首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

The Firth of Clyde is a large inlet of the sea that extends over 100 km into Scotland''s west coast.

Methods

We compiled detailed fisheries landings data for this area and combined them with historical accounts to build a picture of change due to fishing activity over the last 200 years.

Findings

In the early 19th century, prior to the onset of industrial fishing, the Firth of Clyde supported diverse and productive fisheries for species such as herring (Clupea harengus, Clupeidae), cod (Gadus morhua, Gadidae), haddock (Melanogrammus aeglefinus, Gadidae), turbot (Psetta maxima, Scophthalmidae) and flounder (Platichthys flesus, Pleuronectidae). The 19th century saw increased demand for fish, which encouraged more indiscriminate methods of fishing such as bottom trawling. During the 1880s, fish landings began to decline, and upon the recommendation of local fishers and scientists, the Firth of Clyde was closed to large trawling vessels in 1889. This closure remained in place until 1962 when bottom trawling for Norway lobster (Nephrops norvegicus, Nephropidae) was approved in areas more than three nautical miles from the coast. During the 1960s and 1970s, landings of bottomfish increased as trawling intensified. The trawl closure within three nautical miles of the coast was repealed in 1984 under pressure from the industry. Thereafter, bottomfish landings went into terminal decline, with all species collapsing to zero or near zero landings by the early 21st century. Herring fisheries collapsed in the 1970s as more efficient mid-water trawls and fish finders were introduced, while a fishery for mid-water saithe (Pollachius virens, Gadidae) underwent a boom and bust shortly after discovery in the late 1960s. The only commercial fisheries that remain today are for Nephrops and scallops (Pecten maximus, Pectinidae).

Significance

The Firth of Clyde is a marine ecosystem nearing the endpoint of overfishing, a time when no species remain that are capable of sustaining commercial catches. The evidence suggests that trawl closures helped maintain productive fisheries through the mid-20th century, and their reopening precipitated collapse of bottomfish stocks. We argue that continued intensive bottom trawling for Nephrops with fine mesh nets will prevent the recovery of other species. This once diverse and highly productive environment will only be restored if trawl closures or other protected areas are re-introduced. The Firth of Clyde represents at a small scale a process that is occurring ocean-wide today, and its experience serves as a warning to others.  相似文献   

2.

Background

Minimizing fishery bycatch threats might involve trade-offs between maintaining viable populations and economic benefits. Understanding these trade-offs can help managers reconcile conflicting goals. An example is a set of bycatch reduction measures for the Critically Endangered vaquita porpoise (Phocoena sinus), in the Northern Gulf of California, Mexico. The vaquita is an endemic species threatened with extinction by artisanal net bycatch within its limited range; in this area fisheries are the chief source of economic productivity.

Methodology/Principal Findings

We analyze trade-offs between conservation of the vaquita and fisheries, using an end-to-end Atlantis ecosystem model for the Northern Gulf of California. Atlantis is a spatially-explicit model intended as a strategic tool to test alternative management strategies. We simulated increasingly restrictive fisheries regulations contained in the vaquita conservation plan: implementing progressively larger spatial management areas that exclude gillnets, shrimp driftnets and introduce a fishing gear that has no vaquita bycatch. We found that only the most extensive spatial management scenarios recovered the vaquita population above the threshold necessary to downlist the species from Critically Endangered. The scenario that excludes existing net gear from the 2008 area of vaquita distribution led to moderate decrease in net present value (US$ 42 million) relative to the best-performing scenario and a two-fold increase in the abundance of adult vaquita over the course of 30 years.

Conclusions/Significance

Extended spatial management resulted in the highest recovery of the vaquita population. The economic cost of proposed management actions was unequally divided between fishing fleets; the loss of value from finfish gillnet fisheries was never recovered. Our analysis shows that managers will have to confront difficult trade-offs between management scenarios for vaquita conservation.  相似文献   

3.

Background

Scuba diving fishing, predominantly targeting sea cucumbers, has been documented to occur in an uncontrolled manner in the Western Indian Ocean and in other tropical regions. Although this type of fishing generally indicates a destructive activity, little attention has been directed towards this category of fishery, a major knowledge gap and barrier to management.

