首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We tested the hypothesis that venous emptying serves as a stimulus for vasodilation in the human forearm. We compared the forearm blood flow (FBF; pulsed Doppler mean blood velocity and echo Doppler brachial artery diameter) response to temporary elevation of a resting forearm from below to above heart level when venous volume was allowed to drain versus when venous drainage was prevented by inflation of an upper arm cuff to approximately 30 mmHg. Arm elevation resulted in a rapid reduction in venous volume and pressure. Cuff inflation just before elevation effectively prevented these changes. FBF was briefly reduced by approximately 16% following arm elevation. A transient (86%) increase in blood flow began by approximately 5 s of arm elevation and peaked by 8 s, indicating a vasodilation. This response was completely abolished by preventing venous emptying. Arterial inflow below heart level was markedly elevated by 343% following brief (4 s) forearm elevation. This hyperemia was minor when venous emptying during forearm elevation had been prevented. We conclude that venous emptying serves as a stimulus for a transient (within 10 s) vasodilation in vivo. This vasodilation can substantially elevate arterial inflow.  相似文献   

2.
The brain uptake index (BUI) of L-tryptophan and diazepam into the right and left hemispheres and the cerebellum has been measured after a bolus injection into the carotid artery of the anaesthetised rat. The effect of a range of albumin concentrations (38 microM to 1.4 mM; 0.25-9 g/100 ml) on the viscosity and osmotic pressure of the bolus was studied as a preliminary to the brain uptake experiments. Dextran (Mr 60,000-90,000) was included in the injection to ensure constant viscosity and osmotic pressure. An increase in albumin concentration up to 2 g/100 ml substantially reduced the BUI of L-tryptophan, but a further increase in albumin concentration up to 9 g/100 ml resulted in only a slow fall in the BUI of L-tryptophan which was not proportional to the larger fall in the concentration of unbound L-tryptophan. Furthermore, the use of norharmane as an inhibitor of L-tryptophan binding did not reveal a simple relationship between its unbound concentration and BUI. A decrease in the unbound concentration of diazepam also reduced its BUI, but again there was no straightforward relationship between this and unbound diazepam concentration. The differences observed in the BUI of inulin from solutions of either dextran or albumin indicate not only that each macromolecule may exert particular effects on the BUI, perhaps by an influence on cerebral blood flow, but also show how difficult it is to devise solutions for injection which differ in respect of only one variable, that of the unbound ligand concentration.  相似文献   

3.
BackgroundGestational hypertensive and acute hypotensive disorders are associated with maternal morbidity and mortality worldwide. However, physiological blood pressure changes in pregnancy are insufficiently defined. We describe blood pressure changes across healthy pregnancies from the International Fetal and Newborn Growth Consortium for the 21st Century (INTERGROWTH-21st) Fetal Growth Longitudinal Study (FGLS) to produce international, gestational age-specific, smoothed centiles (third, 10th, 50th, 90th, and 97th) for blood pressure.Methods and findingsSecondary analysis of a prospective, longitudinal, observational cohort study (2009 to 2016) was conducted across 8 diverse urban areas in Brazil, China, India, Italy, Kenya, Oman, the United Kingdom, and the United States of America. We enrolled healthy women at low risk of pregnancy complications. We measured blood pressure using standardised methodology and validated equipment at enrolment at <14 weeks, then every 5 ± 1 weeks until delivery.We enrolled 4,607 (35%) women of 13,108 screened. The mean maternal age was 28·4 (standard deviation [SD] 3.9) years; 97% (4,204/4,321) of women were married or living with a partner, and 68% (2,955/4,321) were nulliparous. Their mean body mass index (BMI) was 23.3 (SD 3.0) kg/m2. Systolic blood pressure was lowest at 12 weeks: Median was 111.5 (95% CI 111.3 to 111.8) mmHg, rising to a median maximum of 119.6 (95% CI 118.9 to 120.3) mmHg at 40 weeks’ gestation, a difference of 8.1 (95% CI 7.4 to 8.8) mmHg. Median diastolic blood pressure decreased from 12 weeks: 69.1 (95% CI 68.9 to 69.3) mmHg to a minimum of 68.5 (95% CI 68.3 to 68.7) mmHg at 19+5 weeks’ gestation, a change of −0·6 (95% CI −0.8 to −0.4) mmHg. Diastolic blood pressure subsequently increased to a maximum of 76.3 (95% CI 75.9 to 76.8) mmHg at 40 weeks’ gestation. Systolic blood pressure fell by >14 mmHg or diastolic blood pressure by >11 mmHg in fewer than 10% of women at any gestational age. Fewer than 10% of women increased their systolic blood pressure by >24 mmHg or diastolic blood pressure by >18 mmHg at any gestational age. The study’s main limitations were the unavailability of prepregnancy blood pressure values and inability to explore circadian effects because time of day was not recorded for the blood pressure measurements.ConclusionsOur findings provide international, gestational age-specific centiles and limits of acceptable change to facilitate earlier recognition of deteriorating health in pregnant women. These centiles challenge the idea of a clinically significant midpregnancy drop in blood pressure.

