYADM expression was also found in normal human bone marrow enriched for CD34+ stem cells, and the expression was up-regulated when these cells were induced to differentiate toward myeloid cells. The mRNA expression level of hMYADM significantly increased in acute promyelocytic leukemia HL-60 and chronic myelogenous leukemia K562 cell line after phorbol myristate acetate (PMA)-induced differentiation. Our study suggests that hMYADM is selectively expressed in myeloid cells, and involved in the myeloid differentiation process, indicating that hMYADM may be one useful membrane marker to monitor stem cell differentiation or myeloid leukemia differentiation.  相似文献   

9.
Adult organ-specific stem cells are essential for organ homeostasis and repair in adult vertebrates. The intestine is one of the best-studied organs in this regard. The intestinal epithelium undergoes constant self-renewal throughout adult life across vertebrates through the proliferation and subsequent differentiation of the adult stem cells. This self-renewal system is established late during development, around birth, in mammals when endogenous thyroid hormone (T3) levels are high. Amphibian metamorphosis resembles mammalian postembryonic development around birth and is totally dependent upon the presence of high levels of T3. During this process, the tadpole intestine, predominantly a monolayer of larval epithelial cells, undergoes drastic transformation. The larval epithelial cells undergo apoptosis and concurrently, adult epithelial stem/progenitor cells develop de novo, rapidly proliferate, and then differentiate to establish a trough-crest axis of the epithelial fold, resembling the crypt-villus axis in the adult mammalian intestine. We and others have studied the T3-dependent remodeling of the intestine in Xenopus laevis. Here we will highlight some of the recent findings on the origin of the adult intestinal stem cells. We will discuss observations suggesting that liganded T3 receptor (TR) regulates cell autonomous formation of adult intestinal progenitor cells and that T3 action in the connective tissue is important for the establishment of the stem cell niche. We will further review evidence suggesting similar T3-dependent formation of adult intestinal stem cells in other vertebrates.  相似文献   

10.
肿瘤干细胞研究进展   总被引:1,自引:0,他引:1  
瞿素  胡云章 《生命科学》2003,15(5):259-261,265
肿瘤是危害人类健康的重大疾病。肿瘤的起源,即肿瘤的去分化起源和肿瘤的干细胞起源一直是有争议的,而随着干细胞研究的深入,越来越多的实验结果证实肿瘤起源于干细胞的观点。肿瘤干细胞不仅能够从血液系统恶性肿瘤中分离,乳腺癌实体瘤干细胞的成功分离也证实了肿瘤干细胞的存在。针对细胞特异的表面标记,可以靶向消灭肿瘤干细胞,治疗肿瘤。  相似文献   

11.
We recently found that microRNA-34a (miR-34a) is downregulated in human glioma tumors as compared to normal brain, and that miR-34a levels in mutant-p53 gliomas were lower than in wildtype-p53 tumors. We showed that miR-34a expression in glioma and medulloblastoma cells inhibits cell proliferation, G1/S cell cycle progression, cell survival, cell migration and cell invasion, but that miR-34a expression in human astrocytes does not affect cell survival and cell cycle. We uncovered the oncogenes c-Met, Notch-1 and Notch-2 as direct targets of miR-34a that are inhibited by miR-34a transfection. We found that c-Met levels in human glioma specimens inversely correlate with miR-34a levels. We showed that c-Met and Notch partially mediate the inhibitory effects of miR-34a on cell proliferation and cell death. We also found that mir-34a expression inhibits in vivo glioma xenograft growth. We concluded that miR-34a is a potential tumor suppressor in brain tumors that acts by targeting multiple oncogenes. In this extra view, we briefly review and discuss the implications of these findings and present new data on the effects of miR-34a in glioma stem cells. The new data show that miR-34a expression inhibits various malignancy endpoints in glioma stem cells. Importantly, they also show for the first time that miR-34a expression induces glioma stem cell differentiation. Altogether, the data suggest that miR-34a is a tumor suppressor and a potential potent therapeutic agent that acts by targeting multiple oncogenic pathways in brain tumors and by inducing the differentiation of cancer stem cells.  相似文献   

12.
Lymphangiogenesis is implicated in lymphatic metastasis of tumor cells. Recently, growing evidences show that endothelial progenitor cells (EPCs) are involved in lymphangiogenesis. This study has investigated effects of VEGF-C/VEGFR-3 (vascular endothelial growth factor receptor-3) signaling pathway on EPC differentiation and effectiveness of inhibiting lymphatic formation of EPCs with VEGFR-3 siRNA delivered in PEI (polyethylenimine)-alginate nanoparticles. CD34+VEGFR-3+ EPCs were sorted from mononuclear cells of human cord blood. Under induction with VEGF-C, the cells differentiated toward lymphatic endothelial cells. The nanoparticles were formulated with 25 kDa branched PEI and alginate. The size and surface charge of PEI-alginate nanoparticles loading VEGFR-3 siRNA (N/P = 16) are 139.1 nm and 7.56 mV respectively. VEGFR-3 siRNA specifically inhibited expression of VEGFR-3 mRNA in the cells. After treatment with PEI-alginate/siRNA nanocomplexes, EPCs could not differentiate into lymphatic endothelial cells, and proliferation, migration and lymphatic formation of EPC-derived cells were suppressed significantly. These results demonstrate that VEGFR-3 signaling plays an important role in differentiation of CD34+VEGFR-3+ EPCs. VEGFR-3 siRNA delivered with PEI-alginate nanoparticles can effectively inhibit differentiation and lymphangiogenesis of EPCs. Inhibiting VEGFR-3 signaling with siRNA/nanocomplexes would be a potential therapy for suppression of tumor lymphangiogenesis and lymphatic metastasis.  相似文献   