Methodology and Principal Findings

With the aim to capture geographic scales, fishing processes and social aspects the scuba diving fishery that operate out of Zanzibar was studied using interviews, discussions, participant observations and catch monitoring. The diving fishery was resilient to resource declines and had expanded to new species, new depths and new fishing grounds, sometimes operating approximately 250 km away from Zanzibar at depths down to 50 meters, as a result of depleted easy-access stock. The diving operations were embedded in a regional and global trade network, and its actors operated in a roving manner on multiple spatial levels, taking advantage of unfair patron-client relationships and of the insufficient management in Zanzibar.

Conclusions and Significance

This study illustrates that roving dynamics in fisheries, which have been predominantly addressed on a global scale, also take place at a considerably smaller spatial scale. Importantly, while proposed management of the sea cucumber fishery is often generic to a simplified fishery situation, this study illustrates a multifaceted fishery with diverse management requirements. The documented spatial scales and processes in the scuba diving fishery emphasize the need for increased regional governance partnerships to implement management that fit the spatial scales and processes of the operation.  相似文献   

4.

Background

Marine populations have been declining at a worrying rate, due in large part to fishing pressures. The challenge is to secure a future for marine life while minimizing impacts on fishers and fishing communities.

Methods and Principal Findings

Rather than selecting areas where fishing is banned – as is usually the case with spatial management – we assess the concept of designating areas where fishing is permitted. We use spatial catch statistics for thirteen commercial fisheries on Canada''s west coast to determine the minimum area that would be needed to maintain a pre-ascribed target percentage of current catches. We found that small reductions in fisheries yields, if strategically allocated, could result in large unfished areas that are representative of biophysical regions and habitat types, and have the potential to achieve remarkable conservation gains.

Conclusions

Our approach of selecting fishing areas instead of reserves could help redirect debate about the relative values that society places on conservation and extraction, in a framework that could gain much by losing little. Our ideas are intended to promote discussions about the current status quo in fisheries management, rather than providing a definitive solution.  相似文献   

5.

Background

Worldwide, finfish fisheries are receiving increasing assessment and regulation, slowly leading to more sustainable exploitation and rebuilding. In their wake, invertebrate fisheries are rapidly expanding with little scientific scrutiny despite increasing socio-economic importance.

Methods and Findings

We provide the first global evaluation of the trends, drivers, and population and ecosystem consequences of invertebrate fisheries based on a global catch database in combination with taxa-specific reviews. We also develop new methodologies to quantify temporal and spatial trends in resource status and fishery development. Since 1950, global invertebrate catches have increased 6-fold with 1.5 times more countries fishing and double the taxa reported. By 2004, 34% of invertebrate fisheries were over-exploited, collapsed, or closed. New fisheries have developed increasingly rapidly, with a decrease of 6 years (3 years) in time to peak from the 1950s to 1990s. Moreover, some fisheries have expanded further and further away from their driving market, encompassing a global fishery by the 1990s. 71% of taxa (53% of catches) are harvested with habitat-destructive gear, and many provide important ecosystem functions including habitat, filtration, and grazing.

Conclusions

Our findings suggest that invertebrate species, which form an important component of the basis of marine food webs, are increasingly exploited with limited stock and ecosystem-impact assessments, and enhanced management attention is needed to avoid negative consequences for ocean ecosystems and human well-being.  相似文献   

6.

Background

Understanding the current status of predatory fish communities, and the effects fishing has on them, is vitally important information for management. However, data are often insufficient at region-wide scales to assess the effects of extraction in coral reef ecosystems of developing nations.

Methodology/Principal Findings

Here, I overcome this difficulty by using a publicly accessible, fisheries-independent database to provide a broad scale, comprehensive analysis of human impacts on predatory reef fish communities across the greater Caribbean region. Specifically, this study analyzed presence and diversity of predatory reef fishes over a gradient of human population density. Across the region, as human population density increases, presence of large-bodied fishes declines, and fish communities become dominated by a few smaller-bodied species.

Conclusions/Significance

Complete disappearance of several large-bodied fishes indicates ecological and local extinctions have occurred in some densely populated areas. These findings fill a fundamentally important gap in our knowledge of the ecosystem effects of artisanal fisheries in developing nations, and provide support for multiple approaches to data collection where they are commonly unavailable.  相似文献   

7.