Lauren Green and colleagues study blood pressure in pregnant women across a range of countries.  相似文献   

4.
In the conscious rabbit, exposure to an air jet stressor increases arterial pressure, heart rate, and cardiac output. During hemorrhage, air jet exposure extends the blood loss necessary to produce hypotension. It is possible that this enhanced defense of arterial pressure is a general characteristic of stressors. However, some stressors such as oscillation (OSC), although they increase arterial pressure, do not change heart rate or cardiac output. The cardiovascular changes during OSC resemble those seen during freezing behavior. In the present study, our hypothesis was that, unlike air jet, OSC would not affect defense of arterial blood pressure during blood loss. Male New Zealand White rabbits were chronically prepared with arterial and venous catheters and Doppler flow probes. We removed venous blood until mean arterial pressure decreased to 40 mmHg. We repeated the experiment in each rabbit on separate days in the presence and absence (SHAM) of OSC. Compared with SHAM, OSC increased arterial pressure 14 +/- 1 mmHg, central venous pressure 3.3 +/- 0.4 mmHg, and hindquarter blood flow 34 +/- 4% while decreasing mesenteric conductance 32 +/- 3% and not changing heart rate or cardiac output. During normotensive hemorrhage, OSC enhanced hindquarter and renal vasoconstriction. Contrary to our hypothesis, OSC (23.5 +/- 0.6 ml/kg) increased the blood loss necessary to produce hypotension compared with SHAM (16.8 +/- 0.6 ml/kg). In nine rabbits, OSC prevented hypotension even after a blood loss of 27 ml/kg. Thus a stressful stimulus that resulted in cardiovascular changes similar to those seen during freezing behavior enhanced defense of arterial pressure during hemorrhage.  相似文献   

5.
《Journal of Physiology》1998,92(1):25-30
In the present experiments we investigated a possible involvement of imidazoline receptors of the paraventricular nucleus (PVN) of the hypothalamus on the pressor effects of the angiotensin II (ANG II) injected into the subfornical organ (SFO), in male Holtzman rats (250–300 g) with a cannula implanted into the third ventricle (3rdV), PVN and SFO. At first we tested the participation of α2 and imidazoline agonist and antagonist compounds on the pressor effect of ANG II injected into the 3rdV. Based on the results we may conclude that clonidine associated with rilmenidine was able to block the hypertensive response to ANG II. The ANG II (20 pmol) injected into SFO induced a robust increase in blood pressure (37 ± 2 mmHg). Isotonic saline (0.15 M) NaCl did not produce any change in blood pressure (5 ± 2 mmHg). The injection of rilmenidine (30 μg/kg/1 μL), an imidazoline agonist agent injected into PVN before ANG II injection into SFO, blocked the pressor effect of ANG II (5 ± 2 mmHg). Also, the injection of idazoxan (60 μg/kg/μL) before rilmenidine blocked the inhibitory effect of rilmenidine on blood pressure (39 ± 4 mmHg). The injection of clonidine (20 nmol/μL) prior to ANG II into the 3rdV produced a decreased in arterial blood pressure (37 ± 2 mmHg) to (15 ± 4 mmHg). The injection of yohimbine (80 nmol/μL) prior to clonidine blocked the effect of clonidine on the effect of ANG II (27 ± 2 mmHg). The injection of rilmenidine prior to ANG II also induced a decrease in arterial blood pressure (10 ± 3 mmHg). The injection of idazoxan prior to rilmenidine also blocked the inhibitory effect of rilmenidine (24 ± 3 mmHg). In summary, the present study demonstrated that rilmenidine decreases the hypertensive effect of ANG II, with more potency than clonidine, even when injected into 3rdV or PVN. This study established that the PVN interacts with SFO by imidazoline receptors in order to control the arterial blood pressure.  相似文献   