13.
Adult organ-specific stem cells are essential for organ homeostasis and repair in adult vertebrates. The intestine is one of the best-studied organs in this regard. The intestinal epithelium undergoes constant self-renewal throughout adult life across vertebrates through the proliferation and subsequent differentiation of the adult stem cells. This self-renewal system is established late during development, around birth, in mammals when endogenous thyroid hormone (T3) levels are high. Amphibian metamorphosis resembles mammalian postembryonic development around birth and is totally dependent upon the presence of high levels of T3. During this process, the tadpole intestine, predominantly a monolayer of larval epithelial cells, undergoes drastic transformation. The larval epithelial cells undergo apoptosis and concurrently, adult epithelial stem/progenitor cells develop de novo, rapidly proliferate, and then differentiate to establish a trough-crest axis of the epithelial fold, resembling the crypt-villus axis in the adult mammalian intestine. We and others have studied the T3-dependent remodeling of the intestine in Xenopus laevis. Here we will highlight some of the recent findings on the origin of the adult intestinal stem cells. We will discuss observations suggesting that liganded T3 receptor (TR) regulates cell autonomous formation of adult intestinal progenitor cells and that T3 action in the connective tissue is important for the establishment of the stem cell niche. We will further review evidence suggesting similar T3-dependent formation of adult intestinal stem cells in other vertebrates.  相似文献   

14.
Abstract

Nestin is a neuroepithelial stem cell marker that is expressed in some types of tumor cells. Recent reports suggest that Nestin may be closely related to malignant cell proliferation and migration. Acute leukemia (AL) is characterized by a lack of differentiation, which results in uncontrolled proliferation in the bone marrow and accumulation of immature cells. The expression and function of Nestin in AL is unclear. We investigated Nestin immunohistochemical patterns of 87 patients that included 47 cases of acute myeloid leukemia (AML) and 40 cases of acute lymphoblastic leukemia (ALL), and 20 patients in complete remission (CR) from AML or ALL. We also investigated the clinico-pathological features of 87 cases of AL and their CR and overall survival (OS). Nestin was expressed in leukemic blasts and mature granulocytic cells in most cases (39/47) of AML. Conversely, Nestin was expressed in mature granulocytic cells in fewer cases (6/40) of ALL, but not in blasts. Nestin expression appeared in leukemic blasts of AML, but not ALL. Nestin expression in AML blast cells was not associated with CR or OS. We provide evidence that Nestin is expressed in AL and might be a useful immunohistochemical marker for identifying AML and ALL.  相似文献   

15.
The many faces of Notch signaling in skin-derived cells   总被引:1,自引:0,他引:1  
Since the cloning of the Drosophila gene in the 1980s, decades of research have sought to dissect the intricacies of the mammalian Notch signaling cascade. The intrigue of this pathway undoubtedly lies in its ability to influence diverse cellular processes, including differentiation, cell fate, homeostasis, survival, proliferation and angiogenesis. Based on its evolutionary conservation and its fundamental role in development, it is not surprising that deregulation of the Notch signaling pathway can result in neoplastic growth. While originally of particular interest to immunologists based on its chief role in influencing T-cell fate decisions and tumor oncogenesis in T-cell acute lymphoblastic leukemia, pigment cell biologists have recently taken notice of the Notch cascade based on studies suggesting the importance of this pathway in regulating melanocyte stem cell survival and melanoma progression. We will review the Notch signaling literature as it relates to skin homeostasis, melanocytic stem cells and melanoma tumorigenesis.  相似文献   

16.
Tumor development, MOPC-315 stem cells, and M315-secretory cells were quantitated in carrier-primed BALB/c mice that had been challenged subcutaneously or i.v. with mixtures of TNP-carrier and TNP-binding MOPC-315 cells. We observed that tumor incidence, myeloma stem cells, and secretory myeloma cells were: i) suppressed in mice in whom carrier-specific suppressor T cells had previously been induced and ii) initially ehnahced in mice with carrier-specific helper T cells. The early enhancement in mice with carrier-specific helper T cells was followed by progressively declining myeloma stem cell frequencies and regression of established tumors. These studies demonstrate that T cell-derived immunoregulators of host origin can be focused onto localized and disseminated malignant B cells and specifically regulate the expansion and differentiation of the neoplastic clone.  相似文献   

