首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Aims: Tuberculous pleurisy is an important cause of pleural effusions in areas with a high incidence of tuberculosis. In this study, we developed an IS1081‐based LAMP for the detection of Mycobacterium tuberculosis complex and investigated its usefulness in the diagnosis of tuberculous pleurisy. Methods and Results: Investigation of pleural effusion samples from patients with tuberculous pleurisy, majority of them smear‐/culture‐negative, and control individuals with non‐TB diseases showed that the LAMP assay with incubation time of 60 min has much higher specificity and the LAMP assay with incubation time of 90 min has significantly higher sensitivity in the diagnosis of tuberculous pleurisy, as compared with fluorescent real‐time PCR. Conclusions: The MTBC–LAMP is a useful assay for the diagnosis of tuberculous pleurisy, especially in pleural effusion smear‐/culture‐negative patients. Significance and Impact of the Study: Tuberculous pleural effusion usually contains low number of mycobacteria, which leads to low diagnostic sensitivity of acid‐fast staining and mycobacterial culture methods. In this study, we developed a simple and sensitive LAMP assay for the diagnosis of tuberculous pleurisy. This assay should have broad application in resource‐limited settings.  相似文献   

3.
This study was aimed to rapidly identify and differentiate two main pathogens of the Mycobacterium tuberculosis complex: Mycobacterium tuberculosis subsp. tuberculosis and Mycobacterium bovis by a modified loop-mediated isothermal amplification (LAMP) assay. The reaction results could be evaluated by naked eye with two optimized closed tube detection methods as follows: adding the modified fluorescence dye in advance into the reaction mix so as to observe the color changes or putting a tinfoil in the tube and adding the SYBR Green I dye on it, then making the dye drop into the bottom of the tube by centrifuge after reaction. The results showed that the two groups of primers used jointly in this assay could successfully identify and differentiate Mycobacterium tuberculosis subsp. tuberculosis and Mycobacterium tuberculosis bovis. Sensitivity test displayed that the modified LAMP assay with the closed tube system could determine the minimal template concentration of 1 copy/μl, which was more sensitive than that of routine PCR. The advantages of this LAMP method for detection of the Mycobacterium tuberculosis complex included high specificity, high sensitivity, simplicity, and superiority in avoidance of aerosol contamination. The modified LAMP assay would provide a potential for clinical diagnosis and therapy of tuberculosis in the developing countries and the resource-limited areas.  相似文献   

4.
To simplify the molecular detection of micro-organisms, we evaluated the tolerance of loop-mediated isothermal amplification (LAMP) to a culture medium and some biological substances. The sensitivity of LAMP was less affected by the various components of the clinical samples than was polymerase chain reaction (PCR); therefore, DNA purification from samples could be omitted.  相似文献   

5.
To simplify the molecular detection of micro-organisms, we evaluated the tolerance of loop-mediated isothermal amplification (LAMP) to a culture medium and some biological substances. The sensitivity of LAMP was less affected by the various components of the clinical samples than was polymerase chain reaction (PCR); therefore, DNA purification from samples could be omitted.  相似文献   

6.
由家蚕核型多角体病毒(Bombyx mori nucleopoyhedrosis virus,BmNPV)侵染家蚕Bombyx mori引起的家蚕核型多角体病(血液型脓病)在养蚕生产中发生较为普遍,对蚕业生产造成重大的经济损失。本研究建立了快捷有效的环介导等温扩增技术(loop-mediated isothermal amplification,LAMP)用于快速检测BmNPV,为蚕业生产提供了一个有效检测BmNPV和进行早期诊断的技术。该方法是针对BmNPV的pe38基因的6个区段设计的6条引物用于扩增检测,整个反应在恒温条件63℃下进行25 min,扩增产物用电泳法和可视法检测(用SYBR Green I染色)。结果显示,LAMP检测方法的灵敏度是常规PCR方法的100倍,能检测的范围为21个拷贝。另外,用4.86×108OBs/mL感染4龄起蚕,提取血淋巴DNA为模板,PCR在感染36 h后检出病毒DNA,LAMP法能检测感染12h后的样品。  相似文献   