6.
A Sanchez  W A Pettinger 《Life sciences》1981,29(26):2795-2802
We studied the effect of high (8%) versus normal (0.6%) sodium diet on renal α1 and α2-adrenergic receptors and on blood pressure in Okamoto-Aoki spontaneously hypertensive (SH) and Wistar Kyoto (WKY) “normotensive” rats. SH rats had higher renal α1 (p<.05) and ga2-receptor densities (p<.05) and blood pressure (p<.001) than WKY rats on normal salt diets. High salt (8% NaCl) diet increased the already elevated α2-receptor density (p<.001) and blood pressure (p<.005) even higher in the SH rats after two and after five weeks. After two weeks of high salt diet α2-receptor density had increased by 27% (p<.01) in WKY rats and the blood pressure had increased (p>.01). Ingestion of the high salt diet for 5 weeks increased blood pressure from 130 mmHg to 174 mmHg (p<.001) and α2-receptor density from 255 and 375 fMo1/mg protein (p<.001) in the WKY rats. We conclude: 1) Renal α1 and α2-receptor density is higher in the SH than in WKY rats 2) The dietary sodium-induced increase in α2-receptor density in WKY rats and anedates most of the elevation of blood pressure 3) The increase in blood pressure is directly related to the increase in renal α2-receptor density in SH and WKY rats. Thus, the increment in renal α2-receptor density appears to be a genetic marker of hypertension and could be related to a basic hypertensive mechanism.  相似文献   

7.
We investigated whether biofeedback of the R-wave-to-pulse interval, a measure related to the pulse wave velocity, enables participants with either high or low arterial blood pressure to modify their blood pressure. Twelve participants with high blood pressure (mean systolic blood pressure = 142.6 ± 13.5 mmHg; mean diastolic blood pressure = 99.9 ± 12.3 mmHg) and 10 participants with low blood pressure (mean systolic blood pressure = 104.8 ± 6.6 mmHg; mean diastolic blood pressure = 73.2 ± 4.2 mmHg) received 3 individual sessions of RPI biofeedback within a 2-week period. Participants with high blood pressure were rewarded for decreasing and participants with low blood pressure for increasing their blood pressure. Standard arm-cuff blood pressure measurements across the sessions served as dependent variables. Participants with high blood pressure achieved significant reductions of systolic (15.3 mmHg) and diastolic (17.8 mmHg) blood pressure levels from the beginning of the first to the end of the last training session. In contrast, participants with low blood pressure achieved significant increases in systolic (12.3 mmHg) and diastolic (8.4 mmHg) blood pressure levels. The degree of blood pressure changes in this study might be of clinical relevance. With prolonged and refined training regimens, even larger effects seem to be likely.  相似文献   

8.
The purpose of this study was to investigate whether nocturnal hypoxia causes daytime blood pressure (BP) elevation. We hypothesized that overnight exposure to hypoxia leads the next morning to elevation in BP that outlasts the hypoxia stimulus. We studied the effect on BP of two consecutive night exposures to hypobaric hypoxia in 10 healthy normotensive subjects. During the hypoxia nights, subjects slept for 8 h in a hypobaric chamber at a simulated altitude of 4,000 m (barometric pressure = 462 mmHg). Arterial O(2) saturation and electrocardiogram were monitored throughout the night. For 30 min before the nocturnal simulated ascent and for 4 h after return to baseline altitude the next morning, BP was measured every 5 min while the subject was awake. The same measurements were made before and after 2 normoxic nights of sleep in the hypobaric chamber at ambient barometric pressure (745 mmHg). Principal components analysis was applied to evaluate patterns of BP response after the second night of hypoxia and normoxia. A distinct pattern of diastolic BP (DBP) elevation was observed after the hypoxia night in 9 of the 10 subjects but in none after the normoxia night. This pattern showed a mean increase of 4 mmHg in DBP compared with the presleep-awake baseline in the first 60 min and a return to baseline by 90 min. We conclude that nocturnal hypoxia leads to a carryover elevation of daytime DBP.  相似文献   

