首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
We have determined the complete nucleotide sequence of the thymidine kinase gene of herpes simplex virus (HSV) type 2 strain 333. The sequence of the thymidine kinase gene exhibits an open translational reading frame of 1,128 nucleotides encoding a protein of 376 amino acids. The DNA sequence was compared with that of the HSV type 1 thymidine kinase gene from strain MP (S. L. McKnight, Nucleic Acids Res. 8:5949-5964, 1980) and from strain CL 101 (M. J. Wagner, J. A. Sharp, and W. C. Summers, Proc. Natl. Acad. Sci. U.S.A. 78:1441-1445, 1981) to assess the extent of intra- and intertypic variation for one viral gene. The nucleotides encoding the structural gene varied 1.7% between the two HSV type 1 strains and 19% between HSV type 1 and HSV type 2, which translated to differences in the amino acid sequence of the two proteins of 1.9 and 27%, respectively. The DNA encoding the 5' regulatory sequences appeared to be more conserved than the DNA coding for the structural gene, and the DNA at the 3' end of the gene was the least homologous.  相似文献   

2.
The thymidine kinase (TK) gene of African swine fever virus (ASFV) was located within the viral genome by using two degenerate oligonucleotide probes derived from sequences of the vaccinia virus and cellular TK genes. The TK gene was mapped within a 0.72-kbp BglII-XhoI fragment (0.242 to 0.246 map units) derived from a 23.9-kbp SalI-B fragment of the ASFV genome. Identification of this region as the ASFV TK gene was confirmed by expression of TK in Escherichia coli and by the synthesis of active TK in a cell-free system programmed with RNA synthesized in vitro. The sequenced gene for TK includes an open reading frame of 588 nucleotides encoding a protein of 196 amino acids. The deduced amino acid sequence shows 32.4% identity with the TK of vaccinia virus.  相似文献   

3.
The ack gene encoding acetate kinase from the mesophilic Methanosarcina mazei 2-P, isolated from a paddy field soil in Japan, was cloned, sequenced, and functionally expressed in Escherichia coli. The terminal region of the putative pta gene, probably encoding phosphotransacetylase, was found upstream of the ack gene. The deduced amino acid sequence of the acetate kinase is 86.5% identical to that of the Methanosarcina thermophila acetate kinase. The activity of the His(6)-tagged acetate kinase purified from E. coli JM109 was optimal at 35 degrees C.  相似文献   

4.
The gene (pykA) encoding pyridoxal kinase which converts pyridoxal (vitamin B(6)) to pyridoxal phosphate was isolated from Dictyostelium discoideum using insertional mutagenesis. Cells of a pykA gene knockout grew poorly in axenic medium with low yield but growth was restored by the addition of pyridoxal phosphate. Sequencing indicated a gene, with one intron, encoding a predicted protein of 301 amino acids that was 42% identical in amino acid sequence to human pyridoxal kinase. After expression of the wild-type gene in Escherichia coli, the purified PykA protein product was shown to have pyridoxal kinase enzymatic activity with a K(m) of 8.7 microM for pyridoxal. Transformation of the Dictyostelium knockout mutant with the human pyridoxal kinase gene gave almost the same level of complementation as that seen using transformation with the wild-type Dictyostelium gene. Phylogenetic analysis indicated that the Dictyostelium amino acid sequence was closer to human pyridoxal kinase than to pyridoxal kinases of lower eukaryotes.  相似文献   

5.
6.
Uracil phosphoribosyltransferase catalyzes the key reaction in the salvage of uracil in many microorganisms. The gene encoding uracil phosphoribosyltransferase (upp) was cloned from Lactococcus lactis subsp. cremoris MG1363 by complementation of an Escherichia coli mutant. The gene was sequenced, and the putative amino acid sequence was deduced. The promoter was mapped by both primer extension and analysis of beta-galactosidase expressed from strains carrying fusion between upp promoter fragments and the lacLM gene. The results showed that the upp gene was expressed from its own promoter. After in vitro construction of an internal deletion, a upp mutant was constructed by a double-crossover event. This implicated the utilization of a plasmid with a thermosensitive origin of replication and a new and easy way to screen for double crossover events in both gram-positive and gram-negative bacterial strains. The phenotype of the uracil phosphoribosyltransferase-deficient strain was established. Surprisingly, the upp strain is resistant only to very low concentrations of 5-fluorouracil. Secondary mutants in thymidine phosphorylase and thymidine kinase were isolated by selection for resistance to high concentrations of 5-fluorouracil.  相似文献   