17.
E. N. MacKay  A. H. Sellers 《CMAJ》1967,96(25):1626-1635
In Ontario, leukemia causes about 4% of all cancer deaths, ranging from nearly 50% at under 5 years of age to 1-3% at age 50 and over. Age-specific death rates are highest among older people; at all ages, male deaths exceed female deaths. Only about 20% of all leukemia patients in Ontario are registered at Ontario Cancer Clinics; the proportion changed sharply with the advent of chemotherapy. For 1258 patients registered in 1938-1963, the crude one-year survival rate was 50%, ranging from 9% for acute leukemia to about 60% for non-acute lymphatic and myeloid leukemia. The long-term outlook was much better for non-acute lymphatic leukemia than for non-acute myeloid leukemia. For acute leukemia, the treatment of choice was chemotherapy; for non-acute lymphatic leukemia, radiotherapy was used, followed, if required, by chemotherapy or further radiotherapy. For non-acute myeloid leukemia, the advantage of chemotherapy over radiotherapy was not established.  相似文献   

18.
Since the cloning of the Drosophila gene in the 1980s, decades of research have sought to dissect the intricacies of the mammalian Notch signaling cascade. The intrigue of this pathway undoubtedly lies in its ability to influence diverse cellular processes, including differentiation, cell fate, homeostasis, survival, proliferation and angiogenesis. Based on its evolutionary conservation and its fundamental role in development, it is not surprising that deregulation of the Notch signaling pathway can result in neoplastic growth. While originally of particular interest to immunologists based on its chief role in influencing T‐cell fate decisions and tumor oncogenesis in T‐cell acute lymphoblastic leukemia, pigment cell biologists have recently taken notice of the Notch cascade based on studies suggesting the importance of this pathway in regulating melanocyte stem cell survival and melanoma progression. We will review the Notch signaling literature as it relates to skin homeostasis, melanocytic stem cells and melanoma tumorigenesis.  相似文献   

19.
树突状细胞(DC)是初级免疫应答的激发者,是最有活力的抗原递呈细胞(APC),可以有效地抑制白血病细胞逃逸。未成熟DC细胞从细胞外捕获各种抗原信息,成熟DC细胞传递各种抗原信息给宿主淋巴结的T细胞,激活抗原相关的主要组织相容性复合体(MHC)限制性特异性免疫应答,另外,亦可通过影响B细胞的增殖,不同程度的活化体液免疫应答。细胞因子诱导的杀伤细胞(CIK)是一组具有细胞毒作用的异质细胞群,是较LAK细胞溶瘤活性更强的一种免疫活性细胞,对包括白血病在内的多种恶性肿瘤具有抗肿瘤效应,具有非MHC限制性的杀瘤特点。二者联合培养及应用又增强了各自的活性。DC细胞与CIK细胞对于白血病的疗效不仅在实验室得以证实,而且已经逐步应用于临床,其在清除微小残留病以及预防造血干细胞移植后复发中取得了良好的效果。随着细胞制备技术的完善和研究的进一步深入,自体DC、CIK细胞治疗急性髓细胞白血病逐渐获得众多专家的认可。中国卫生部已经把自体免疫细胞治疗技术做为第三类医疗技术应用于临床,批准号200984。本文就目前DC、CIK、DC-CIK细胞免疫疗法在急性髓细胞白血病中的应用进展加以综述。  相似文献   

20.
BACKGROUND: Poor graft function without rejection may occur after stem cell transplantation (SCT). CD34(+) stem cell boost (SCB) can restore marrow function but may induce or exacerbate GvHD. We therefore investigated the feasibility and efficacy of CD34(+)-selected SCB in some patients with poor graft function. We present the results for eight patients (median age 46 years) transplanted initially for myelofibrosis, acute leukemia, myeloma and NHL. Six patients had received HLA-matched and two mismatched grafts (PB, BM; n=5, 3). After a median of 128 days post-transplant, the median leukocyte and platelet counts were, respectively, 2.05/nL and 18/nL. None had achieved platelet counts >50/nL even though donor chimerism was >95% in seven recipients. METHODS: Positive selection of CD34(+) stem cells was performed on a CliniMACS device, observing GMP and achieving a median of 98.5% purity. The patients received a median of 1.7 x 10(6)/kg CD34(+) cells and 2.5 x 10(3)/kg CD3(+) T lymphocytes. RESULTS: Hemograms at days +30, +60 and +90, respectively, showed steadily increasing median leukocyte (2.55, 3.15 and 4.20/nL) and platelet (29, 39 and 95/nL) counts. After a median follow-up of 144 days, five patients remained alive. No patient had developed acute or chronic GvHD. One patient died of leukemic relapse and two others of systemic mycosis. DISCUSSION: These preliminary results point to the possibility of safely improving graft function using CD34(+) positively selected stem cells without necessarily increasing the incidence of GvHD in patients with poor graft function post-SCT. Experience with more patients and longer follow-up should clarify the optimal role for this procedure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号