9.
Coronary sinus pressure (Pcs) elevation shifts the diastolic coronary pressure-flow relation (PFR) of the entire left ventricular myocardium to a higher pressure intercept. This finding suggests that Pcs is one determinant of zero-flow pressure (Pzf) and challenges the existence of a vascular waterfall mechanism in the coronary circulation. To determine whether coronary sinus or tissue pressure is the effective coronary back pressure in different layers of the left ventricular myocardium, the effect of increasing Pcs was studied while left ventricular preload was low. PFRs were determined experimentally by graded constriction of the circumflex coronary artery while measuring flow using a flowmeter. Transmural myocardial blood flow distribution was studied (15-micron radioactive spheres) at steady state, during maximal coronary artery vasodilatation at three points on the linear portion of the circumflex PFR both at low and high diastolic Pcs (7 +/- 3 vs. 22 +/- 5 mmHg; p less than 0.0001) (1 mmHg = 133.322 Pa). In the uninstrumented anterior wall the blood flow measurements were obtained in triplicate at the two Pcs levels. From low to high Pcs, mean aortic (98 +/- 23 mmHg) and left atrial (5 +/- 3 mmHg) pressure, percent diastolic time (49 +/- 7%), percent left ventricular wall thickening (32 +/- 4%), and percent myocardial lactate extraction (15 +/- 12%) were not significantly changed. Increasing Pcs did not alter the slope of the PFR; however, the Pzf increased in the subepicardial layer (p less than 0.0001), whereas in the subendocardial layer Pzf did not change significantly. Similar slopes and Pzf were observed for the PFR of both total myocardial mass and subepicardial region at low and high Pcs. Subendocardial:subepicardial blood flow ratios increased for each set of measurements when Pcs was elevated (p less than 0.0001), owing to a reduction of subepicardial blood flow; however, subendocardial blood flow remained unchanged, while starting in the subepicardium toward midmyocardium blood flow decreased at high Pcs. This pattern was similar for the uninstrumented anterior wall as well as in the posterior wall. Thus as Pcs increases it becomes the effective coronary back pressure with decreasing magnitude from the subepicardium toward the subendocardium of the left ventricle. Assuming that elevating Pcs results in transmural elevation in coronary venous pressure, these findings support the hypothesis of a differential intramyocardial waterfall mechanism with greater subendo- than subepi-cardial tissue pressure.  相似文献   

10.
Effects of airway pressure on bronchial blood flow   总被引:2,自引:0,他引:2  
We studied the effects of increased airway pressure caused by increasing levels of positive end-expiratory pressure (PEEP) on bronchial arterial pressure-flow relationships. In eight alpha-chloralose-anesthetized mechanically ventilated sheep (23-27 kg), the common bronchial artery, the bronchial branch of the bronchoesophageal artery, was cannulated and perfused with a pump. The control bronchial blood flow (avg 12 +/- 1 ml/min or 0.48 ml X min-1 X kg-1) was set to maintain mean bronchial arterial pressure equal to systemic blood pressure. Pressure-flow curves of the bronchial circulation were measured by making step changes in bronchial blood flow, and changes in these curves were analyzed with measurements of the pressure at zero flow and the slope of the linearized curve. The zero-flow pressure represents the effective downstream pressure, and the slope represents the resistance through the bronchial vasculature. At a constant bronchial arterial pressure of 100 mmHg, an 8 mmHg increase in mean airway pressure caused a 40% reduction in bronchial blood flow. Under constant flow conditions, increases in mean airway pressure with the application of PEEP caused substantial increases in bronchial arterial pressure, averaging 4.6 mmHg for every millimeters of mercury increase in mean airway pressure. However, bronchial arterial pressure at zero flow increased approximately one-for-one with increases in mean airway pressure. Thus the acute sensitivity of the bronchial artery to changes in mean airway pressure results primarily from changes in bronchovascular resistance and not downstream pressure.  相似文献   

