首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Here we summarize evidence obtained by our group during the last two decades, and contrasted it with a review of related data from the available literature to show that behavioral syndromes involving attention deficit/hyperactivity disorder (ADHD), externalizing disorders, and substance-use disorder (SUD) share similar signs and symptoms (i.e., have a biological basis as common syndromes), physiopathological and psychopathological mechanisms, and genetic factors. Furthermore, we will show that the same genetic variants harbored in different genes are associated with different syndromes and that non-linear interactions between genetic variants (epistasis) best explain phenotype severity, long-term outcome, and response to treatment. These data have been depicted in our studies by extended pedigrees, where ADHD, externalizing symptoms, and SUD segregate and co-segregate. Finally, we applied here a new formal network analysis using the set of significantly replicated genes that have been shown to be either associated and/or linked to ADHD, disruptive behaviors, and SUD in order to detect significantly enriched gene categories for protein and genetic interactions, pathways, co-expression, co-localization, and protein domain similarity. We found that networks related to pathways involved in axon guidance, regulation of synaptic transmission, and regulation of transmission of nerve impulse are overrepresented. In summary, we provide compiled evidence of complex networks of genotypes underlying a wide phenotype that involves SUD and externalizing disorders.  相似文献   

3.
We performed a systematic, large-scale analysis of human protein complexes comprising gene products implicated in many different categories of human disease to create a phenome-interactome network. This was done by integrating quality-controlled interactions of human proteins with a validated, computationally derived phenotype similarity score, permitting identification of previously unknown complexes likely to be associated with disease. Using a phenomic ranking of protein complexes linked to human disease, we developed a Bayesian predictor that in 298 of 669 linkage intervals correctly ranks the known disease-causing protein as the top candidate, and in 870 intervals with no identified disease-causing gene, provides novel candidates implicated in disorders such as retinitis pigmentosa, epithelial ovarian cancer, inflammatory bowel disease, amyotrophic lateral sclerosis, Alzheimer disease, type 2 diabetes and coronary heart disease. Our publicly available draft of protein complexes associated with pathology comprises 506 complexes, which reveal functional relationships between disease-promoting genes that will inform future experimentation.  相似文献   

4.
Congdon E  Poldrack RA  Freimer NB 《Neuron》2010,68(2):218-230
Elucidating the molecular mechanisms underlying quantitative neurocognitive phenotypes will further our understanding of the brain's structural and functional architecture and advance the diagnosis and treatment of the psychiatric disorders that these traits underlie. Although many neurocognitive traits are highly heritable, little progress has been made in identifying genetic variants unequivocally associated with these phenotypes. A major obstacle to such progress is the difficulty in identifying heritable neurocognitive measures that are precisely defined and systematically assessed and represent unambiguous mental constructs, yet are also amenable to the high-throughput phenotyping necessary to obtain adequate power for genetic association studies. In this perspective we compare the current status of genetic investigations of neurocognitive phenotypes to that of other categories of biomedically relevant traits and suggest strategies for genetically dissecting traits that may underlie disorders of brain and behavior.  相似文献   

5.
A genetic map of the powdery mildew fungus, Blumeria graminis f. sp. hordei, an obligate biotrophic pathogen of barley, is presented. The linkage analysis was conducted on 81 segregating haploid progeny isolates from a cross between 2 isolates differing in seven avirulence genes. A total of 359 loci were mapped, comprising 182 amplified fragment length polymorphism markers, 168 restriction fragment length polymorphism markers including 42 LTR-retrotransposon loci and 99 expressed sequence tags (ESTs), all the seven avirulence genes, and a marker closely linked to the mating type gene. The markers are distributed over 34 linkage groups covering a total of 2114 cM. Five avirulence genes were found to be linked and mapped in clusters of three and two, and two were unlinked. The Avr(a6) gene was found to be closely linked to markers suitable for a map-based cloning approach. A linkage between ESTs allowed us to demonstrate examples of synteny between genes in B. graminis and Neurospora crassa.  相似文献   

6.
In recent years, the network approach to psychopathology has been advanced as an alternative way of conceptualizing mental disorders. In this approach, mental disorders arise from direct interactions between symptoms. Although the network approach has led to many novel methodologies and substantive applications, it has not yet been fully articulated as a scientific theory of mental disorders. The present paper aims to develop such a theory, by postulating a limited set of theoretical principles regarding the structure and dynamics of symptom networks. At the heart of the theory lies the notion that symptoms of psychopathology are causally connected through myriads of biological, psychological and societal mechanisms. If these causal relations are sufficiently strong, symptoms can generate a level of feedback that renders them self‐sustaining. In this case, the network can get stuck in a disorder state. The network theory holds that this is a general feature of mental disorders, which can therefore be understood as alternative stable states of strongly connected symptom networks. This idea naturally leads to a comprehensive model of psychopathology, encompassing a common explanatory model for mental disorders, as well as novel definitions of associated concepts such as mental health, resilience, vulnerability and liability. In addition, the network theory has direct implications for how to understand diagnosis and treatment, and suggests a clear agenda for future research in psychiatry and associated disciplines.  相似文献   