Background

This study examines the impact of subsidies on the profitability and ecological stability of the North Sea fisheries over the past 20 years. It shows the negative impact that subsidies can have on both the biomass of important fish species and the possible profit from fisheries. The study includes subsidies in an ecosystem model of the North Sea and examines the possible effects of eliminating fishery subsidies.

Methodology/Principal Findings

Hindcast analysis between 1991 and 2003 indicates that subsidies reduced the profitability of the fishery even though gross revenue might have been high for specific fisheries sectors. Simulations seeking to maximise the total revenue between 2004 and 2010 suggest that this can be achieved by increasing the effort of Nephrops trawlers, beam trawlers, and the pelagic trawl-and-seine fleet, while reducing the effort of demersal trawlers. Simulations show that ecological stability can be realised by reducing the effort of the beam trawlers, Nephrops trawlers, pelagic- and demersal trawl-and-seine fleets. This analysis also shows that when subsidies are included, effort will always be higher for all fleets, because it effectively reduces the cost of fishing.

Conclusions/Significance

The study found that while removing subsidies might reduce the total catch and revenue, it increases the overall profitability of the fishery and the total biomass of commercially important species. For example, cod, haddock, herring and plaice biomass increased over the simulation when optimising for profit, and when optimising for ecological stability, the biomass for cod, plaice and sole also increased. When subsidies are eliminated, the study shows that rather than forcing those involved in the fishery into the red, fisheries become more profitable, despite a decrease in total revenue due to a loss of subsidies from the government.  相似文献   

8.

Background

Economic development policies may have important economic and ecological consequences beyond the sector they target. Understanding these consequences is important to improving these policies and finding opportunities to align economic development with natural resource conservation. These issues are of particular interest to governments and non-governmental organizations that have new mandates to pursue multiple benefits. In this case study, we examined the direct and indirect economic and ecological effects of an increase in the government-controlled price for the primary agricultural product in the Republic of Kiribati, Central Pacific.

Methods/Principal Findings

We conducted household surveys and underwater visual surveys of the coral reef to examine how the government increase in the price of copra directly affected copra labor and indirectly affected fishing and the coral reef ecosystem. The islands of Kiribati are coral reef atolls and the majority of households participate in copra agriculture and fishing on the coral reefs. Our household survey data suggest that the 30% increase in the price of copra resulted in a 32% increase in copra labor and a 38% increase in fishing labor. Households with the largest amount of land in coconut production increased copra labor the most and households with the smallest amount of land in coconut production increased fishing the most. Our ecological data suggests that increased fishing labor may result in a 20% decrease in fish stocks and 4% decrease in coral reef-builders.

Conclusions/Significance

We provide empirical evidence to suggest that the government increase in the copra price in Kiribati had unexpected and indirect economic and ecological consequences. In this case, the economic development policy was not in alignment with conservation. These results emphasize the importance of accounting for differences in household capital and taking a systems approach to policy design and evaluation, as advocated by sustainable livelihood and ecosystem-based management frameworks.  相似文献   

9.

Background

The western rock lobster, Panulirus cygnus, is endemic to Western Australia and supports substantial commercial and recreational fisheries. Due to and its wide distribution and the commercial and recreational importance of the species a key component of managing western rock lobster is understanding the ecological processes and interactions that may influence lobster abundance and distribution. Using terrain analyses and distribution models of substrate and benthic biota, we assess the physical drivers that influence the distribution of lobsters at a key fishery site.

Methods and Findings

Using data collected from hydroacoustic and towed video surveys, 20 variables (including geophysical, substrate and biota variables) were developed to predict the distributions of substrate type (three classes of reef, rhodoliths and sand) and dominant biota (kelp, sessile invertebrates and macroalgae) within a 40 km2 area about 30 km off the west Australian coast. Lobster presence/absence data were collected within this area using georeferenced pots. These datasets were used to develop a classification tree model for predicting the distribution of the western rock lobster. Interestingly, kelp and reef were not selected as predictors. Instead, the model selected geophysical and geomorphic scalar variables, which emphasise a mix of terrain within limited distances. The model of lobster presence had an adjusted D2 of 64 and an 80% correct classification.