11.
P A Doris  S Harvey  P K Pang 《Life sciences》1987,41(11):1383-1389
Plasma parathyroid hormone (pPTH) levels have been assessed in three separate radioimmunoassay systems in samples from Wistar-Kyoto rats. The animals were subjected to one of three dietary regimens throughout the study period: Group 1 animals consumed normal rat chow and drank tap water; Group 2 animals consumed normal rat chow and tap water was replaced with 0.5% saline solution; Group 3 animals consumed normal rat chow to which 2.5% CaCO3 (by weight) had been added and also drank 0.5% saline solution. Animals had consumed these diets for approximately 7 months prior to sacrifice for blood collection. Blood pressure was measured by tail cuff plethysmography in these animals and, as previously reported, saline consuming animals showed a moderate hypertension (Gp 2) only when diets did not contain added calcium (Gp 3). In the week prior to sacrifice, mean blood pressures were: Gp 1: 128.0 +/- 3.46 mmHg; Gp 2: 140.2 +/- 3.15 mmHg; and Gp 3: 133.5 +/- 2.90 mmHg. Three assay systems were used to measure pPTH levels from trunk blood samples obtained by guillotine decapitation. One assay used an antiserum directed toward the vasoactive N terminal fragment 1-34 and produced pPTH measurements of 0.74 +/- 0.05 ng/ml in Gp 1 animals, 1.04 +/- 0.07 ng/ml in Gp 2 animals and 1.12 +/- 0.08 ng/ml in Gp 3 animals. This pattern was consistent with that obtained by another antiserum which had been raised against the intact 1-84 PTH molecule and produced values of 0.25 +/- 0.03 ng/ml in Gp 1 animals, 0.55 +/- 0.07 ng/ml in Gp 2 animals and 0.74 +/- 0.04 ng/ml in Gp 3 animals. Antiserum raised against the C-terminal did not show any difference in pPTH across groups. We conclude that saline consumption may increase some portions of circulating PTH. Such elevation of pPTH may not be a pathophysiological component in the sodium dependent elevation of blood pressure since animals concurrently consuming both saline and calcium supplemented diets retained elevated pPTH levels even though blood pressures did not differ from controls. Rather, elevation of circulating PTH levels may be a response to prolonged increases in sodium consumption.  相似文献   

12.
13.
The effect of maternal protein restriction during pregnancy on the offspring's blood pressure was assessed in stroke-prone spontaneously hypertensive rats (SHRSP) which are genetically predisposed to hypertension and stroke. After the confirmation of pregnancy, the control group was given a 20% casein diet, and the low-protein group was fed a 9% casein diet. After the confirmation of delivery, commercial feed was given to both of the groups. No differences were seen between the control and low-protein offspring in regard to body weight, blood pressure elevation, or life span. One percent saline solution was put in the control and low-protein groups after the age of 11 weeks. Blood pressure increased markedly in the low-protein group, on the blood pressure level in the low-protein group on week 2 after salt loading (242+/-6 mmHg) was significantly higher than that in the control group (223+/-9 mmHg; p<0.05). The survival duration was significantly shorter in the low-protein group (113+/-4 days) than in the control group (135+/-22 days; p<0.05). These results suggest that maternal protein malnutrition in SHRSP exerted a high salt sensitivity and a malignant influence on stroke incidence on offspring.  相似文献   

14.
Shear wave elastography (SWE) is emerging as an innovative tool to evaluate muscle properties and function. It has been shown to correlate with both passive and active muscle forces, and is sensitive to physiological processes and pathological conditions. Similarly, intramuscular pressure (IMP) is an important parameter that changes with passive and active muscle contraction, body position, exercise, blood pressure, and several pathologies. Therefore, the objective of this study was to quantify the dependency of shear modulus within the lower-leg muscles on IMP in healthy individuals. Nineteen healthy individuals (age: Mean age ± SD, 23.84 ± 6.64 years) were recruited. Shear modulus was measured using ultrasound SWE on the tibialis anterior (TA) and peroneus longus (PL) muscles using pressure cuff inflation around the thigh at 40 mmHg, 80 mmHg, and 120 mmHg. Changes in IMP were verified using a catheter connected to a blood pressure monitor. It was found that IMP was correlated to TA and PL shear modulus (spearman's rank correlation = 0.99 and 0.99, respectively). Applying a gradual increase of cuff pressure from 0 to 120 mmHg increased the shear modulus of the TA and PL muscles from 15.83 (2.46) kPa to 21.88 (4.33) kPa and from 9.64 (1.97) kPa to 12.88 (5.99) kPa, respectively. These results demonstrate that changes of muscle mechanical properties are dependent on IMP. This observation is important to improve interpretation of ultrasound elastograms and to potentially use it as a biomarker for more accurate diagnosis of pathologies related to increased IMP.  相似文献   

