首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The biliary excretion rates of bromsulphthalein (BSP), bromsulphthalein-glutathione conjugate (BSP-GSH) and eosine have been studied in 3-methylcholanthrene (3-MC)-pretreated (100 mg/kg i.p.) and control rats aged 10 days. Liver weight was invariably increased after 3-MC treatment, associated with enhanced biliary excretion of total BSP. The increase in the biliary excretion of total BSP was due solely to the increased excretion of BSP-GSH. Following 3-MC pretreatment, BSP-GSH and eosine appeared in the bile in the same amount as in the control rats after i.v. administration of BSP-GSH and eosine. Pretreatment with 3-MC increased the ratio of BSP-GSH to BSP in the liver and bile. Our results suggest that the increased biliary excretion of total BSP following 3-MC treatment was due to an enhanced conjugation of BSP with GSH.  相似文献   

2.
3.
1. The effects of eight newly synthesized 2-aryl substituted benzimidazole derivatives on control and phenobarbital (PB) treated rat liver microsomal aniline 4-hydroxylase and ethylmorphine N-demethylase activities, and their binding to control and PB-treated rat liver microsomal oxidized cytochrome P-450 are presented. 2. All compounds inhibited ethylmorphine N-demethylase activity with I50 values ranging from 8.50 x 10(-4) M to 27.83 x 10(-4) M in control and ranging from 2.80 x 10(-4) M to 15.79 x 10(-4) M in PB-treated rats. 3. Aniline 4-hydroxylase activity was inhibited by all of the compounds tested having I50 values in the range of 7.04 x 10(-4) M-31.37 x 10(-4) M in PB-treated rats, but only five of the compounds showed inhibitory activity in control rats. 4. Only a few significant regression coefficients could be found between the parameters of the chemicals studied and their inhibitory patterns. 5. No correlation has been observed between the binding of the derivatives and their inhibitory pattern.  相似文献   

4.
The effect of phenobarbital and 3-methylcholanthrene pretreatment on the biliary excretion of phenolsulphonphthalein (PSP) was investigated in male Wistar rats. The dye was injected at a single dose of 200 mumol/kg body wt. About 20% of the compound was excreted as a glucuronide in the controls, the liver UDP-glucuronyltransferase activity toward PSP being 0.064 +/- 0.005 nmol.min-1.mg protein-1. Treatment for two weeks with phenobarbital (354 mumol.kg body wt-1.day-1) caused a transient increase in conjugated and unconjugated PSP excretion, but glucuronyltransferase activity was not modified. 3-Methylcholanthrene pretreatment for 4 days (75 mumol.kg body wt-1.day-1) also enhanced biliary excretion of the dye, but the increase corresponded only to the glucuronide and glucuronyltransferase activity was significantly enhanced by 20%. Our data indicate that not only the rate of biotransformation but also other factors could be responsible for increased PSP biliary excretion following administration of microsomal enzyme inducers.  相似文献   

5.
Several studies reported that ursodeoxycholate (but not its conjugates), when administered intravenously, increased the biliary bicarbonate concentration in the rat (1–3). At the same time, a complete dissociation between bile flow and the bile salt excretion rate was produced in the second hr of infusion (2). In order to examine whether this property was due to the 7β-hydroxy group in its molecular structure, the choleretic property of ursocholate (3α, 7β, 12α-trihydroxy-5β-cholanoic acid) was investigated in male Wistar rats. Immediately after the start of iv infusion of ursocholate at a rate of 1.2 μmole/min/100 g b. wt., both the bile flow and bile salt excretion rate began to increase. However, unlike with ursodeoxycholate, the bile salt excretion rate continued to be high in the second and third hr of infusion, while the bile flow rate gradually increased. Furthermore, the bicarbonate concentration in the bile fell slightly 10 min after the start of ursocholate infusion. Although the concentration tended to return to the baseline value before the bile salt infusion in the later period of observation, no significant increase in bicarbonate concentration was observed during the whole observation period. These properties were quite similar to those of cholate rather than those of ursodeoxycholate. However, a cholate infusion at the same rate of 1.2 μmole/min/100 g b.wt. caused a cholestasis as early as 20 to 30 min after the start of an infusion. These results suggest that the previously reported properties of ursodeoxycholate (that it causes a complete dissociation between the bile flow and bile salt excretion rate in the second hr and that it increases the biliary bicarbonate concentration) were not due to the 7β-hydroxy group in its steroidal structure, and that the choleretic property of ursocholate is similar to its 7α-hydroxy epimar, cholate. However, the much lower cytotoxicity of ursocholate compared to cholate appears to be due to the 7β-hydroxy group that ursocholate has.  相似文献   

