首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Biodegradation of chlorophenol mixtures by Pseudomonas putida   总被引:1,自引:0,他引:1  
The dynamic growth behavior of Pseudomonas putida has been studied when resting calls were inoculated into a growth medium containing inhibitory concentrations of mixtures of phenol and monochlorophenols. Resting cells inoculated into single carbon substrate media did not demonstrate enhanced cell lysis by any of the phenol substrates. The apprarent death rate was reduced as the concentrations of phenol or chlorophenols were increased. This behavior was modeled by employing a constant specific death rate (k(d) = 0.0075 h(-1)) and assuming all organic species result in a lag-phase, specific growth rate which may be larger or smaller than k(d).Logarithmic biomass growth on pure monochlorophenols did not occur within 2 weeks after inoculation. Logarithmic growth phases were only observed when the monochlorophenols were cometabolized with phenol. The delay time over which the lag phase exists increased exponentially with phenol concentration and linearly with monochlorophenol concentration. The log growth yield coefficient decreased linearly with monochlorophenol concentration.The lag-phase, specific growth rate was found to decrease exponentially with the concentration of monochlorophenols. This resulted in a 50% lag growth rate inhibition for both 3- and 4-chlorophenol of 9 ppm and for 2-chlorophenol of only 2 ppm. The new, empirical correlations are shown to closely model the complete lag and log growth behavior ot P. putida on phenol and chlorophenol mixtures. (c) 1992 John Wiley & Sons, Inc.  相似文献   

2.
The possibility of using Pseudomonas free bacterial cells for integral evaluation of some phenol compounds' content in water by means of estimation of specific respiratory activity (SRA) value was shown. Amperometric system of Clark electrode was used as a transducer in conducted investigations. The conditions of performing the SRA analysis of Pseudomonas sp. B 4251 and Ps. putida sp. microbial cells were optimized. The method sensitivity is 0.2 mM for Pseudomonas sp. B 4251 and 0.5 mM for Ps. putida sp. Taking into account specificity and sensitivity of the studied method, for estimating the integral toxicity of waste water, which contains 4-nitrophenol and 2,4-dinitrophenol in more than MPC concentrations and harmful for ecosystem became possible.  相似文献   

3.
4.
Interspecies interactions and changes in the rate and extent of biodegradation in mixed culture-mixed substrate studies were investigated. A binary mixed culture of Pseudomonas putida F1 and Burkholderia sp. JS150 degraded toluene, phenol, and their mixture. Both toluene and phenol can serve as sole sources of carbon and energy for both P. putida F1 and strain JS150. To investigate the population dynamics of this system, a fluorescent in-situ hybridization method was chosen because of its ability to produce quantitative data, its low standard error, and the ease of use of this method. When the binary mixed culture was grown on toluene or phenol alone, significant interactions between the species were observed. These interactions could not be explained by a pure-and-simple competition model and were substrate dependent. Strain JS150 growth was slightly inhibited when grown with P. putida F1 on phenol, and P. putida F1 grew more rapidly than expected. Conversely, when the two species were grown together on toluene alone, P. putida F1 was inhibited while strain JS150 was unaffected. During growth of the mixed culture on a combination of toluene and phenol, the interactions were similar to that observed during growth on phenol alone; P. putida F1 growth was enhanced while strain JS150 was unaffected. Because of the observed interspecies interactions, monoculture kinetic parameters were not sufficient to describe the mixed culture kinetics in any experiment. This is one of the first reports of microbial population dynamics in which molecular microbial ecology and mathematical modeling have been combined. The use of the 16S-rRNA-based method allowed for observation and understanding of interspecies interactions that were not observable with standard culture-based methods. These results suggest the need for more investigations that account for both substrate and microbial interactions when predicting the fate of organic pollutants in real systems.  相似文献   