Conclusions

Species distribution models indicate that juxtaposition in fine scale terrain is most important to the western rock lobster. While key features like kelp and reef may be important to lobster distribution at a broad scale, it is the fine scale features in terrain that are likely to define its ecological niche. Determining the most appropriate landscape configuration and scale will be essential to refining niche habitats and will aid in selecting appropriate sites for protecting critical lobster habitats.  相似文献   

10.

Overview

Eight years of octopus fishery records from southwest Madagascar reveal significant positive impacts from 36 periodic closures on: (a) fishery catches and (b) village fishery income, such that (c) economic benefits from increased landings outweigh costs of foregone catch. Closures covered ~20% of a village’s fished area and lasted 2-7 months.

Fishery Catches from Each Closed Site

Octopus landings and catch per unit effort (CPUE) significantly increased in the 30 days following a closure’s reopening, relative to the 30 days before a closure (landings: +718%, p<0.0001; CPUE: +87%, p<0.0001; n = 36). Open-access control sites showed no before/after change when they occurred independently of other management (“no ban”, n = 17/36). On the other hand, open-access control sites showed modest catch increases when they extended a 6-week seasonal fishery shutdown (“ban”, n = 19/36). The seasonal fishery shutdown affects the entire region, so confound all potential control sites.

Fishery Income in Implementing Villages

In villages implementing a closure, octopus fishery income doubled in the 30 days after a closure, relative to 30 days before (+132%, p<0.001, n = 28). Control villages not implementing a closure showed no increase in income after “no ban” closures and modest increases after “ban” closures. Villages did not show a significant decline in income during closure events.

Net Economic Benefits from Each Closed Site

Landings in closure sites generated more revenue than simulated landings assuming continued open-access fishing at that site (27/36 show positive net earnings; mean +$305/closure; mean +57.7% monthly). Benefits accrued faster than local fishers’ time preferences during 17-27 of the 36 closures. High reported rates of illegal fishing during closures correlated with poor economic performance.

Broader Co-Management

We discuss the implications of our findings for broader co-management arrangements, particularly for catalyzing more comprehensive management.  相似文献   

11.
Artisanal fisheries are a key source of food and income for millions of people, but if poorly managed, fishing can have declining returns as well as impacts on biodiversity. Management interventions such as spatial and temporal closures can improve fishery sustainability and reduce environmental degradation, but may carry substantial short-term costs for fishers. The Lake Alaotra wetland in Madagascar supports a commercially important artisanal fishery and provides habitat for a Critically Endangered primate and other endemic wildlife of conservation importance. Using detailed data from more than 1,600 fisher catches, we used linear mixed effects models to explore and quantify relationships between catch weight, effort, and spatial and temporal restrictions to identify drivers of fisher behaviour and quantify the potential effect of fishing restrictions on catch. We found that restricted area interventions and fishery closures would generate direct short-term costs through reduced catch and income, and these costs vary between groups of fishers using different gear. Our results show that conservation interventions can have uneven impacts on local people with different fishing strategies. This information can be used to formulate management strategies that minimise the adverse impacts of interventions, increase local support and compliance, and therefore maximise conservation effectiveness.  相似文献   

12.
Fish biomass is a primary driver of coral reef ecosystem services and has high sensitivity to human disturbances, particularly fishing. Estimates of fish biomass, their spatial distribution, and recovery potential are important for evaluating reef status and crucial for setting management targets. Here we modeled fish biomass estimates across all reefs of the western Indian Ocean using key variables that predicted the empirical data collected from 337 sites. These variables were used to create biomass and recovery time maps to prioritize spatially explicit conservation actions. The resultant fish biomass map showed high variability ranging from ~15 to 2900 kg/ha, primarily driven by human populations, distance to markets, and fisheries management restrictions. Lastly, we assembled data based on the age of fisheries closures and showed that biomass takes ~ 25 years to recover to typical equilibrium values of ~1200 kg/ha. The recovery times to biomass levels for sustainable fishing yields, maximum diversity, and ecosystem stability or conservation targets once fishing is suspended was modeled to estimate temporal costs of restrictions. The mean time to recovery for the whole region to the conservation target was 8.1(± 3SD) years, while recovery to sustainable fishing thresholds was between 0.5 and 4 years, but with high spatial variation. Recovery prioritization scenario models included one where local governance prioritized recovery of degraded reefs and two that prioritized minimizing recovery time, where countries either operated independently or collaborated. The regional collaboration scenario selected remote areas for conservation with uneven national responsibilities and spatial coverage, which could undermine collaboration. There is the potential to achieve sustainable fisheries within a decade by promoting these pathways according to their social-ecological suitability.  相似文献   

13.

