首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
  1. Ecotones, characterized by adjacent yet distinct biotic communities, provide natural laboratories in which to investigate how environmental selection influences the ecology and evolution of organisms. For wild herbivores, differential plant availability across sharp ecotones may be an important source of dietary‐based selection.
  2. We studied small herbivore diet composition across a sharp ecotone where two species of woodrat, Neotoma bryanti and N. lepida, come into secondary contact with one another and hybridize. We quantified woodrat dietary preference through trnL metabarcoding of field‐collected fecal pellets and experimental choice trials. Despite gene flow, parental N. bryanti and N. lepida maintain distinct diets across this fine spatial scale, and across temporal scales that span both wet and dry conditions.
  3. Neotoma bryanti maintained a more diverse diet, with Frangula californica (California coffeeberry) making up a large portion of its diet. Neotoma lepida maintains a less diverse diet, with Prunus fasciculata (desert almond) comprising more than half of its diet. Both F. californica and P. fasciculata are known to produce potentially toxic plant secondary compounds (PSCs), which should deter herbivory, yet these plants have relatively high nutritional value as measured by crude protein content.
  4. Neotoma bryanti and N. lepida consumed F. californica and P. fasciculata, respectively, in greater abundance than these plants are available on the landscape—indicating dietary selection. Finally, experimental preference trials revealed that N. bryanti exhibited a preference for F. californica, while N. lepida exhibited a relatively stronger preference for P. fasciculata. We find that N. bryanti exhibit a generalist herbivore strategy relative to N. lepida, which exhibit a more specialized feeding strategy in this study system.
  5. Our results suggest that woodrats respond to fine‐scale environmental differences in plant availability that may require different metabolic strategies in order to balance nutrient acquisition while minimizing exposure to potentially toxic PSCs.
  相似文献   

2.
The ecological effects of climate change have been shown in most major taxonomic groups; however, the evolutionary consequences are less well‐documented. Adaptation to new climatic conditions offers a potential long‐term mechanism for species to maintain viability in rapidly changing environments, but mammalian examples remain scarce. The American pika (Ochotona princeps) has been impacted by recent climate‐associated extirpations and range‐wide reductions in population sizes, establishing it as a sentinel mammalian species for climate change. To investigate evidence for local adaptation and reconstruct patterns of genomic diversity and gene flow across rapidly changing environments, we used a space‐for‐time design and restriction site‐associated DNA sequencing to genotype American pikas along two steep elevational gradients at 30,966 SNPs and employed independent outlier detection methods that scanned for genotype‐environment associations. We identified 338 outlier SNPs detected by two separate analyses and/or replicated in both transects, several of which were annotated to genes involved in metabolic function and oxygen transport. Additionally, we found evidence of directional gene flow primarily downslope from high‐elevation populations, along with reduced gene flow at outlier loci. If this trend continues, elevational range contractions in American pikas will likely be from local extirpation rather than upward movement of low‐elevation individuals; this, in turn, could limit the potential for adaptation within this landscape. These findings are of particular relevance for future conservation and management of American pikas and other elevationally restricted, thermally sensitive species.  相似文献   

3.
Gene flow between phenotypically divergent populations can disrupt local adaptation or, alternatively, may stimulate adaptive evolution by increasing genetic variation. We capitalised on historical Trinidadian guppy transplant experiments to test the phenotypic effects of increased gene flow caused by replicated introductions of adaptively divergent guppies, which were translocated from high‐ to low‐predation environments. We sampled two native populations prior to the onset of gene flow, six historic introduction sites, introduction sources and multiple downstream points in each basin. Extensive gene flow from introductions occurred in all streams, yet adaptive phenotypic divergence across a gradient in predation level was maintained. Descendants of guppies from a high‐predation source site showed high phenotypic similarity with native low‐predation guppies in as few as ~12 generations after gene flow, likely through a combination of adaptive evolution and phenotypic plasticity. Our results demonstrate that locally adapted phenotypes can be maintained despite extensive gene flow from divergent populations.  相似文献   