5.
The purpose of this study is to investigate the feasibility of biologically removing phenol from waste gases by means of a biofilter using a Pseudomonas putida strain. Two series of both batch and continuous tests have been performed in order to ascertain the microbial degradation of phenol. For the preliminary batch tests, carried out in order to test the effective feasibility of the process and to investigate their kinetic behavior, two different microbial cultures belonging to the Pseudomonas genus have been employed, a heterogeneous culture and a pure strain of P. putida. The results of these comparative investigation showed that the pure culture is more efficient than the mixed one, even when the latter has undergone three successive acclimatization tests. The continuous experiments have been conducted during a period of about 1 year in a laboratory-scale column, packed with a mixture of peat and glass beads, and utilizing the pure culture of P. putida as microflora and varying the inlet phenol concentration from 50 up to 2000 mg m(-3). The results obtained show that high degrees of conversion can be obtained (0.93/0.996) operating at a residence time of 54 s. (c) 1993 John Wiley & Sons, Inc.  相似文献   

6.
AIMS: To study the effect of co-contaminants (phenol) on the biodegradation of pyridine by freely suspended and calcium alginate immobilized bacteria. METHODS AND RESULTS: Varying concentrations of phenol were added to free and calcium alginate immobilized Pseudomonas putida MK1 (KCTC 12283) to examine the effect of this pollutant on pyridine degradation. When the concentration of phenol reached 0.38 g l(-1), pyridine degradation by freely suspended bacteria was inhibited. The increased inhibition with the higher phenol levels was apparent in increased lag times. Pyridine degradation was essentially completely inhibited at 0.5 g l(-1) phenol. However, immobilized cells showed tolerance against 0.5 g l(-1) phenol and pyridine degradation by immobilized cell could be achieved. CONCLUSIONS: This works shows that calcium alginate immobilization of microbial cells can effectively increase the tolerance of P. putida MK1 to phenol and results in increased degradation of pyridine. SIGNIFICANCE AND IMPACT OF THE STUDY: Treatment of wastewater stream can be negatively affected by the presence of co-pollutants. This work demonstrates the potential of calcium alginate immobilization of microbes to protect cells against compound toxicity resulting in an increase in pollutant degradation.  相似文献   

7.
Competition between two microbial populations for a single pollutant (phenol) was studied in a sequencing fed-batch reactor (SFBR). A mathematical model describing this system was developed and tested experimentally. It is based on specific growth rate expressions revealed from pure culture batch experiments. The species employed were Pseudomonas putida (ATCC 17514) and Pseudomonas resinovorans (ATCC 14235). It was found that both species biodegrade phenol following inhibitory kinetics which can be described by Andrews' expression. The model predicts that the dynamics of a SFBR, and the kinetics of biodegradation, result in a complex set of operating regimes in which neither species, only one species, or both species can survive at steady cycle. The model also predicts the existence of multiple outcomes, achievable from different start-up conditions, in some domains of the operating parameter space. Experimental results confirmed the model predictions. There was excellent agreement between predicted and measured concentrations of phenol, total biomass, and the biomass of each individual species. This study shows how serious discrepancies can arise in scale-up of biodegradation data if population dynamics are not taken into account. It also further confirms experimentally the theory of microbial competition in periodically forced bioreactors. (c) 1993 John Wiley & Sons, Inc.  相似文献   

8.
The role played by a bacterial community composed of Pseudomonas putida, strain 21, Pseudomonas stutzeri, strain 18, and Pseudomonas sp., strain 5, and by physical and chemical factors in the degradation of CN- and SCN- was studied. It was shown that the degradation of CN- is determined both by the action of bacteria and by abiotic physical and chemical factors (pH, O2, temperature, the medium agitation rate, etc.). The contribution of chemical degradation was found to increase drastically at pH below 9.0; when air was blown through the medium (irrespective of the pH value); under active agitation of the medium; and when the medium surface interfacing air was increased. Even at elevated pH values (9.0-9.2), suboptimal for bacterial growth, the microbial degradation could account for at most 20-25 mg/l of CN-, regardless of its initial concentration. When CN- and SCN- were concurrently present in the medium, the former compound was the first to be degraded by microorganisms. The rate of bacterial degradation of SCN- under continuous cultivation in a chain of reactors was found to depend on its concentration, the medium flow rate, agitation rate, and the pattern of carbon source supply and could exceed 1 g/(1 day). CN- and SCN- are utilized by bacteria solely as nitrogen sources. The mechanism of CN- and SCN- degradation by the microbial community is discussed.  相似文献   