7.
8.
Synthetic oligonucleotide linkers containing translational termination codons in all possible reading frames were inserted at various positions in the cloned gene encoding the herpes simplex virus type 1 (HSV-1) immediate-early regulatory protein, ICP4. It was determined that the amino-terminal 60 percent of the ICP4 gene was sufficient for trans-induction of a thymidine kinase promoter-CAT chimera (pTKCAT) and negative regulation of an ICP4 promoter-CAT chimera (pIE3CAT); however, it was relatively inefficient in complementing an ICP4 deletion mutant. The amino-terminal ninety amino acids do not appear to be required for infectivity as reflected by the replication competence of a mutant virus containing a linker insertion at amino acid 12. The size of the ICP4 molecule expressed from the mutant virus was consistent with translational restart at the next methionine codon corresponding to amino acid 90 of the deduced ICP4 amino acid sequence.  相似文献   

9.
Genomic DNA sequencing in the vicinity of methylmalonyl-CoA mutase gene (mutAB) from a rifamycin SV-producing Amycolatopsis mediterranei U32 allowed us to clone, sequence, and identify a gene encoding a novel serine/threonine protein kinase (amk). The sequence contains a complete ORF of 1821 base pairs encoding a predicted protein of 606 amino acids in length. The N-terminal domain of the protein shows significant homology to the catalytic domain of other protein kinases from both prokaryotic and eukaryotic sources. It also contains all the structural features that are highly conserved in active protein kinases, including the Gly-X-Gly-X-X-Gly motif of ATP-binding and the essential amino acids known to be important for the recognition of the correct hydroxyamino acid in serine/threonine protein kinase. This protein kinase gene was expressed in Escherichia coli and was shown to have the ability of autophosphorylation. The autophosphorylated site was found to be the threonine at position 164 by labeled phosphoamino acid analysis and site-directed mutagenesis. The C-terminal half of protein kinase was found to contain strong transmembrane structures by PhoA fusion protein analysis, suggesting that Amk protein kinase is a transmembrane protein. A Southern hybridization experiment showed that this type of protein kinase is distributed ubiquitously and might play significant physiological roles in the various species of streptomycetes. However, overexpression of amk gene in Streptomyces cinnamonensis showed no effect on methylmalonyl-CoA mutase activity, monensin production and the hyphae morphology. Although its biological role is still unknown, Amk protein kinase is the first transmembrane serine/threonine protein kinase described for genus Amycolatopsis.  相似文献   

10.
S K Shapira  M J Casadaban 《Gene》1987,52(1):83-94
The thymidine kinase (TK) gene (tk) from Herpes simplex virus type 1 has been used to form gene fusions encoding enzymatically active hybrid proteins. The promoter, translation initiation region, and the first three codons of the tk gene were removed and replaced with a series of DNA restriction sites. DNA fragments containing gene initiation regions were cloned into these sites and shown to synthesize enzymatically active proteins in Escherichia coli. These gene fusions were shown to complement an E. coli strain which is deficient in TK function. Gene initiation regions were used from the lac operon, the tnpR gene of Tn3, and the insA gene of ISl. TK synthesis was regulated by the control signals of the promoter fused to tk, and was dependent upon the phase alignment of the codons at the fusion joint. The size of the resulting protein was shown to be increased over the size of the original TK protein by the length of the coding region fused to TK. This demonstrated that the tk gene has non-essential N-terminal amino acids that can be replaced by other amino acid sequences with the retention of TK enzymatic activity. Such tk gene fusions are useful in situations where fusions with other genes cannot be conveniently selected or assayed.  相似文献   