4.
5.
Assemblages of closely related organisms are generated on axes of deep time diversification, biogeographic processes related to dispersal and habitat filtering, and competition. Using models that account for phylogeny, ecology, and traits, we examine how the interaction among biogeography, habitat filtering, and trait convergence influences community assemblage in Nearctic snakes. With 122 community surveys, environmental niche, trait data including size, diet, parity and habitat preference, and a nearly complete phylogeny of snakes from the United States, we ask 1) do phylogenetic species variability (PSV) and traits change in predictable and correlated ways given ecology and geographic distance, 2) are the measured traits variable within and across communities and how is this related to PSV at local scales, and 3) is there evidence of habitat filtering or trait divergence? Following a general trend of western to eastern North American origin and dispersal of major groups, we similarly show a significant decrease in PSV in this direction but unexpectedly with stable trait variance, showing that traits and phylogenetic variability are disconnected at the community level. We also demonstrate that trait variability and not PSV dominates local communities. Finally, regardless of phylogeny, we show that certain traits, such as reproductive mode (parity) frequency, change within communities in response to steep ecological gradients.  相似文献   

6.
Johnson MS  Black R 《Heredity》2008,101(1):83-91
The snail Bembicium vittatum occupies a wide range of intertidal habitats in the Houtman Abrolhos Islands, Western Australia. Allozyme variation reflects patterns of connectivity, which are independent of local habitat. In contrast, heritable differences in shell shape among 83 shore sites vary with habitat, indicating local adaptation. Here we examine dimorphisms of colour and spotting of the shell in the same populations, as a test of consistency and complexity of patterns of local adaptation. Within populations, the frequency of spotted shells is higher in dark shells. Despite this association, spatial variations of colour and spotting are only weakly correlated. As predicted for traits associated with local adaptation, subdivision is greater for colour, spotting and shape than for allozymes. Colour and shape are associated with local habitat, such that populations on vertical shores have higher frequencies of dark and relatively flatter shells than those on gently sloping shores. These associations are repeatable between three separate groups of islands. Spotting shows a weaker, but significant association with the same gradient. Although shape does not differ between colour morphs within populations, the proportion of dark shells is strongly associated with shape. Thus, the independent shell traits are apparently adapted to a common, biologically significant gradient, even though the adaptive mechanisms probably differ for colour and shape. The parallel variations of independent traits highlight both the complexity of local adaptation and the potential to reveal evolutionarily significant environmental contrasts by examining adaptively relevant traits.  相似文献   

7.
Plant–pollinator interactions are thought to be major drivers of floral trait diversity. However, the relative importance of divergent pollinator‐mediated selection vs. neutral processes in floral character evolution has rarely been explored. We tested for adaptive floral trait evolution by comparing differentiation at neutral genetic loci to differentiation at quantitative floral traits in a putative Ipomopsis aggregata hybrid zone. Typical I. aggregata subsp. candida displays slender white tubular flowers that are typical of flowers pollinated by hawkmoths, and subsp. collina displays robust red tubular flowers typical of flowers pollinated by hummingbirds; yet, hybrid flower morphs are abundant across the East Slope of the Colorado Rockies. We estimated genetic differentiation (FST) for nuclear and chloroplast microsatellite loci and used a half‐sib design to calculate quantitative trait divergence (QST) from collection sites across the morphological hybrid zone. We found little evidence for population structure and estimated mean FST to be 0.032. QST values for several floral traits including corolla tube length and width, colour, and nectar volume were large and significantly greater than mean FST. We performed multivariate comparisons of neutral loci to genetic correlations within and between populations and found a strong signal for divergent selection, suggesting that specific combinations of floral display and reward traits may be the targets of selection. Our results show little support for historical subspecies categories, yet floral traits are more diverged than expected due to drift alone. Non‐neutral divergence for multivariate quantitative traits suggests that selection by pollinators is maintaining a correlation between display and reward traits.  相似文献   