15.
Lifting of a heavy weight may lead to "blackout" and occasionally also to cerebral hemorrhage, indicating pronounced consequences for the blood flow through the brain. We hypothesized that especially strenuous respiratory straining (a Valsalva-like maneuver) associated with intense static exercise would lead to a precipitous rise in mean arterial and central venous pressures and, in turn, influence the middle cerebral artery blood velocity (MCA V(mean)) as a noninvasive indicator of changes in cerebral blood flow. In 10 healthy subjects, MCA V(mean) was evaluated in response to maximal static two-legged exercise performed either with a concomitantly performed Valsalva maneuver or with continued ventilation and also during a Valsalva maneuver without associated exercise (n = 6). During static two-legged exercise, the largest rise for mean arterial pressure and MCA V(mean) was established at the onset of exercise performed with a Valsalva-like maneuver (by 42 +/- 5 mmHg and 31 +/- 3% vs. 22 +/- 6 mmHg and 25 +/- 6% with continued ventilation; P < 0.05). Profound reductions in MCA V(mean) were observed both after exercise with continued ventilation (-29 +/- 4% together with a reduction in the arterial CO(2) tension by -5 +/- 1 Torr) and during the maintained Valsalva maneuver (-21 +/- 3% together with an elevation in central venous pressure to 40 +/- 7 mmHg). Responses to performance of the Valsalva maneuver with and without exercise were similar, reflecting the deterministic importance of the Valsalva maneuver for the central and cerebral hemodynamic response to intense static exercise. Continued ventilation during intense static exercise may limit the initial rise in arterial pressure and may in turn reduce the risk of hemorrhage. On the other hand, blackout during and after intense static exercise may reflect a reduction in cerebral blood flow due to expiratory straining and/or hyperventilation.  相似文献   

16.
The purpose of this study was to investigate the acute blood pressure (BP) and hemodynamic effects of sodium chloride (3% intravenous solution). Although many studies link a change in dietary sodium to a change in BP, few consider the effects of sodium concentration in the blood on BP. We hypothesized that an intravenous sodium load would increase BP, and we quantified alterations in cardiac output (Qc) and peripheral vascular resistance (PVR). Thirteen subjects (age 27 +/- 2 yr) underwent a 60-min 3% saline infusion (0.15 ml.kg(-1).min(-1)). BP was assessed on a beat-to-beat basis with a Finometer, Qc was assessed via the CO(2) rebreathing technique, and PVR was derived. Serum sodium and osmolality increased, and hematocrit declined during the infusion (ANOVA, P < 0.01). Mean arterial pressure (MAP) increased continuously during the infusion from 81.8 +/- 3.4 to 91.6 +/- 3.6 mmHg (ANOVA, P < 0.01). BP responsiveness to sodium was expressed as the slope of the serum sodium-MAP relationship and averaged 1.75 +/- 0.34 mmHg.mmol(-1).l(-1). BP responsiveness to the volume change was expressed as the slope of the hematocrit-MAP relationship and averaged -2.2 +/- 0.35 mmHg/%. The early change in MAP was mediated by an increase in Qc and the late change by an increase in PVR (P < 0.05), corresponding to a 30% increase in plasma norepinephrine. In conclusion, an acute infusion of hypertonic saline was effective in increasing BP, and both sodium and volume appear to be involved in this increase; acute BP responsiveness to serum sodium can be quantified using a MAP-sodium plot.  相似文献   

