首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Differentiation of embryonic stem (ES) cells is accompanied by silencing of the Oct-4 gene and de novo DNA methylation of its regulatory region. Previous studies have focused on the requirements for promoter region methylation. We therefore undertook to analyse the progression of DNA methylation of the ∼2000 base pair regulatory region of Oct-4 in ES cells that are wildtype or deficient for key proteins. We find that de novo methylation is initially seeded at two discrete sites, the proximal enhancer and distal promoter, spreading later to neighboring regions, including the remainder of the promoter. De novo methyltransferases Dnmt3a and Dnmt3b cooperate in the initial targeted stage of de novo methylation. Efficient completion of the pattern requires Dnmt3a and Dnmt1, but not Dnmt3b. Methylation of the Oct-4 promoter depends on the histone H3 lysine 9 methyltransferase G9a, as shown previously, but CpG methylation throughout most of the regulatory region accumulates even in the absence of G9a. Analysis of the Oct-4 regulatory domain as a whole has allowed us to detect targeted de novo methylation and to refine our understanding the roles of key protein components in this process.  相似文献   

2.
3.
Lsh is involved in de novo methylation of DNA   总被引:5,自引:0,他引:5  
Deletion of Lsh perturbs DNA methylation patterns in mice yet it is unknown whether Lsh plays a direct role in the methylation process. Two types of methylation pathways have been distinguished: maintenance methylation by Dnmt1 occurring at the replication fork, and de novo methylation established by the methyltransferases Dnmt3a and Dnmt3b. Using an episomal vector in Lsh-/- embryonic fibroblasts, we demonstrate that the acquisition of DNA methylation depends on the presence of Lsh. In contrast, maintenance of previously methylated episomes does not require Lsh, implying a functional role for Lsh in the establishment of novel methylation patterns. Lsh affects Dnmt3a as well as Dnmt3b directed methylation suggesting that Lsh can cooperate with both enzymatic activities. Furthermore, we demonstrate that embryonic stem cells with reduced Lsh protein levels show a decreased ability to silence retroviral vector or to methylate endogenous genes. Finally, we demonstrate that Lsh associates with Dnmt3a or Dnmt3b but not with Dnmt1 in embryonic cells. These results suggest that the epigenetic regulator, Lsh, is directly involved in the control of de novo methylation of DNA.  相似文献   

4.
The enzymatic control of the setting and maintenance of symmetric and non-symmetric DNA methylation patterns in a particular genome context is not well understood. Here, we describe a comprehensive analysis of DNA methylation patterns generated by high resolution sequencing of hairpin-bisulfite amplicons of selected single copy genes and repetitive elements (LINE1, B1, IAP-LTR-retrotransposons, and major satellites). The analysis unambiguously identifies a substantial amount of regional incomplete methylation maintenance, i.e. hemimethylated CpG positions, with variant degrees among cell types. Moreover, non-CpG cytosine methylation is confined to ESCs and exclusively catalysed by Dnmt3a and Dnmt3b. This sequence position-, cell type-, and region-dependent non-CpG methylation is strongly linked to neighboring CpG methylation and requires the presence of Dnmt3L. The generation of a comprehensive data set of 146,000 CpG dyads was used to apply and develop parameter estimated hidden Markov models (HMM) to calculate the relative contribution of DNA methyltransferases (Dnmts) for de novo and maintenance DNA methylation. The comparative modelling included wild-type ESCs and mutant ESCs deficient for Dnmt1, Dnmt3a, Dnmt3b, or Dnmt3a/3b, respectively. The HMM analysis identifies a considerable de novo methylation activity for Dnmt1 at certain repetitive elements and single copy sequences. Dnmt3a and Dnmt3b contribute de novo function. However, both enzymes are also essential to maintain symmetrical CpG methylation at distinct repetitive and single copy sequences in ESCs.  相似文献   

5.
M Okano  D W Bell  D A Haber  E Li 《Cell》1999,99(3):247-257
The establishment of DNA methylation patterns requires de novo methylation that occurs predominantly during early development and gametogenesis in mice. Here we demonstrate that two recently identified DNA methyltransferases, Dnmt3a and Dnmt3b, are essential for de novo methylation and for mouse development. Inactivation of both genes by gene targeting blocks de novo methylation in ES cells and early embryos, but it has no effect on maintenance of imprinted methylation patterns. Dnmt3a and Dnmt3b also exhibit nonoverlapping functions in development, with Dnmt3b specifically required for methylation of centromeric minor satellite repeats. Mutations of human DNMT3B are found in ICF syndrome, a developmental defect characterized by hypomethylation of pericentromeric repeats. Our results indicate that both Dnmt3a and Dnmt3b function as de novo methyltransferases that play important roles in normal development and disease.  相似文献   