Background

Fishery management has historically been an inexact and reactionary discipline, often taking action only after a critical stock suffers overfishing or collapse. The invertebrate ornamental fishery in the State of Florida, with increasing catches over a more diverse array of species, is poised for collapse. Current management is static and the lack of an adaptive strategy will not allow for adequate responses associated with managing this multi-species fishery. The last decade has seen aquarium hobbyists shift their display preference from fish-only tanks to miniature reef ecosystems that include many invertebrate species, creating increased demand without proper oversight. The once small ornamental fishery has become an invertebrate-dominated major industry supplying five continents.

Methodology/Principal Findings

Here, we analyzed the Florida Marine Life Fishery (FLML) landing data from 1994 to 2007 for all invertebrate species. The data were organized to reflect both ecosystem purpose (in the wild) and ecosystem services (commodities) for each reported species to address the following question: Are ornamental invertebrates being exploited for their fundamental ecosystem services and economic value at the expense of reef resilience? We found that 9 million individuals were collected in 2007, 6 million of which were grazers.

Conclusions/Significance

The number of grazers now exceeds, by two-fold, the number of specimens collected for curio and ornamental purposes altogether, representing a major categorical shift. In general, landings have increased 10-fold since 1994, though the number of licenses has been dramatically reduced. Thus, despite current management strategies, the FLML Fishery appears to be crawling to collapse.  相似文献   

14.
United Nations General Assembly Resolution 61/105 on sustainable fisheries (UNGA 2007) establishes three difficult questions for participants in high-seas bottom fisheries to answer: 1) Where are vulnerable marine systems (VMEs) likely to occur?; 2) What is the likelihood of fisheries interaction with these VMEs?; and 3) What might qualify as adequate conservation and management measures to prevent significant adverse impacts? This paper develops an approach to answering these questions for bottom trawling activities in the Convention Area of the South Pacific Regional Fisheries Management Organisation (SPRFMO) within a quantitative risk assessment and cost : benefit analysis framework. The predicted distribution of deep-sea corals from habitat suitability models is used to answer the first question. Distribution of historical bottom trawl effort is used to answer the second, with estimates of seabed areas swept by bottom trawlers being used to develop discounting factors for reduced biodiversity in previously fished areas. These are used in a quantitative ecological risk assessment approach to guide spatial protection planning to address the third question. The coral VME likelihood (average, discounted, predicted coral habitat suitability) of existing spatial closures implemented by New Zealand within the SPRFMO area is evaluated. Historical catch is used as a measure of cost to industry in a cost : benefit analysis of alternative spatial closure scenarios. Results indicate that current closures within the New Zealand SPRFMO area bottom trawl footprint are suboptimal for protection of VMEs. Examples of alternative trawl closure scenarios are provided to illustrate how the approach could be used to optimise protection of VMEs under chosen management objectives, balancing protection of VMEs against economic loss to commercial fishers from closure of historically fished areas.  相似文献   

15.

Background

Cold-water coral reef ecosystems are recognized as biodiversity hotspots in the deep sea, but insights into their associated bacterial communities are still limited. Deciphering principle patterns of bacterial community variation over multiple spatial scales may however prove critical for a better understanding of factors contributing to cold-water coral reef stability and functioning.

Methodology/Principal Findings

Bacterial community structure, as determined by Automated Ribosomal Intergenic Spacer Analysis (ARISA), was investigated with respect to (i) microbial habitat type and (ii) coral species and color, as well as the three spatial components (iii) geomorphologic reef zoning, (iv) reef boundary, and (v) reef location. Communities revealed fundamental differences between coral-generated (branch surface, mucus) and ambient microbial habitats (seawater, sediments). This habitat specificity appeared pivotal for determining bacterial community shifts over all other study levels investigated. Coral-derived surfaces showed species-specific patterns, differing significantly between Lophelia pertusa and Madrepora oculata, but not between L. pertusa color types. Within the reef center, no community distinction corresponded to geomorphologic reef zoning for both coral-generated and ambient microbial habitats. Beyond the reef center, however, bacterial communities varied considerably from local to regional scales, with marked shifts toward the reef periphery as well as between different in- and offshore reef sites, suggesting significant biogeographic imprinting but weak microbe-host specificity.