9.
A mathematical model is proposed to analyze the mass transfer limitations in phenol biodegradation using Pseudomonas putida immobilized in calcium alginate. The model takes into account internal and external mass transfer limitations, substrate inhibition kinetics and the dependence of the effective diffusivity of phenol in alginate gel on cell concentration. The model is validated with the experimental data from batch fermentation. The effect of various operating conditions such as initial phenol concentration, initial cell loading, alginate gel loading on the biodegradation of phenol is experimentally demonstrated. Phenol degradation time is found to decrease initially and reach stationary value with increase in cell loading as well as gel loading. The model predicts these trends reasonably well and shows the presence of external mass transfer limitations. A new concept of effectiveness factor is introduced to analyze the overall performance of batch fermentation.  相似文献   

10.
The microbial degradation of phenol by pure and mixed cultures of Pseudomonas putida was studied in batch, phenol-stat, and continuous culture systems. In the continuous culture runs, both steady state and transient experiments were performed. From these experiments, a model for the kinetic behavior of the organisms was evolved and an analysis performed on the stability and dynamic behavior of pure and mixed cultures. The results indicate that it should be possible to achieve phenol removal from wastewaters down to levels of 1-2 ppm in a single state system. However, because of the effect of substrate inhibition on kinetic behavior of the microorganisms, long lasting transients can occur. The transient behavior of such systems cannot be solely determined from mumax or Ks parameters, but must include a consideration of the transient size and response characteristic of the organism.  相似文献   

11.
12.
As reported, the two-component system ColRS is involved in two completely different processes. It facilitates the root colonization ability of Pseudomonas fluorescens and is necessary for the Tn4652 transposition-dependent accumulation of phenol-utilizing mutants in Pseudomonas putida. To determine the role of the ColRS system in P. putida, we searched for target genes of response regulator ColR by use of a promoter library. Promoter screening was performed on phenol plates to mimic the conditions under which the effect of ColR on transposition was detected. The library screen revealed the porin-encoding gene oprQ and the alginate biosynthesis gene algD occurring under negative control of ColR. Binding of ColR to the promoter regions of oprQ and algD in vitro confirmed its direct involvement in regulation of these genes. Additionally, the porin-encoding gene ompA(PP0773) and the type I pilus gene csuB were also identified in the promoter screen. However, it turned out that ompA(PP0773) and csuB were actually affected by phenol and that the influence of ColR on these promoters was indirect. Namely, our results show that ColR is involved in phenol tolerance of P. putida. Phenol MIC measurement demonstrated that a colR mutant strain did not tolerate elevated phenol concentrations. Our data suggest that increased phenol susceptibility is also the reason for inhibition of transposition of Tn4652 in phenol-starving colR mutant bacteria. Thus, the current study revealed the role of the ColRS two-component system in regulation of membrane functionality, particularly in phenol tolerance of P. putida.  相似文献   

13.
The paper presents the main results obtained from the study of the biodegradation of phenolic industrial wastewaters by a pure culture of immobilized cells of Pseudomonas putida ATCC 17484. The experiments were carried out in batch and continuous mode. The maximum degradation capacity and the influence of the adaptation of the microorganism to the substrate were studied in batch mode. Industrial wastewater with a phenol concentration of 1000 mg/l was degraded when the microorganism was adapted to the toxic chemical. The presence in the wastewater of compounds other than phenol was noted and it was found that Pseudomonas putida was able to degrade these compounds. In continuous mode, a fluidized-bed bioreactor was operated and the influence of the organic loading rate on the removal efficiency of phenol was studied. The bioreactor showed phenol degradation efficiencies higher than 90%, even for a phenol loading rate of 0.5 g phenol/ld (corresponding to 0.54 g TOC/ld).  相似文献   