6.
7.
8.
We used mouse embryonic stem (ES) cells with systematic gene knockouts for DNA methyltransferases to delineate the roles of DNA methyltransferase 1 (Dnmt1) and Dnmt3a and -3b in maintaining methylation patterns in the mouse genome. Dnmt1 alone was able to maintain methylation of most CpG-poor regions analyzed. In contrast, both Dnmt1 and Dnmt3a and/or Dnmt3b were required for methylation of a select class of sequences which included abundant murine LINE-1 promoters. We used a novel hemimethylation assay to show that even in wild-type cells these sequences contain high levels of hemimethylated DNA, suggestive of poor maintenance methylation. We showed that Dnmt3a and/or -3b could restore methylation of these sequences to pretreatment levels following transient exposure of cells to 5-aza-CdR, whereas Dnmt1 by itself could not. We conclude that ongoing de novo methylation by Dnmt3a and/or Dnmt3b compensates for inefficient maintenance methylation by Dnmt1 of these endogenous repetitive sequences. Our results reveal a previously unrecognized degree of cooperativity among mammalian DNA methyltransferases in ES cells.  相似文献   

9.
Dnmt3a is a de novo DNA methyltransferase that modifies unmethylated DNA. In contrast Dnmt1 shows high preference for hemimethylated DNA. However, Dnmt1 can be activated for the methylation of unmodified DNA. We show here that the Dnmt3a and Dnmt1 DNA methyltransferases functionally cooperate in de novo methylation of DNA, because a fivefold stimulation of methylation activity is observed if both enzymes are present. Stimulation is observed if Dnmt3a is used before Dnmt1, but not if incubation with Dnmt1 precedes Dnmt3a, demonstrating that methylation of the DNA by Dnmt3a stimulates Dnmt1 and that no physical interaction of Dnmt1 and Dnmt3a is required. If Dnmt1 and Dnmt3a were incubated together a slightly increased stimulation is observed that could be due to a direct interaction of these enzymes. In addition, we show that Dnmt1 is stimulated for methylation of unmodified DNA if the DNA already carries some methyl groups. We conclude that after initiation of de novo methylation of DNA by Dnmt3a, Dnmt1 becomes activated by the pre-existing methyl groups and further methylates the DNA. Our data suggest that Dnmt1 also has a role in de novo methylation of DNA. This model agrees with the biochemical properties of these enzymes and provides a mechanistic basis for the functional cooperation of different DNA MTases in de novo methylation of DNA that has also been observed in vivo.  相似文献   

10.
In mammalian cells, DNA methylation patterns are precisely maintained after DNA replication with defined changes occurring during development. The major DNA methyltransferase (Dnmt1) is associated with nuclear replication sites during S-phase, which is consistent with a role in maintenance methylation. The subcellular distribution of the recently discovered de novo DNA methyltransferases, Dnmt3a and Dnmt3b, was investigated by immunofluorescence and by epitope tagging. We now show that both Dnmt3a and Dnmt3b are distributed throughout the nucleoplasm but are not associated with nuclear DNA replication sites during S-phase. These results suggest that de novo methylation by Dnmt3a and Dnmt3b occurs independently of the replication process and might involve an alternative mechanism for accessing the target DNA. The different subcellular distribution of mammalian DNA methyltransferases might thus contribute to the regulation of DNA methylation.  相似文献   