8.
Tropical montane forests suffer from increasing fragmentation and replacement by other types of land-use such as coffee plantations. These processes are known to affect gene flow and genetic structure of plant populations. Epiphytes are particularly vulnerable because they depend on their supporting trees for their entire life-cycle. We compared population genetic structure and genetic diversity derived from AFLP markers of two epiphytic fern species differing in their ability to colonize secondary habitats. One species, Pleopeltis crassinervata, is a successful colonizer of shade trees and isolated trees whereas the other species, Polypodium rhodopleuron, is restricted to forests with anthropogenic separation leading to significant isolation between populations. By far most genetic variation was distributed within rather than among populations in both species, and a genetic admixture analysis did not reveal any clustering. Gene flow exceeded by far the benchmark of one migrant per generation to prevent genetic divergence between populations in both species. Though populations are threatened by habitat loss, long-distance dispersal is likely to support gene flow even between distant populations, which efficiently delays genetic isolation. Consequently, populations may rather be threatened by ecological consequences of habitat loss and fragmentation.  相似文献   

9.
10.
Plant Ecology - Savanna is a species-rich biome, that includes many modern mammal lineages and C4 grass (Poaceae) species. The greater productivity and grazing pressure associated with savannas is...  相似文献   

11.
The flamenco (flam) locus, located at 20A1-3 in the centromeric heterochromatin of the Drosophila melanogaster X chromosome, is a major regulator of the gypsy/mdg4 endogenous retrovirus. In restrictive strains, functional flam alleles maintain gypsy proviruses in a repressed state. By contrast, in permissive strains, proviral amplification results from infection of the female germ line and subsequent insertions into the chromosomes of the progeny. A restrictive/permissive polymorphism prevails in natural and laboratory populations. This polymorphism was assumed to be maintained by the interplay of opposite selective forces; on one hand, the increase of genetic load caused by proviral insertions would favor restrictive flam alleles because they make flies resistant to these gypsy replicative transpositions and, on the other, a hypothetical resistance cost would select against such alleles in the absence of the retrovirus. However, the population cage data presented in this paper do not fit with this simple resistance cost hypothesis because restrictive alleles were not eliminated in the absence of functional gypsy proviruses; on the contrary, using 2 independent flam allelic pairs, the restrictive frequency rose to about 90% in every experimental population, whatever the pair of alleles and the allelic proportions in the initial inoculum. These data suggest that the flam polymorphism is maintained by some strong balancing selection, which would act either on flam itself, independently of the deleterious effect of gypsy, or on a hypothetical flanking gene, in linkage disequilibrium with flam. Alternatively, restrictive flam alleles might also be resistant to some other retroelements that would be still present in the cage populations, causing a positive selection for these alleles. Whatever selective forces that maintain high levels of restrictive alleles independently of gypsy, this unknown mechanism can set up an interesting kind of antiviral innate immunity, at the population level.  相似文献   

12.
A long-standing issue in marine biology is identifying spatial scales at which populations of sessile adults are connected by planktonic offspring. We examined the genetic continuity of the acorn barnacle Balanus glandula, an abundant member of rocky intertidal communities of the northeastern Pacific Ocean, and compared these genetic patterns to the nearshore oceanography described by trajectories of surface drifters. Consistent with its broad dispersal potential, barnacle populations are genetically similar at both mitochondrial (cytochrome oxidase I) and nuclear (elongation factor 1-alpha) loci across broad swaths of the species' range. In central California, however, there is a striking genetic cline across 475 km of coastline between northern and southern populations. These patterns indicate that gene flow within central California is far more restricted spatially than among other populations. Possible reasons for the steep cline include the slow secondary introgression of historically separated populations, a balance between diversifying selection and dispersal, or some mix of both. Geographic trajectories of oceanic drifters closely parallel geographical patterns of gene flow. Drifters placed to the north (Oregon; approximately 44 degrees N) and south (Santa Barbara, California; approximately 34 degrees N) of the cline disperse hundreds of kilometers within 40 days, yet over the long-term their trajectories never overlapped. The lack of communication between waters originating in Oregon and southern California probably helps to maintain strong genetic differentiation between these regions. More broadly, the geographical variation in gene flow implies that focusing on species-level averages of gene flow can mask biologically important variance within species which reflects local environmental conditions and historical events.  相似文献   