14.
The degradation of phenol (100-2800 mg/L) by cells Pseudomonas putida CCRC14365 in an extractive hollow-fiber membrane bioreactor (HFMBR) was studied, in which the polypropylene fibers were prewetted with ethanol. The effects of flow velocity, the concentrations of phenol, and the added dispersive agent tetrasodium pyrophosphate on phenol degradation and cell growth were examined. It was shown that about 10% of phenol was sorbed on the fibers at the beginning of the degradation process. The cells P. putida fully degraded 2000 mg/L of phenol within 73 h when the cells were immobilized and separated by the fibers. Even at a level of 2800 mg/L, phenol could be degraded more than 90% after 95-h operation. At low phenol levels (< 400 mg/L) where substrate inhibition was not severe, it was more advantageous to treat the solution in a suspended system. At higher phenol levels (> 1000 mg/L), however, such HFMBR-immobilized cells could degrade phenol to a tolerable concentration with weak substrate-inhibition effect, and the degradation that followed could be completed by suspended cultures due to their larger degradation rate. The process development in an HFMBR system was also discussed.  相似文献   

15.
Oxygen mass transfer in shake flasks is an important aspect limiting the culture of aerobic microorganisms. In this work, mass transfer of oxygen through a closure and headspace of shake flasks is investigated. New equations for prediction of kGa in shake flasks with closures are introduced. Using Pseudomonas putida, microbial growth on glucose (fast metabolism) and phenol (slow metabolism) in shake flasks with closures were studied, considering both substrate and oxygen restrictions. A combined model for oxygen mass transfer and microbial growth is shown to accurately predict experimental oxygen concentrations and oxygen yield factors during growth experiments more accurately than previous models.  相似文献   

16.
This research demonstrated the microbial treatment of concentrated phenol wastes using a two-phase partitioning bioreactor (TPPB). TPPBs are characterized by a cell-containing aqueous phase and an immiscible and biocompatible organic phase that partitions toxic substrates to the cells on the basis of their metabolic demand and the thermodynamic equilibrium of the system. Process limitations imposed by the capability of wild-type Pseudomonas putida ATCC 11172 to utilize long chain alcohols were addressed by strain modification (transposon mutagenesis) to eliminate this undesirable biochemical characteristic, enabling use of a range of previously bioavailable organics as delivery solvents. Degradation of phenol in a system with the modified strain as catalyst and industrial grade Adol 85 NF (primarily oleyl alcohol) as the solvent was demonstrated, with the system ultimately degrading 36 g of phenol within 38 h. Volumetric phenol consumption rates by wild type P. putida ATCC 11172 and the genetically modified derivative revealed equivalent phenol degrading capabilities (0.49 g/L x h vs 0.47 g/L x h respectively, in paired fermentations), with the latter presenting a more efficient remediation option due to decreased solvent losses arising from the modified strain's forced inability to consume the delivery solvent as a substrate. Two feeding strategies and system configurations were evaluated to expand practical applications of TPPB technology. The ability to operate with a lower solvent ratio over extended periods revealed potential for long-term application of TPPB to the treatment of large masses of phenol while minimizing solvent costs. Repeated recovery of 99% of phenol from concentrated phenol solutions and subsequent treatment within a TPPB scheme demonstrated applicability of the approach to the remediation of highly contaminated "effluents" as well as large masses of bulk phenol. Operation of the TPPB system in a dispersed manner, rather than as two distinct phases, resulted in volumetric consumption rates similar to those previously achieved only in systems operated with enriched air.  相似文献   

17.
Destruction of ethylene glycol and diethylene glycol by Pseudomonas putida BS-2 culture under conditions of its batch cultivation has been studied for its physiological regularities. The specific rate of the biomass growth in the region of limiting substrate concentrations depends on the diethylene glycol concentration in the medium and follows the Mono equation. A semisaturation constant for diethylene glycol is 209 +/- 17 mg/d. The specific rate of the culture growth is independent of the ethylene glycol concentration in the medium within a wide range from 0.08 to 10 g/l. Kinetics of the bacteria growth inhibition by excess of substrates is a complex character and obeys none of the known models of the substrate inhibition.  相似文献   