11.
We tested the hypothesis that miR-133a regulates DNA methylation by inhibiting Dnmt-1 (maintenance) and Dnmt-3a and -3b (de novo) methyl transferases in diabetic hearts by using Ins2(+/-) Akita (diabetic) and C57BL/6J (WT), mice and HL1 cardiomyocytes. The specific role of miR-133a in DNA methylation in diabetes was assessed by two treatment groups (1) scrambled, miR-133a mimic, anti-miR-133a, and (2) 5mM glucose (CT), 25mM glucose (HG) and HG+miR-133a mimic. The levels of miR-133a, Dnmt-1, -3a and -3b were measured by multiplex RT-PCR, qPCR and Western blotting. The results revealed that miR-133a is inhibited but Dnmt-1 and -3b are induced in Akita suggesting that attenuation of miR-133a induces both maintenance (Dnmt-1) - and de novo - methylation (Dnmt-3b) in diabetes. The up regulation of Dnmt-3a in Akita hearts elicits intricate and antagonizing interaction between Dnmt-3a and -3b. In cardiomyocytes, over expression of miR-133a inhibits but silencing of miR-133a induces Dnmt-1, -3a and -3b elucidating the involvement of miR-133a in regulation of DNA methylation. The HG treatment up regulates only Dnmt-1 and not Dnmt-3a and -3b suggesting that acute hyperglycemia triggers only maintenance methylation. The over expression of miR-133a mitigates glucose mediated induction of Dnmt-1 illustrating the role of miR-133a in regulation of DNA methylation in diabetes.  相似文献   

12.
In mammals, the resetting of DNA methylation patterns in early embryos and germ cells is crucial for development. De novo type DNA methyltransferases Dnmt3a and Dnmt3b are responsible for creating DNA methylation patterns during embryogenesis and in germ cells. Although their in vitro DNA methylation properties are similar, Dnmt3a and Dnmt3b methylate different genomic DNA regions in vivo. In the present study, we have examined the DNA methylation activity of Dnmt3a and Dnmt3b towards nucleosomes reconstituted from recombinant histones and DNAs, and compared it to that of the corresponding naked DNAs. Dnmt3a showed higher DNA methylation activity than Dnmt3b towards naked DNA and the naked part of nucleosomal DNA. On the other hand, Dnmt3a scarcely methylated the DNA within the nucleosome core region, while Dnmt3b significantly did, although the activity was low. We propose that the preferential DNA methylation activity of Dnmt3a towards the naked part of nucleosomal DNA and the significant methylation activity of Dnmt3b towards the nucleosome core region contribute to their distinct methylation of genomic DNA in vivo.  相似文献   

13.
The putative de novo methyltransferases, Dnmt3a and Dnmt3b, were reported to have weak methyltransferase activity in methylating the 3' long terminal repeat of Moloney murine leukemia virus in vitro. The activity of these enzymes was evaluated in vivo, using a stable episomal system that employs plasmids as targets for DNA methylation in human cells. De novo methylation of a subset of the CpG sites on the stable episomes is detected in human cells overexpressing the murine Dnmt3a or Dnmt3b1 protein. This de novo methylation activity is abolished when the cysteine in the P-C motif, which is the catalytic site of cytosine methyltransferases, is replaced by a serine. The pattern of methylation on the episome is nonrandom, and different regions of the episome are methylated to different extents. Furthermore, Dnmt3a also methylates the sequence methylated by Dnmt3a on the stable episome in the corresponding chromosomal target. Overexpression of human DNMT1 or murine Dnmt3b does not lead to the same pattern or degree of de novo methylation on the episome as overexpression of murine Dnmt3a. This finding suggests that these three enzymes may have different targets or requirements, despite the fact that weak de novo methyltransferase activity has been demonstrated in vitro for all three enzymes. It is also noteworthy that both Dnmt3a and Dnmt3b proteins coat the metaphase chromosomes while displaying a more uniform pattern in the nucleus. This is the first evidence that Dnmt3a and Dnmt3b have de novo methyltransferase function in vivo and the first indication that the Dnmt3a and Dnmt3b proteins may have preferred target sites.  相似文献   

14.

Background  

In mammals, epigenetic information is established and maintained via the postreplicative methylation of cytosine residues by the DNA methyltransferases Dnmt1, Dnmt3a and Dnmt3b. Dnmt1 is required for maintenance methylation whereas Dnmt3a and Dnmt3b are responsible for de novo methylation. Contrary to Dnmt3a or Dnmt3b, the isolated C-terminal region of Dnmt1 is catalytically inactive, despite the presence of the sequence motifs typical of active DNA methyltransferases. Deletion analysis has revealed that a large part of the N-terminal domain is required for enzymatic activity.  相似文献   