13.
Coral reefs in the Tropical Eastern Pacific (TEP) are among the most isolated in the world. This isolation has resulted in relatively low species diversity but comparatively high endemism. The dominant reef-building corals of the TEP are the Pocillopora corals, a ubiquitous Indo-Pacific genus commonly regarded as inferior reef-builder. In addition to being the dominant reef-builders in the TEP, the Pocilloporids have undergone a reproductive shift from internally brooding larvae through most of their Indo-Pacific range to free-spawning in the TEP. Using genetic data from the internally transcribed spacer (ITS) regions of the nuclear ribosomal DNA gene cluster, we show here that this apparent reproductive shift coincides with interspecific hybridization among TEP Pocillopora species. We document a pattern of one-way gene flow into the main TEP reef builder P. damicornis from one or both of its TEP congeners — P. eydouxi and P. elegans . Our data provide preliminary evidence that trans-Pacific gene flow in P. damicornis between the Central and Eastern Pacific is restricted as well (ΦST = 0.419, P  < 0.0001). In combination, these results suggest that Eastern Pacific corals exist in relative isolation from their Central Pacific counterparts and interact with each other differently via hybridization.  相似文献   

14.
15.
Mebert K 《Molecular ecology》2008,17(8):1918-1929
Genomic markers generated with the amplified fragment length polymorphism method revealed extensive, panmictic-like hybridization along the narrow contact zone between the water snakes Nerodia sipedon and Nerodia fasciata in the Carolinas, USA. However, asymmetric distributions of diagnostic markers between both species and low frequencies of backcrossed hybrids with a high value of interspecific mixture infer selection against certain genotypes. This is consistent with a pronounced genetic and morphological preponderance of N. fasciata characters in the hybrid zone. Despite massive hybridization within the contact zone, the existence of nearly fixed genetic markers and the potential inferiority of certain hybrid genotypes support the species status of the two taxa and corroborate known, but nondiagnostic differences in morphology and ecology. This study stretches the applicability of species concepts to cases, where the genetic compatibility between two closely related species is very high, yet, they still evolve and persist as independent entities.  相似文献   

16.
Patterns of divergence and polymorphism across hybrid zones can provide important clues as to their origin and maintenance. Unimodal hybrid zones or hybrid swarms are composed predominantly of recombinant individuals whose genomes are patchworks of alleles derived from each parental lineage. In contrast, bimodal hybrid zones contain few identifiable hybrids; most individuals fall within distinct genetic clusters. Distinguishing between hybrid swarms and bimodal hybrid zones can be important for taxonomic and conservation decisions regarding the status and value of hybrid populations. In addition, the causes of bimodality are important in understanding the generation and maintenance of biological diversity. For example, are distinct clusters mostly reproductively isolated and co‐adapted gene complexes, or can distinctiveness be maintained by a few ‘genomic islands’ despite rampant gene flow across much of the genome? Here we focus on three patterns of distinctiveness in the face of gene flow between gartersnake taxa in the Great Lakes region of North America. Bimodality, the persistence of distinct clusters of genotypes, requires strong barriers to gene flow and supports recognition of distinct specialist (Thamnophis butleri) and generalist (Thamnophis radix) taxa. Concordance of DNA‐based clusters with morphometrics supports the hypothesis that trophic morphology is a key component of divergence. Finally, disparity in the level of differentiation across molecular markers (amplified fragment length polymorphisms) indicates that distinctiveness is maintained by strong selection on a few traits despite high gene flow currently or in the recent past.  相似文献   

17.
An important aim in animal breeding is the improvement of growth and meat quality traits. Previous studies have demonstrated that genetic variants in the fat mass and obesity associated (FTO) gene have a relatively large effect on human obesity as well as on body composition in rodents and, more recently, in livestock. Here, we examined the effects of the FTO gene variants on growth and carcass traits in the Slovenian population of Simmental (SS) and Brown (SB) cattle. To validate and identify new polymorphisms, we used sequencing, PCR‐RFLP analysis and TaqMan assays in the SS breed and FTO gene variants data from the Illumina BovineSNP50 v1 array for the SB breed. Sequencing of the eight samples of progeny‐tested SS sires detected 108 single nucleotide polymorphisms (SNPs) in the bovine FTO gene. Statistical analyses between growth and carcass traits and 34 FTO polymorphisms revealed significant association of FTO variants with lean meat percentage in both breeds. Additionally, FTO SNPs analyzed in SS cattle were associated with fat percentage, bone weight and live weight at slaughter. The FTO gene can thus be regarded as a candidate gene for the marker‐assisted selection programs in our and possibly other populations of cattle. Future studies in cattle might reveal novel roles for the FTO gene in shaping carcass traits in livestock species as well as body composition control in other mammals.  相似文献   