11.
Unlike enteric bacteria, Pseudomonas spp. generally lack thymidine phosphorylase and thymidine kinase activities, thus preventing their utilization of exogenous thymine or thymidine and precluding specific radioactive labeling of their DNA in vivo. To overcome this limitation, a DNA fragment encoding thymidine kinase (EC 2.7.1.21) from Escherichia coli was cloned into pKT230, a small, broad-host-range plasmid derived from plasmid RSF1010. From transformed E. coli colonies, the recombinant plasmid bearing the thymidine kinase gene was conjugally transferred to Pseudomonas stutzeri, Pseudomonas aeruginosa, Pseudomonas mendocina, Pseudomonas alcaligenes, and Pseudomonas pseudoalcaligenes. Thymidine kinase activity was expressed in all of these species, and all gained the ability to incorporate exogenous [2-14C]thymidine into their DNA. Thymidine incorporation into P. stutzeri was enhanced 12-fold more in mutants lacking thymidylate synthetase activity. These mutants produced higher levels of thymidine kinase and were thymidine auxotrophs; thymineless death resulted from removal of thymidine from a growing culture.  相似文献   

12.
We have obtained 42 active artificial mutants of HSV-1 thymidine kinase (ATP:thymidine 5'-phosphotransferase, EC 2.7.1.21) by replacing codons 166 and 167 with random nucleotide sequences. Codons 166 and 167 are within the putative nucleoside binding site in the HSV-1 tk gene. The spectrum of active mutations indicates that neither Ile166 nor Ala167 is absolutely required for thymidine kinase activity. Each of these amino acids can be replaced by some but not all of the 19 other amino acids. The active mutants can be classified as high activity or low activity on two bases: (1) growth of Escherichia coli KY895 (a strain lacking thymidine kinase activity) in the presence of thymidine and (2) uptake of thymidine by this strain, when harboring plasmids with the random insertions. E. coli KY895 harboring high-activity plasmids or wild-type plasmids can grow in the presence of low amounts of thymidine (less than 1 microgram/mL), but are unable to grow in the presence of high amounts of thymidine. On the other hand, E. coli KY895 harboring low-activity plasmids can grow at a high concentration of thymidine (greater than 50 microgram/mL) in the media. The high-activity plasmids also have an enhanced [3H]dT uptake. The amounts of thymidine kinase activity in vitro in unfractionated extracts do not correlate with either growth at low thymidine concentration or the rate of thymidine uptake. Heat inactivation studies indicate that the mutant enzymes are without exception more temperature-sensitive than the wild-type enzyme.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
14.
K Brehm  A Haas  W Goebel  J Kreft 《Gene》1992,118(1):121-125
A gene (lmsod) encoding superoxide dismutase (SOD; EC 1.15.1.1) of the facultative intracellular pathogen, Listeria monocytogenes, was cloned by functional complementation of an SOD-deficient Escherichia coli mutant. The nucleotide sequence was determined and the deduced amino acid (aa) sequence (202 aa) showed close similarity to manganese-containing SOD's from other organisms. Subunits of the recombinant L. monocytogenes SOD (re-SOD) and of both E. coli SODs formed enzymatically active hybrid enzymes in vivo. DNA/DNA-hybridization experiments showed that this type of recombinant re-sod gene is conserved within the genus Listeria.  相似文献   