Conclusions/Significance

This study presents the first multi-scale survey of bacterial diversity in cold-water coral reefs, spanning a total of five observational levels including three spatial scales. It demonstrates that bacterial communities in cold-water coral reefs are structured by multiple factors acting at different spatial scales, which has fundamental implications for the monitoring of microbial diversity and function in those ecosystems.  相似文献   

16.

Aim

Coral reef communities occurring in deeper waters have received little research effort compared to their shallow-water counterparts, and even such basic information as their location and extent are currently unknown throughout most of the world. Using the Great Barrier Reef as a case study, habitat suitability modelling is used to predict the distribution of deep-water coral reef communities on the Great Barrier Reef, Australia. We test the effectiveness of a range of geophysical and environmental variables for predicting the location of deep-water coral reef communities on the Great Barrier Reef.

Location

Great Barrier Reef, Australia.

Methods

Maximum entropy modelling is used to identify the spatial extent of two broad communities of habitat-forming megabenthos phototrophs and heterotrophs. Models were generated using combinations of geophysical substrate properties derived from multibeam bathymetry and environmental data derived from Bio-ORACLE, combined with georeferenced occurrence records of mesophotic coral communities from autonomous underwater vehicle, remotely operated vehicle and SCUBA surveys. Model results are used to estimate the total amount of mesophotic coral reef habitat on the GBR.

Results

Our models predict extensive but previously undocumented coral communities occurring both along the continental shelf-edge of the Great Barrier Reef and also on submerged reefs inside the lagoon. Habitat suitability for phototrophs is highest on submerged reefs along the outer-shelf and the deeper flanks of emergent reefs inside the GBR lagoon, while suitability for heterotrophs is highest in the deep waters along the shelf-edge. Models using only geophysical variables consistently outperformed models incorporating environmental data for both phototrophs and heterotrophs.

Main Conclusion

Extensive submerged coral reef communities that are currently undocumented are likely to occur throughout the Great Barrier Reef. High-quality bathymetry data can be used to identify these reefs, which may play an important role in resilience of the GBR ecosystem to climate change.  相似文献   

17.

Background

Despite being one of the first documented, there is little known of the causative agent or environmental stressors that promote white-band disease (WBD), a major disease of Caribbean Acropora palmata. Likewise, there is little known about the spatiality of outbreaks. We examined the spatial patterns of WBD during a 2004 outbreak at Buck Island Reef National Monument in the US Virgin Islands.

Methodology/Principal Findings

Ripley''s K statistic was used to measure spatial dependence of WBD across scales. Localized clusters of WBD were identified using the DMAP spatial filtering technique. Statistics were calculated for colony- (number of A. palmata colonies with and without WBD within each transect) and transect-level (presence/absence of WBD within transects) data to evaluate differences in spatial patterns at each resolution of coral sampling. The Ripley''s K plots suggest WBD does cluster within the study area, and approached statistical significance (p = 0.1) at spatial scales of 1100 m or less. Comparisons of DMAP results suggest the transect-level overestimated the prevalence and spatial extent of the outbreak. In contrast, more realistic prevalence estimates and spatial patterns were found by weighting each transect by the number of individual A. palmata colonies with and without WBD.

Conclusions

As the search for causation continues, surveillance and proper documentation of the spatial patterns may inform etiology, and at the same time assist reef managers in allocating resources to tracking the disease. Our results indicate that the spatial scale of data collected can drastically affect the calculation of prevalence and spatial distribution of WBD outbreaks. Specifically, we illustrate that higher resolution sampling resulted in more realistic disease estimates. This should assist in selecting appropriate sampling designs for future outbreak investigations. The spatial techniques used here can be used to facilitate other coral disease studies, as well as, improve reef conservation and management.  相似文献   

18.
Houk P  Musburger C  Wiles P 《PloS one》2010,5(11):e13913

Background

Compared with a wealth of information regarding coral-reef recovery patterns following major disturbances, less insight exists to explain the cause(s) of spatial variation in the recovery process.