18.
For free-spawning estuarine taxa, gene flow among estuaries may occur via hybridization with mobile congeners. This phenomenon has rarely been investigated, but is probably susceptible to anthropogenic disturbance. In eastern Australia, the estuarine Black Bream Acanthopagrus butcheri and marine Yellowfin Bream Acanthopagrus australis have overlapping distributions and the potential to hybridize. We used surveys of microsatellite and mtDNA variation in 565 adults from 25 estuaries spanning their distributional range to characterize the species and their putative hybrids. Hybrids were widespread (68% of estuaries) and hybrid frequencies varied greatly among estuaries (0-58%). Most (88%) were classed as advanced generation backcrosses with A. butcheri and displayed A. butcheri mtDNA haplotypes. We found most hybrids in the three estuaries within the zone of sympatry (57%). Our study highlights the underemphasized importance of estuaries as sites of hybridization and suggests that hybridization is driven both by opportunity for contact and human activity.  相似文献   

19.
Special conditions are required for genetic differentiation to arise at a local geographical scale in the face of gene flow. The Natal multimammate mouse, Mastomys natalensis, is the most widely distributed and abundant rodent in sub‐Saharan Africa. A notorious agricultural pest and a natural host for many zoonotic diseases, it can live in close proximity to humans and appears to compete with other rodents for the synanthropic niche. We surveyed its population genetic structure across a 180‐km transect in central Tanzania along which the landscape varied between agricultural land in a rural setting and natural woody vegetation, rivers, roads and a city (Morogoro). We sampled M. natalensis across 10 localities and genotyped 15 microsatellite loci from 515 individuals. Hierarchical STRUCTURE analyses show a K‐invariant pattern distinguishing Morogoro suburbs (located in the centre of the transect) from nine surrounding rural localities. Landscape connectivity analyses in Circuitscape and comparison of rainfall patterns suggest that neither geographical isolation nor natural breeding asynchrony could explain the genetic differentiation of the urban population. Using the isolation‐with‐migration model implemented in IMa2, we inferred that a split between suburban and rural populations would have occurred recently (<150 years ago) with higher urban effective population density consistent with an urban source to rural sink of effective migration. The observed genetic differentiation of urban multimammate mice is striking given the uninterrupted distribution of the animal throughout the landscape and the high estimates of effective migration (2NeM = 3.0 and 29.7), suggesting a strong selection gradient across the urban boundary.  相似文献   

20.
We examined in vivo effects of selective estrogen receptor modulators (SERMs) 4-OH-tamoxifen (Tam), GW 5638 (GW) and EM-800 (EM) on myometrial gene expression. The uteri of ovariectomized ewes were infused with 10−7 M of one SERM via indwelling catheters for 24 h preceding hysterectomy. Half of the ewes in each SERM group received an intramuscular injection of 50 μg 17β-estradiol (E2) 18 h prior to hysterectomy. Northern blot analysis and in situ hybridization demonstrated that E2 increased estrogen receptor (ER), progesterone receptor (PR) and cyclophilin (CYC) gene expression in the cells of both inner layer of myometrium (IM) and outer layer of myometrium (OM) as well as glyceraldehyde 3-phosphate dehydrogenase (GAPDH) gene expression in OM. Tam also increased ER mRNA levels in OM. EM appeared to increase ER gene expression, but antagonized E2’s up-regulation of PR and CYC gene expression in both IM and OM. Tam and GW also antagonized E2 up-regulation of PR gene expression in OM but not IM. No SERM affected GAPDH gene expression with or without E2. Immunohistochemistry indicated that E2 increased nuclear ER and PR protein levels in both IM and OM. EM was unique in up-regulating ER protein levels, opposite to its effects in endometrial cells. All SERMs tested antagonized this increase in PR immunostaining preferentially in OM compared to the IM layer. These results illustrate gene and cell layer-specific effects of SERMs in sheep myometrium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号