7.
BACKGROUND: Molecular diagnostic methods can complement existing tools to improve the diagnosis of malaria. However, they require good laboratory infrastructure thereby restricting their use to reference laboratories and research studies. Therefore, adopting molecular tools for routine use in malaria endemic countries will require simpler molecular platforms. The recently developed loop-mediated isothermal amplification (LAMP) method is relatively simple and can be improved for better use in endemic countries. In this study, we attempted to improve this method for malaria diagnosis by using a simple and portable device capable of performing both the amplification and detection (by fluorescence) of LAMP in one platform. We refer to this as the RealAmp method. METHODOLOGY AND SIGNIFICANT FINDINGS: Published genus-specific primers were used to test the utility of this method. DNA derived from different species of malaria parasites was used for the initial characterization. Clinical samples of P. falciparum were used to determine the sensitivity and specificity of this system compared to microscopy and a nested PCR method. Additionally, directly boiled parasite preparations were compared with a conventional DNA isolation method. The RealAmp method was found to be simple and allowed real-time detection of DNA amplification. The time to amplification varied but was generally less than 60 minutes. All human-infecting Plasmodium species were detected. The sensitivity and specificity of RealAmp in detecting P. falciparum was 96.7% and 91.7% respectively, compared to microscopy and 98.9% and 100% respectively, compared to a standard nested PCR method. In addition, this method consistently detected P. falciparum from directly boiled blood samples. CONCLUSION: This RealAmp method has great potential as a field usable molecular tool for diagnosis of malaria. This tool can provide an alternative to conventional PCR based diagnostic methods for field use in clinical and operational programs.  相似文献   

8.
环介导等温扩增技术是一种在恒温条件下特异、高效、快速扩增DNA的新技术.不需要专业设备和人员,在一个反应体系中,通过四条特异性引物识别靶基因6个不同的位点,1h内完成整个扩增.扩增产物是一系列反向重复的靶序列构成的茎环结构和多环花椰菜样结构的DNA片段的混合物.通过肉眼观察浊度或加入荧光染料SYBR Green Ⅰ后的颜色变化即可判定结果.  相似文献   

9.
Loop-mediated isothermal amplification (LAMP) yields a large amount of DNA, as well as magnesium pyrophosphate precipitate, causing a decrease in ionic strength that can be measured with a conductivity meter. There is a clear relationship between the conductivity of the LAMP mixture solution and the duration of biochemical reaction. Moreover, there is also a clear relationship between the change in conductivity and the amount of initial template DNA over the range of 0.08 to 3.2 ng. These results demonstrate the feasibility not only for detecting the LAMP product qualitatively but also for real-time monitoring the biochemical reaction progression quantitatively using conductivity measurements.  相似文献   

10.
We evaluated the robustness of loop-mediated isothermal amplification (LAMP) of DNA for bacterial diagnostic applications. Salmonella enterica serovar Typhi was used as the target organism and compared with a real-time quantitative PCR (qPCR) for testing assay performance and reproducibly, as well as the impact of pH and temperature stability. This isothermal amplification method appeared to be particularly robust across 2 pH units (7.3-9.3) and temperature values (57-67 °C). The detection limit was comparable to that observed using optimized home-brew qPCR assays. The specificity of the amplification reaction remained high even at temperatures markedly different from the optimal one. Exposing reagents to the ambient temperature during the preparation of the reaction mixture as well as prolonging times for preparing the amplification reaction did not yield false-positive results. LAMP remained sensitive and specific despite the addition of untreated biological fluids such as stool or urine that commonly inhibit PCR amplification. Whereas the detection of microorganisms from whole blood or a blood-culture medium typically requires extensive sample purification and removal of inhibitors, LAMP amplification remained more sensitive than conventional qPCR when omitting such preparatory steps. Our results demonstrate that LAMP is not only easy to use, but is also a very robust, innovative and powerful molecular diagnostic method for both industrialized and developing countries.  相似文献   

11.
目的 建立环介导恒温扩增(LAMP)检测肺炎链球菌的方法.方法 用LAMP技术扩增肺炎链球菌菌株,并应用50例临床标本采用传统培养法、PCR法、LAMP法进行检测,比较3种方法的检出率,同时检测方法特异性和灵敏度.结果 所测肺炎链球菌均获扩增产物,对其他非肺炎链球菌无交叉反应.LAMP检测灵敏度可达102 CFU/mL.50例临床标本使用LAMP法检出9例肺炎链球菌阳性(18.0%),使用传统培养法检出阳性4例(8.0%).结论 LAMP法较传统培养检测方法特异性强、灵敏度高、操作方便、快速,适合临床标本的肺炎链球菌检测.  相似文献   