18.
Two phase partitioning bioreactors (TPPBs) operate by partitioning toxic substrates to or from an aqueous, cell-containing phase by means of second immiscible phase. Uptake of toxic substrates by the second phase effectively reduces their concentration within the aqueous phase to sub-inhibitory levels, and transfer of molecules between the phases to maintain equilibrium results in the continual feeding of substrate based on the metabolic demand of the microorganisms. Conventionally, a single pure species of microorganism, and a pure organic solvent, have been used in TPPBs. The present work has demonstrated the benefits of using a mixed microbial population for the degradation of phenol in a TPPB that uses solid polymer beads (comprised of ethylene vinyl acetate, or EVA) as the second phase. Polymer modification via an increase in vinyl acetate concentration was also shown to increase phenol uptake. Microbial consortia were isolated from three biological sources and, based on an evaluation of their kinetic performance, a superior consortium was chosen that offered improved degradation when compared to a pure strain of Pseudomonas putida ATCC 11172. The new microbial consortium used within a TPPB was capable of degrading high concentrations of phenol (2000mgl–1), with decreased lag time (10h) and increased specific rate of phenol degradation (0.71g phenolg–1cellh). Investigation of the four-member consortium showed that it consisted of two Pseudomonas sp., and two Acinetobacter sp., and tests conducted upon the individual isolates, as well as paired organisms, confirmed the synergistic benefit of their existence within the consortium. The enhanced effects of the use of a microbial consortium now offer improved degradation of phenol, and open the possibility of the degradation of multiple toxic substrates via a polymer-mediated TPPB system.  相似文献   

19.
Using 2D electrophoresis the protein expression pattern during growth on carbon sources with different impact on carbon catabolite repression of phenol degradation was analysed in a derivative of Pseudomonas putida KT2440. The cytosolic protein pattern of cells growing on phenol or the non-repressive substrate pyruvate was almost identical, but showed significant differences to that of cells growing with the repressive substrates succinate or glucose. Proteins, which were mainly expressed in the presence of phenol or pyruvate, could be assigned to the functional groups of transport, detoxification, stress response, amino acid, energy, carbohydrate and nucleotide metabolism. The addition of succinate to cells growing with phenol ('shift-up') resulted in the inhibition of the synthesis of these proteins. Proteins with enhanced expression at growth with succinate or glucose were proteins for de novo synthesis of nucleotides, amino acids and enzymes of the TCA cycle. The synthesis of proteins, necessary for phenol catabolism was regulated in different manners following the addition of succinate. Whereas the synthesis of Phl-proteins (subunits of the phenolhydroxylase) only decreased slowly, was the translation of the Cat-proteins (catechol 1,2-dioxygenase, cis,cis-muconate cycloisomerase and muconolactone isomerase) repressed immediately and the synthesis of the Pca-proteins (beta-ketoadipate enolactone hydrolase, beta-ketoadipate succinyl-CoA transferase and beta-ketoadipyl CoA thiolase) remained unaffected.  相似文献   

20.
现有微生物羟基化烟酸采用的是静息细胞转化工艺。但研究揭示,恶臭假单胞菌NA-1(Pseudomonas putidaNA-1)在培养过程中不降解发酵液中由诱导剂烟酸转化形成的6-羟基烟酸,这是由于烟酸的存在抑制了羟基烟酸降解酶的作用,而不是因为细胞停止生长不利用羟基烟酸的缘故。因而尝试利用菌体诱导培养过程进行烟酸转化生产,建立了一种新的生产工艺,即菌体培养转化和静息细胞转化联合工艺。该工艺在恶臭假单胞菌NA-1培养过程中持续补充烟酸以维持1%(W/V)浓度,使烟酸被生长细胞转化为羟基化烟酸并在发酵液中线性积累,而不被进一步降解;培养转化结束后,发酵液中的静息细胞依然拥有很高的羟基化酶活力,能够再次用于转化反应。该联合转化工艺与传统的静息细胞转化工艺相比,不仅节约了诱导剂烟酸,而且6-羟基烟酸的产量提高了65%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号