6.
Following intravenous injection into the rat a small proportion (0.5 – 3.0%) of asialo α1-acid glycoprotein, asialo fetuin, asialo CEA1 and native CEA are excreted in an apparently unchanged form in the bile. The maximum excretion rate occurs one hour after injection in all cases. The possibility of a novel pathway for glycoprotein uptake by the liver is discussed.  相似文献   

7.
8.
The effect of acetylsalicylic acid, ibuprofen, indomethacin, ketoprofen, naproxen, phenylbutazone, and salicylic acid on the microsomal oxidative drug metabolism of rat liver was studied. Pretreatment of the rats with pharmacologic doses of acetylsalicylic acid, indomethacin, and ketoprofen decreased both the demethylase and hydroxylase activities of rat liver microsomes. These effects were paralleled by decreases in microsomal cytochrome P-450 content. The rate of the microsomal reactions was increased after pretreatment with ibuprofen and naproxen but only the former increased the concentration of cytochrome P-450. Phenylbutazone and salicylic acid had no in vivo effect on the hepatic monooxygenase. The addition of 1 mM of ibuprofen, indomethacin, ketoprofen, naproxen, and phenylbutazone to rat liver microsomes inhibit both the aminopyrine N-demethylase and p-nitro-anisole O-demethylase activities. The extent of the inhibition varied between 21 and 73% of the control incubation. Indomethacin, naproxen, and phenylbutazone also decreased the aniline hydroxylase activity to roughly 60% of the control value. Acetylsalicylic acid and salicylic acid had no in vitro effect on the microsomal monooxygenase. The nonsteroidal anti-inflammatory drugs produced a reverse type I binding spectrum with oxidized cytochrome P-450; indomethacin and phenylbutazone were the strongest ligands. There is no correlation between the effect of addition of nonsteroidal anti-inflammatory drugs to the hepatic microsomal homogenate and their in vivo effect on the monooxygenase activity.  相似文献   

9.
10.
11.
12.
The distribution of intravenously administered rose bengal (RB) depends on its dose. At a low dose (10 mg/kg), RB can be found almost solely in the liver and plasma. However, at higher doses (from 25 up to 200 mg/kg) the amount of RB found in extra-hepatic tissues gradually increases. In this experiment the hepatic transfer maximum of RB amounted to 146 micrograms/kg/min. By increasing the dose from 10 to 200 mg/kg, the hepatic concentration of RB also approached a maximum (1250 micrograms/g). The storage capacity of the liver, however, did not limit the transfer maximum of RB.  相似文献   

13.
14.
The effects of tetrahydrofuran (THF) on rat liver microsomes in vitro and in vivo were opposite. In vitro THF inhibited the p-nitrophenol (PNP) hydroxylase activity of microsomes from control rats and from rats treated with PB, acetone, and isoniazide--by 50, 20, 60, and 80%, respectively. THF inhibited dimethylnitrosamine (NDMA) demethylation in control and induced microsomes in a lesser degree. THF increased the total cytochrome P-450 content as well as the contents of cytochromes P-450IIE1 and P-450IIB1/B2. The activities of PNP-hydroxylation and NDMA-demethylation increased also, whereas the PR-dealkylation activity was unchanged. An increase in the THF dose caused inhibition of the rat liver microsomal monooxygenase system.  相似文献   

