首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Mitochondria are one of the central regulators of many cellular processes beyond its well established role in energy metabolism. The inter-organellar crosstalk is critical for the optimal function of mitochondria. Many nuclear encoded proteins and RNA are imported to mitochondria. The translocation of small RNA (sRNA) including miRNA to mitochondria and other sub-cellular organelle is still not clear. We characterized here sRNA including miRNA associated with human mitochondria by cellular fractionation and deep sequencing approach. Mitochondria were purified from HEK293 and HeLa cells for RNA isolation. The sRNA library was generated and sequenced using Illumina system. The analysis showed the presence of unique population of sRNA associated with mitochondria including miRNA. Putative novel miRNAs were characterized from unannotated sRNA sequences. The study showed the association of 428 known, 196 putative novel miRNAs to mitochondria of HEK293 and 327 known, 13 putative novel miRNAs to mitochondria of HeLa cells. The alignment of sRNA to mitochondrial genome was also studied. The targets were analyzed using DAVID to classify them in unique networks using GO and KEGG tools. Analysis of identified targets showed that miRNA associated with mitochondria regulates critical cellular processes like RNA turnover, apoptosis, cell cycle and nucleotide metabolism. The six miRNAs (counts >1000) associated with mitochondria of both HEK293 and HeLa were validated by RT-qPCR. To our knowledge, this is the first systematic study demonstrating the associations of sRNA including miRNA with mitochondria that may regulate site-specific turnover of target mRNA important for mitochondrial related functions.  相似文献   

2.
Mitochondria play a crucial role in energetic metabolism, signaling pathways, and overall cell viability. Mitochondrial dysfunctions are known to cause a wide range of human diseases that affect tissues especially those with high energetic requirements, such as skeletal muscle, heart, kidney, and central nervous system, while being involved in cancer, aging, and metabolic processes. At the same time, the microRNA (miRNA) gene family has been demonstrated to be involved in most cellular processes through modulation of proteins critical for cellular homeostasis. Given the broad scope of reactivity profiles and the ability of miRNAs to modify numerous proteomic and genomic processes, new emphasis is being placed on the influence of miRNAs at the mitochondrial level. Recently, the localization of miRNAs in mitochondria was characterized in different species. This raises the idea that those miRNAs, noted “mitomiRs,” could act as “vectors” that sense and respond dynamically to the changing microenvironment of mitochondria at the cellular level. Reciprocally, we present the involvement of mitochondria in small RNA biogenesis. With the aim of deciphering the significance of this localization, we discuss the putative mechanism of import of miRNAs at mitochondria, their origin, and their hypothetical roles within the organelle.  相似文献   

3.
4.
5.
6.
7.
8.
线粒体是细胞内氧化磷酸化(oxidative phosphorylation,OXPHOS)和合成三磷酸腺苷(adenosine triphosphate,ATP)的细胞器,是细胞能量代谢的“动力工厂”。线粒体几乎存在于所有真核生物中,参与细胞凋亡、钙稳态以及先天免疫反应的调节等过程,对细胞行使正常的生理功能至关重要。线粒体是半自主细胞器,拥有自身的基因组DNA,编码37个基因,包括2个rRNA基因、13个m RNA基因和22个tRNA基因。线粒体的基因表达需要经过复杂的转录和转录后加工过程,包括多顺反子RNA的切割、RNA的修饰以及RNA的末端加工等过程。异常的线粒体RNA加工会导致线粒体RNA表达谱发生变化、线粒体翻译紊乱、线粒体功能失常等,从而造成多种线粒体相关疾病。本文综述了线粒体DNA的转录、RNA转录后加工以及影响RNA加工的因素方面的最新研究进展。  相似文献   

9.
10.
11.
12.
B Qu  X Han  Y Tang  N Shen 《PloS one》2012,7(7):e41504
The roles of microRNAs (miRNAs) as important regulators of gene expression have been studied intensively. Although most of these investigations have involved the highly expressed form of the two mature miRNA species, increasing evidence points to essential roles for star-form microRNAs (miRNA*), which are usually expressed at much lower levels. Owing to the nature of miRNA biogenesis, it is challenging to use plasmids containing miRNA coding sequences for gain-of-function experiments concerning the roles of microRNA* species. Synthetic microRNA mimics could introduce specific miRNA* species into cells, but this transient overexpression system has many shortcomings. Here, we report that specific miRNA* species can be overexpressed by introducing artificially designed stem-loop sequences into short hairpin RNA (shRNA) overexpression vectors. By our prototypic plasmid, designed to overexpress hsa-miR-146b-3p, we successfully expressed high levels of hsa-miR-146b-3p without detectable change of hsa-miR-146b-5p. Functional analysis involving luciferase reporter assays showed that, like natural miRNAs, the overexpressed hsa-miR-146b-3p inhibited target gene expression by 3'UTR seed pairing. Our demonstration that this method could overexpress two other miRNAs suggests that the approach should be broadly applicable. Our novel strategy opens the way for exclusively stable overexpression of miRNA* species and analyzing their unique functions both in vitro and in vivo.  相似文献   