Methodology/Principal Findings

This study quantifies the influence of herbivory and water quality upon coral reef assemblages through space and time in Tutuila, American Samoa, a Pacific high island. Widespread declines in dominant corals (Acropora and Montipora) resulted from cyclone Heta at the end of 2003, shortly after the study began. Four sites that initially had similar coral reef assemblages but differential temporal dynamics four years following the disturbance event were classified by standardized measures of ‘recovery status’, defined by rates of change in ecological measures that are known to be sensitive to localized stressors. Status was best predicted, interactively, by water quality and herbivory. Expanding upon temporal trends, this study examined if similar dependencies existed through space; building multiple regression models to identify linkages between similar status measures and local stressors for 17 localities around Tutuila. The results highlighted consistent, interactive interdependencies for coral reef assemblages residing upon two unique geological reef types. Finally, the predictive regression models produced at the island scale were graphically interpreted with respect to hypothesized site-specific recovery thresholds.

Conclusions/Significance

Cumulatively, our study purports that moving away from describing relatively well-known patterns behind recovery, and focusing upon understanding causes, improves our foundation to predict future ecological dynamics, and thus improves coral reef management.  相似文献   

19.

Background

Coral reefs have exceptional biodiversity, support the livelihoods of millions of people, and are threatened by multiple human activities on land (e.g. farming) and in the sea (e.g. overfishing). Most conservation efforts occur at local scales and, when effective, can increase the resilience of coral reefs to global threats such as climate change (e.g. warming water and ocean acidification). Limited resources for conservation require that we efficiently prioritize where and how to best sustain coral reef ecosystems.

Methodology/Principal Findings

Here we develop the first prioritization approach that can guide regional-scale conservation investments in land- and sea-based conservation actions that cost-effectively mitigate threats to coral reefs, and apply it to the Coral Triangle, an area of significant global attention and funding. Using information on threats to marine ecosystems, effectiveness of management actions at abating threats, and the management and opportunity costs of actions, we calculate the rate of return on investment in two conservation actions in sixteen ecoregions. We discover that marine conservation almost always trumps terrestrial conservation within any ecoregion, but terrestrial conservation in one ecoregion can be a better investment than marine conservation in another. We show how these results could be used to allocate a limited budget for conservation and compare them to priorities based on individual criteria.

Conclusions/Significance

Previous prioritization approaches do not consider both land and sea-based threats or the socioeconomic costs of conserving coral reefs. A simple and transparent approach like ours is essential to support effective coral reef conservation decisions in a large and diverse region like the Coral Triangle, but can be applied at any scale and to other marine ecosystems.  相似文献   

20.

Background

In recent decades, large pelagic and coastal shark populations have declined dramatically with increased fishing; however, the status of sharks in other systems such as coral reefs remains largely unassessed despite a long history of exploitation. Here we explore the contemporary distribution and sighting frequency of sharks on reefs in the greater-Caribbean and assess the possible role of human pressures on observed patterns.

Methodology/Principal Findings

We analyzed 76,340 underwater surveys carried out by trained volunteer divers between 1993 and 2008. Surveys were grouped within one km2 cells, which allowed us to determine the contemporary geographical distribution and sighting frequency of sharks. Sighting frequency was calculated as the ratio of surveys with sharks to the total number of surveys in each cell. We compared sighting frequency to the number of people in the cell vicinity and used population viability analyses to assess the effects of exploitation on population trends. Sharks, with the exception of nurse sharks occurred mainly in areas with very low human population or strong fishing regulations and marine conservation. Population viability analysis suggests that exploitation alone could explain the large-scale absence; however, this pattern is likely to be exacerbated by additional anthropogenic stressors, such as pollution and habitat degradation, that also correlate with human population.

Conclusions/Significance

Human pressures in coastal zones have lead to the broad-scale absence of sharks on reefs in the greater-Caribbean. Preventing further loss of sharks requires urgent management measures to curb fishing mortality and to mitigate other anthropogenic stressors to protect sites where sharks still exist. The fact that sharks still occur in some densely populated areas where strong fishing regulations are in place indicates the possibility of success and encourages the implementation of conservation measures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号