15.
DNA methylation is an epigenetic modification of DNA. There are currently three catalytically active mammalian DNA methyltransferases, DNMT1, -3a, and -3b. DNMT1 has been shown to have a preference for hemimethylated DNA and has therefore been termed the maintenance methyltransferase. Although previous studies on DNMT3a and -3b revealed that they act as functional enzymes during development, there is little biochemical evidence about how new methylation patterns are established and maintained. To study this mechanism we have cloned and expressed Dnmt3a using a baculovirus expression system. The substrate specificity of Dnmt3a and molecular mechanism of its methylation reaction were then analyzed using a novel and highly reproducible assay. We report here that Dnmt3a is a true de novo methyltransferase that prefers unmethylated DNA substrates more than 3-fold to hemimethylated DNA. Furthermore, Dnmt3a binds DNA nonspecifically, regardless of the presence of CpG dinucleotides in the DNA substrate. Kinetic analysis supports an Ordered Bi Bi mechanism for Dnmt3a, where DNA binds first, followed by S-adenosyl-l-methionine.  相似文献   

16.
We have previously shown that the DNA methyltransferases Dnmt3a and Dnmt3b carry out de novo methylation of the mouse genome during early postimplantation development and of maternally imprinted genes in the oocyte. In the present study, we demonstrate that Dnmt3a and Dnmt3b are also essential for the stable inheritance, or “maintenance,” of DNA methylation patterns. Inactivation of both Dnmt3a and Dnmt3b in embryonic stem (ES) cells results in progressive loss of methylation in various repeats and single-copy genes. Interestingly, introduction of the Dnmt3a, Dnmt3a2, and Dnmt3b1 isoforms back into highly demethylated mutant ES cells restores genomic methylation patterns; these isoforms appear to have both common and distinct DNA targets, but they all fail to restore the maternal methylation imprints. In contrast, overexpression of Dnmt1 and Dnmt3b3 failed to restore DNA methylation patterns due to their inability to catalyze de novo methylation in vivo. We also show that hypermethylation of genomic DNA by Dnmt3a and Dnmt3b is necessary for ES cells to form teratomas in nude mice. These results indicate that genomic methylation patterns are determined partly through differential expression of different Dnmt3a and Dnmt3b isoforms.  相似文献   

17.
Aberrant gene silencing accompanied by DNA methylation is associated with neoplastic progression in many tumors that also show global loss of DNA methylation. Using conditional inactivation of de novo methyltransferase Dnmt3b in Apc(Min/+) mice, we demonstrate that the loss of Dnmt3b has no impact on microadenoma formation, which is considered the earliest stage of intestinal tumor formation. Nevertheless, we observed a significant decrease in the formation of macroscopic colonic adenomas. Interestingly, many large adenomas showed regions with Dnmt3b inactivation, indicating that Dnmt3b is required for initial outgrowth of macroscopic adenomas but is not required for their maintenance. These results support a role for Dnmt3b in the transition stage between microadenoma formation and macroscopic colonic tumor growth and further suggest that Dnmt3b, and by extension de novo methylation, is not required for maintaining tumor growth after this transition stage has occurred.  相似文献   

18.
19.
We present the first in vitro study investigating the catalytic properties of a mammalian de novo DNA methyltransferase. Dnmt3a from mouse was cloned and expressed in Escherichia coli. It was shown to be catalytically active in E. coli cells in vivo. The methylation activity of the purified protein was highest at pH 7.0 and 30 mM KCl. Our data show that recombinant Dnmt3a protein is indeed a de novo methyltransferase, as it catalyzes the transfer of methyl groups to unmethylated substrates with similar efficiency as to hemimethylated substrates. With oligonucleotide substrates, the catalytic activity of Dnmt3a is similar to that of Dnmt1: the K(m) values for the unmethylated and hemimethylated oligonucleotide substrates are 2.5 microM, and the k(cat) values are 0.05 h(-1) and 0.07 h(-1), respectively. The enzyme catalyzes the methylation of DNA in a distributive manner, suggesting that Dnmt3a and Dnmt1 may cooperate during de novo methylation of DNA. Further, we investigated the methylation activity of Dnmt3a at non-canonical sites. Even though the enzyme shows maximum activity at CpG sites, with oligonucleotide substrates, a high methylation activity was also found at CpA sites, which are modified only twofold slower than CpG sites. Therefore, the specificity of Dnmt3a is completely different from that of the maintenance methyltransferase Dnmt1, which shows a 40 to 50-fold preference for hemimethylated over unmethylated CpG sites and has almost no methylation activity at non-CpG sites.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号