15.
The biliary elimination of glycodihydrofusidate (GDHF), a structural analogue of bile salts, was studied in bile fistula rats. GDHF was excreted in bile with a maximal excretory rate (Tm = 0.80 mumol min-1 kg-1) which is much lower than bile salts Tm. The effects of dehydrocholate and taurocholate on GDHF biliary secretion suggest a stimulatory effect of bile salts on canalicular excretion of the drug. (a) When a bolus intravenous injection of 3 mumol of GDHF was followed after 2 min by a continuous dehydrocholate perfusion (10 mumol min-1 kg-1), biliary excretion of GDHF was increased in comparison with control rats. (b) Upon attaining the biliary Tm by continuous perfusion of GDHF at a rate of 1.35 mumol min-1 kg-1, infusion with either taurocholate or dehydrocholate increased its Tm to a similar degree. These results are similar to those previously obtained with the effects of bile salt infusions on the Tm of bromosulfophthalein. They suggest therefore that hepatic transport of GDHF and bile salts occurs by routes which are distinct for canalicular transport in spite of the striking structural similarities between GDHF and bile salts.  相似文献   

16.
17.
Taurolithocholate (TLC), a natural bile salt, induces selective impairment on canalicular membrane of the hepatocyte, which seems to be a major determinant of its cholestatic effect in experimental animals. In order to extend existing studies about the effects of TLC on bile secretion, we examined in TLC-treated rats the biliary excretion of compounds that are transported to canalicular membrane via vesicles, such as lipids and proteins. The single intravenous injection of TLC (3 mumol/100 g body wt.) inhibited transiently the biliary bile salt excretion, while the biliary excretion of lipids (i.e., cholesterol and phospholipids) and proteins remained inhibited even though the biliary excretion and composition of bile salts were normalized. Under such a condition, TLC also inhibited the transcellular vesicular pathway to the exogenous protein horseradish peroxidase entry into bile, without altering the paracellular biliary access of the protein. The hepatic uptake of horseradish peroxidase was unaffected by TLC-treatment. The results indicate that TLC can inhibit the biliary excretion of compounds that reach the canaliculus via a vesicular pathway, such as lipids and proteins, by a mechanism not related to a defective bile salt excretion. Possible explanations for these findings are discussed.  相似文献   

18.
19.
The characteristics of the hepatic metabolism of Sulfbromophthalein (BSP) have not been described previously for the pig. This is an important deficiency, since the pig is particularly suitable for studies of hepatic physiology and pharmacology which might apply to man. The aim of these experiments was to establish the pattern of serum clearance and biliary excretion of BSP and to determine that dose which would produce a maximal concentration in bile. A dose response and pattern of biliary excretion of BSP was studied at three dose levels administered either as a single bolus of a continuous infusion. All experiments were performed in conscious, conditioned pigs. The patterns of serum clearance and biliary excretion were found to be similar to other laboratory animals and to man. Maximary biliary concentration of BSP was achieved by a single bolus of 5-9 mumol/kg or a constant infusion of 0-59 mumol/kg/min. At these dose levels no significant alteration in bile flow was demonstrated nor was there any correlation between bile flow and BSP excretion. Supra-maximal doses produced a significant increase in bile flow and with these doses there was a significant positive correlation between bile flow and BSP excretion.  相似文献   

20.
A comparative study of the ability of phenobarbital, testosterone and their combination to induce the liver microsomal monooxygenase system after 9-day administration of these compounds to intact male and female rats was carried out. It was shown that administration of testosterone does not increase the level of cytochromes P450 and b5 in the livers of male and female rats. However, after a combined administration of the two compounds testosterone significantly enhances the inducing effects of phenobarbital (i. e. superinduction) in female rats; no such effect was observed in the livers of male rats. The rates of oxidation of hexobarbital, ethylmorphine and testosterone by liver microsomes are also increased after a combined administration of the two inducers. However, the additive effects of the two substances on substrate oxidation are observed when the latter was calculated per mole of cytochrome P450. An administration of testosterone to male rats does not result in an increase of the rate of hexobarbital and testosterone oxidation by isolated liver microsomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号