17.
Variability in blood pressure predicts cardiovascular disease in young- and middle-aged subjects, but relevant data for older individuals are sparse. We analysed data from the PROspective Study of Pravastatin in the Elderly at Risk (PROSPER) study of 5804 participants aged 70–82 years with a history of, or risk factors for cardiovascular disease. Visit-to-visit variability in blood pressure (standard deviation) was determined using a minimum of five measurements over 1 year; an inception cohort of 4819 subjects had subsequent in-trial 3 years follow-up; longer-term follow-up (mean 7.1 years) was available for 1808 subjects. Higher systolic blood pressure variability independently predicted long-term follow-up vascular and total mortality (hazard ratio per 5 mmHg increase in standard deviation of systolic blood pressure = 1.2, 95% confidence interval 1.1–1.4; hazard ratio 1.1, 95% confidence interval 1.1–1.2, respectively). Variability in diastolic blood pressure associated with increased risk for coronary events (hazard ratio 1.5, 95% confidence interval 1.2–1.8 for each 5 mmHg increase), heart failure hospitalisation (hazard ratio 1.4, 95% confidence interval 1.1–1.8) and vascular (hazard ratio 1.4, 95% confidence interval 1.1–1.7) and total mortality (hazard ratio 1.3, 95% confidence interval 1.1–1.5), all in long-term follow-up. Pulse pressure variability was associated with increased stroke risk (hazard ratio 1.2, 95% confidence interval 1.0–1.4 for each 5 mmHg increase), vascular mortality (hazard ratio 1.2, 95% confidence interval 1.0–1.3) and total mortality (hazard ratio 1.1, 95% confidence interval 1.0–1.2), all in long-term follow-up. All associations were independent of respective mean blood pressure levels, age, gender, in-trial treatment group (pravastatin or placebo) and prior vascular disease and cardiovascular disease risk factors. Our observations suggest variability in diastolic blood pressure is more strongly associated with vascular or total mortality than is systolic pressure variability in older high-risk subjects.  相似文献   

18.
Because of the potential role of PAF-acether in the pathogenesis of endotoxin shock, we examined the preventive and curative effects of BN 52021, a new PAF-acether antagonist in guinea-pig challenged with S. Typhimurium endotoxin. A biphasic reduction of mean arterial pressure was elicited by i.v. endotoxin (300 micrograms/kg) in control animals, with a rapid drop of blood pressure (maximal decrease within 10 min), partial recovery at 20 min and a second gradual decrease after 30 min. Treatment with BN 52021 injected 15 min prior to endotoxin reduced the initial rapid drop of blood pressure from 38.5 +/- 5 mmHg in vehicle-treated controls (n = 15) to 17 +/- 3 mmHg (p less than 0.01) in animals treated with 1 mg/kg BN 52021(n = 10) and to 9.5 +/- 8 mmHg (p less than 0.01) in guinea-pigs treated with 6 mg/kg BN 52021 (n = 5). The early hypotensive phase was associated with severe thrombocytopenia-leukopenia; only the thrombocytopenia was reduced by BN 52021. The prolonged secondary phase of hypotension was reduced by BN 52021 pretreatment whereas a small increase of hematocrit persisted. The two phases of the arterial pressure profile during endotoxic shock were not observed in animals previously made thrombopenic by rabbit and anti-platelet serum and only the late hypotensive phase persisted. This late hypotension induced by endotoxin in thrombopenic animals was suppressed by BN 52021 pretreatment suggesting that BN 52021 may act via a platelet-independent mechanism. The intravenous injection of BN 52021 during the prolonged secondary phase of shock was followed by an immediate increase of the depressed blood pressure. This increase of blood pressure was dose-dependent, maximum at 6 mg/kg BN 52021, and observed in normal and thrombopenic animals. The interference of BN 52021 with endotoxin shock may be related to its PAF-acether antagonist properties and suggests that PAF-acether is an important participant in endotoxic shock.  相似文献   

19.
20.
The measurement of peripheral blood flow by plethysmography assumes that the cuff pressure required for venous occlusion does not decrease arterial inflow. However, studies in five normal subjects suggested that calf blood flow measured with a plethysmograph was less than arterial inflow calculated from Doppler velocity measurements. We hypothesized that the pressure required for venous occlusion may have decreased arterial velocity. Further studies revealed that systolic diameter of the superficial femoral artery under a thigh cuff decreased from 7.7 +/- 0.4 to 5.6 +/- 0.7 mm (P less than 0.05) when the inflation pressure was increased from 0 to 40 mmHg. Cuff inflation to 40 mmHg also reduced mean velocity 38% in the common femoral artery and 47% in the popliteal artery. Inflation of a cuff on the arm reduced mean velocity in the radial artery 22% at 20 mmHg, 26% at 40 mmHg, and 33% at 60 mmHg. We conclude that inflation of a cuff on an extremity to low pressures for venous occlusion also caused a reduction in arterial diameter and flow velocity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号