12.
Aims: To develop a sensitive, rapid and simple method for detection of Botrytis cinerea based on loop‐mediated isothermal amplification (LAMP) that would be suitable for use outside a conventional laboratory setting. Methods and Results: A LAMP assay was designed based on the intergenic spacer of the B. cinerea nuclear ribosomal DNA (rDNA). The resulting assay was characterized in terms of sensitivity and specificity using DNA extracted from cultures. The assay consistently amplified 65 pg B. cinerea DNA. No cross‐reactivity was observed with a range of other fungal pathogens, with the exception of the closely related species Botrytis pelargonii. Use of a novel real‐time LAMP platform (the OptiGene Genie I) allowed detection of B. cinerea in infected rose petals, with amplification occurring in <15 min. Conclusions: The LAMP assay that was developed is suitable for rapid detection of B. cinerea in infected plant material. Significance and Impact of the Study: The LAMP method combines the sensitivity and specificity of nucleic acid‐based methods with simplified equipment and a reduced reaction time. These features make the method potentially suitable for on‐site use, where the results of testing could help to inform decisions regarding the storage and processing of commodities affected by B. cinerea, such as cut flowers, fruit and vegetables.  相似文献   

13.
14.
Detection of fish nocardiosis by loop-mediated isothermal amplification   总被引:4,自引:0,他引:4  
AIMS: Loop-mediated isothermal amplification (LAMP) is a novel method that amplifies DNA with high specificity and rapidity under isothermal conditions. In this study, using the LAMP method, a protocol for detecting Nocardia seriolae which is a causative agent of fish nocardiosis, was designed. METHODS AND RESULTS: A set of four primers, two inner and two outer, were designed based on the sequence of the 16S-23S ribosomal RNA internal transcribed spacer region of N. seriolae. Time and temperature conditions for detection of N. seriolae were optimized for 60 min at 65 degrees C. Other fish pathogen was not amplified by this LAMP system. The detection of N. seriola using LAMP was found to be more sensitive than that by polymerase chain reaction. CONCLUSIONS: LAMP is a highly sensitive and rapid diagnostic procedure for detection of N. seriolae. SIGNIFICANCE AND IMPACT OF THE STUDY: LAMP is a useful diagnostic method for fish nocardiosis.  相似文献   

15.
The dinoflagellate Prorocentrum minimum was successfully detected using loop-mediated isothermal amplification (LAMP) and real-time fluorescence quantitative PCR (RTFQ-PCR). Both specificity and sensitivity testing in the two methods have been validated. In the LAMP assay, the specific ladder-like pattern of bands only appeared in those templates containing P. minimum. The sensitivity of LAMP was tenfold higher than conventional PCR. In RTFQ-PCR assay, only positive amplifications were detected from those samples containing P. minimum. RTFQ-PCR can detect 0.1 cells and 10 pg of DNA within 40 cycles, showing its high sensitivity. Cells could be quantified according to standard curves in agreement with the quantification by standard microscopy counting methods. The LAMP method therefore is appropriate for on-the-spot testing because of its rapidity and simplification, and the RTFQ-PCR is fit for laboratory testing owing to its accurate quantification. The two methods are of significance in forecasting red tides.  相似文献   

16.
17.
18.
19.
New methods were developed for the detection of koi herpesvirus (KHV, CyHV-3) by LAMP, which were compared with the PCR for specificity and sensitivity. We designed two primer sets targeting a specific sequence within the 9/5 PCR amplicon (9/5 LAMP) and the upper region of the Sph I-5 PCR amplicon ( Sph I-5 LAMP), including a sequence highly conserved among the strains. The amplification was monitored in real-time based on the increase in turbidity, with magnesium pyrophosphate as the by-product. The reactions were carried out under isothermal conditions at 65°C for 60 min. The detection limit of both LAMP was six copies, equal to the modified Sph I-5 PCR. No cross-reactivity with other fish pathogenic viruses and bacteria was observed. Sph I-5 LAMP was found to have a quicker response in terms of the reaction velocity than 9/5 LAMP. Therefore, we consider Sph I-5 LAMP to be superior for routine use. Additionally, LAMP was found applicable to crude extract from gills and other organs. LAMP methods are superior in terms of sensitivity, specificity, rapidity and simplicity, and are potentially a valuable diagnostic tool for KHV infections.  相似文献   

20.
基于反转录-环介导等温扩增技术检测沙门氏菌   总被引:1,自引:0,他引:1  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号