15.
I van Die  B van Geffen  W Hoekstra  H Bergmans 《Gene》1985,34(2-3):187-196
The genes responsible for expression of type 1C fimbriae have been cloned from the uropathogenic Escherichia coli strain AD110 in the plasmid vector pACYC184. Analysis of deletion mutants from these plasmids showed that a 7-kb DNA fragment was required for biosynthesis of 1C fimbriae. Further analysis of this DNA fragment showed that four genes are present encoding proteins of 16, 18.5, 21 and 89 kDal. A DNA fragment encoding the 16-kDal fimbrial subunit has been cloned. The nucleotide sequence of the structural gene and of the C- and N-terminal flanking regions was determined. The structural gene codes for a polypeptide of 181 amino acids, including a 24-residue N-terminal signal sequence. The nucleotide sequence and the deduced amino acid sequence of the 1C subunit gene were compared with the sequences of the fimA gene, encoding the type 1 fimbrial subunit of E. coli K-12. The data show absolute homology at the N- and C-termini; there is less, but significant homology in the region between the N- and C-termini. Comparison of the amino acid compositions of the 1C and FimA subunit proteins with those of the F72 and PapA proteins (subunits for P-fimbriae) revealed that homology between these two sets of fimbrial subunits is also maximal at the N- and C-termini.  相似文献   

16.
We deduced the amino acid sequence of Escherichia coli lysophospholipase L(1) by determining the nucleotide sequence of the pldC gene encoding this enzyme. The translated protein was found to contain 208 amino acid residues with a hydrophobic leader sequence of 26 amino acid residues. The molecular weight of the purified enzyme (20,500) was in good agreement with the predicted size (20,399) of the processed protein. A search involving a data bank showed that the nucleotide sequence of the pldC gene was identical to those of the apeA and tesA genes encoding protease I and thioesterase I, respectively. Consistent with the identity of the pldC gene with these two genes, the enzyme purified from E. coli overexpressing the pldC gene showed both protease I and thioesterase I activities.  相似文献   

17.
18.
The gene encoding a thermostable peroxidase was cloned from the chromosomal DNA of Bacillus stearothermophilus IAM11001 in Escherichia coli. The nucleotide sequence of the 3.1-kilobase EcoRI fragment containing the peroxidase gene (perA) and its flanking region was determined. A 2,193-base-pair open reading frame encoding a peroxidase of 731 amino acid residues (Mr, 82,963) was observed. A Shine-Dalgarno sequence was found 9 base pairs upstream from the translational starting site. The deduced amino acid sequence coincides with those of the amino terminus and four peptides derived from the purified peroxidase of B. stearothermophilus IAM11001. E. coli harboring a recombinant plasmid containing perA produced a large amount of thermostable peroxidase which comigrated on polyacrylamide gel electrophoresis with the B. stearothermophilus peroxidase. The peroxidase of B. stearothermophilus showed 48% homology in the amino acid sequence to the catalase-peroxidase of E. coli.  相似文献   

19.
Thymidylate kinase (dTMP kinase; EC 2.7.4.9) catalyzes the phosphorylation of dTMP to form dTDP in both de novo and salvage pathways of dTTP synthesis. The nucleotide sequence of the tmk gene encoding this essential Escherichia coli enzyme is the last one among all the E. coli nucleoside and nucleotide kinase genes which has not yet been reported. By subcloning the 24.0-min region where the tmk gene has been previously mapped from the lambda phage 236 (E9G1) of the Kohara E. coli genomic library (Y. Kohara, K. Akiyama, and K. Isono, Cell 50:495-508, 1987), we precisely located tmk between acpP and holB genes. Here we report the nucleotide sequence of tmk, including the end portion of an upstream open reading frame (ORF 340) of unknown function that may be cotranscribed with the pabC gene. The tmk gene was located clockwise of and just upstream of the holB gene. Our sequencing data allowed the filling in of the unsequenced gap between the acpP and holB genes within the 24-min region of the E. coli chromosome. Identification of this region as the E. coli tmk gene was confirmed by functional complementation of a yeast dTMP kinase temperature-sensitive mutant and by in vitro enzyme assay of the thymidylate kinase activity in cell extracts of E. coli by use of tmk-overproducing plasmids. The deduced amino acid sequence of the E. coli tmk gene showed significant similarity to the sequences of the thymidylate kinases of vertebrates, yeasts, and viruses as well as two uncharacterized proteins of bacteria belonging to Bacillus and Haemophilus species.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号