13.
microRNAs(miRNAs)是一类普遍存在于真核细胞的非编码小分子RNA,通常在转录后水平抑制靶基因的表达。miRNA表达失调与许多疾病相关,如Ⅱ型糖尿病(T2D)。Ⅱ型糖尿病是一种复杂的疾病,显著特征是高血糖。近年来的研究表明,miRNA在Ⅱ型糖尿病的发生发展中扮演着不同的角色。本研究通过miRNA微阵列芯片和实时荧光定量PCR的方法,发现hsa-miR-1249和hsa-miR-486-5p在Ⅱ型糖尿病患者血浆中较之于正常对照组表达显著降低,显示了hsa-miR-1249和hsa-miR-486-5p可能在Ⅱ型糖尿病的发病过程中起着重要的作用。本研究揭示了hsa-miR-1249和hsa-miR-486-5p有可能成为Ⅱ型糖尿病的新的诊断标志物和治疗靶标。  相似文献   

14.
《Genomics》2023,115(3):110622
Previous studies have indicated that exosome-mediated intercellular microRNAs (miRNA) can influence fulminant myocarditis (FM) pathogenesis between immune and cardiac cells. This study explored plasma exosome miRNA profile in pediatric FM using a small RNA microarray. As per our analysis, we observed the differential expression of 266 miRNAs, including 197 upregulated and 69 downregulated candidate genes. Differentially expressed mRNAs in pediatric FM patients' peripheral blood mononuclear cells (PBMCs) were intersected with miRNA target genes predicting tools to screen for FM-specific target genes. The hub genes and their biological and mechanistic pathways related to inflammation and/or the immune system were identified. CeRNA networks of lncRNAs, circRNAs, miRNAs, and mRNAs between cardiomyocytes and PBMCs were finally established. Furthermore, we verified that hsa-miR-146a-5p, hsa-miR-23a-3p, and hsa-miR-27a-3p had higher expression levels in exosomes of pediatric FM patients by qRT-PCR, and hsa-miR-146a-5p shown high sensitivities and specificities for FM diagnosis. Overall, the results demonstrate that the exosome miRNAs play a regulatory role between immune and cardiac cells and provide research targets.  相似文献   

15.
16.
17.
18.
19.
The mitochondrial oxidative phosphorylation (OXPHOS) proteins are encoded by both nuclear and mitochondrial DNA. The nuclear-encoded OXPHOS mRNAs have specific subcellular localizations, but little is known about which localize near mitochondria. Here, we compared mRNAs in mitochondria-bound polysome fractions with those in cytosolic, free polysome fractions. mRNAs encoding hydrophobic OXPHOS proteins, which insert into the inner membrane, were localized near mitochondria. Conversely, OXPHOS gene which mRNAs were predominantly localized in cytosol had less than one transmembrane domain. The RNA-binding protein Y-box binding protein-1 is localized at the mitochondrial outer membrane and bound to the OXPHOS mRNAs. Our findings offer new insight into mitochondrial co-translational import in human cells.  相似文献   

20.
高杰  韩建伟  关凯  杨彤涛  李放 《生物磁学》2013,(30):5855-5859
目的:研究miRNAs在人骨髓来源间充质干细胞软骨诱导分化过程中的表达情况。方法:以从骨髓中分离培养的MSCs及软骨诱导培养后的细胞为实验对象,利用基因芯片检测miRNAs的表达情况,由SAM分析得到MSCs较其诱导培养细胞中差异表达的miRNAs,再进行生物信息学分析。结果:①分离培养出的MSCs经软骨诱导培养21天后,已具有软骨细胞特性,经芯片检测并SAM分析,软骨诱导培养的细胞较MSCs高表达的miRNAs有6个:hsa-miR-572、hsa-miR-130b、hsa-miR-193b、hsa-miR-28、hsa-miR-152、hsa-miR-560;软骨诱导培养的细胞较MSCs低表达的miRNAs有2个:hsa-miR-424、hsa-miR-122a。②利用TargetScan预测其靶基因,并行生物信息学分析,其中hsa-miR-130b、hsa-miR-193b、hsa-miR-152及hsa-miR-424的预测靶基因中多为参与细胞分化、骨形成、软骨形成及干细胞表型相关的基因。结论:hsa-miR-130b、hsa-miR-193b、hsa-miR-152和hsa-miR-424等对人骨髓来源间充质干细胞的软骨分化起着重要调控作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号