7.
8.
Systems biology approaches that are based on the genetics of gene expression have been fruitful in identifying genetic regulatory loci related to complex traits. We use microarray and genetic marker data from an F2 mouse intercross to examine the large-scale organization of the gene co-expression network in liver, and annotate several gene modules in terms of 22 physiological traits. We identify chromosomal loci (referred to as module quantitative trait loci, mQTL) that perturb the modules and describe a novel approach that integrates network properties with genetic marker information to model gene/trait relationships. Specifically, using the mQTL and the intramodular connectivity of a body weight–related module, we describe which factors determine the relationship between gene expression profiles and weight. Our approach results in the identification of genetic targets that influence gene modules (pathways) that are related to the clinical phenotypes of interest.  相似文献   

9.
10.
11.
Iron, brain ageing and neurodegenerative disorders   总被引:1,自引:0,他引:1  
There is increasing evidence that iron is involved in the mechanisms that underlie many neurodegenerative diseases. Conditions such as neuroferritinopathy and Friedreich ataxia are associated with mutations in genes that encode proteins that are involved in iron metabolism, and as the brain ages, iron accumulates in regions that are affected by Alzheimer's disease and Parkinson's disease. High concentrations of reactive iron can increase oxidative-stress induced neuronal vulnerability, and iron accumulation might increase the toxicity of environmental or endogenous toxins. By studying the accumulation and cellular distribution of iron during ageing, we should be able to increase our understanding of these neurodegenerative disorders and develop new therapeutic strategies.  相似文献   

12.
跨界保护区网络构建研究进展   总被引:6,自引:1,他引:6  
王伟  田瑜  常明  李俊生 《生态学报》2014,34(6):1391-1400
跨界保护区网络是生物多样性保护网络的一种特殊形式,对保护国家或地区边界线附近丰富的生物多样性具有重要意义。构建跨界保护区网络已被列为《生物多样性公约》(Convention on Biological Diversity)框架下"保护区工作组"的一项战略任务,涉及生态、环境、经济、政治等多个领域,成为全球保护区研究领域的热点问题之一。然而,目前我国对跨界保护区的研究尚处于起步阶段,在如何构建不同尺度的跨界保护区网络等方面的研究仍有待进一步加强。在分析了全球、洲际、两个或多个国家和地区之间等不同尺度跨界保护区网络研究的基础上,综述了国内外基于"节点"-"廊道"模式的跨界保护区网络构建研究进展,并结合我国跨界保护区网络建设的实际情况,对我国未来跨界保护区网络构建研究进行了展望。  相似文献   

13.
14.
15.
Lee TL  Raygada MJ  Rennert OM 《Gene》2012,496(2):88-96
Autism spectrum disorders (ASDs) are a group of diseases exhibiting impairment in social drive, communication/language skills and stereotyped behaviors. Though an increased number of candidate genes and molecular interactions have been identified by various approaches, the pathogenesis remains elusive. Based on clinical observations, data from accessible GWAS and expression datasets we identified ASDs gene candidates. Integrative gene network and a novel CNV-centric Node Network (CNN) analysis method highlighted ASDs-associated key elements and biological processes. Functional analysis identified neurological functions including synaptic cholinergic receptor (CHRNA) families, dopamine receptor (DRD2), and correlations between social behavior and oxytocin related pathways. CNN analysis of genome-wide genetic and expression data identified inheritance-related clusters related to PTEN/TSC1/FMR1 and mTor/PI3K regulation. Integrative analysis identified potential regulators of networks, specifically TNF and beta-estradiol, suggesting a potential central role in ASDs. Our data provide information on potential disease mechanisms, and key regulators that may generate novel postulations, and diagnostic molecular biomarkers.  相似文献   

16.
The highly evolutionarily conserved serotonin transporter (SERT) regulates the entire serotoninergic system and its receptors via modulation of extracellular fluid serotonin concentrations. Differences in SERT expression and function produced by three SERT genes and their variants show associations with multiple human disorders. Screens of DNA from patients with autism, ADHD, bipolar disorder, and Tourette's syndrome have detected signals in the chromosome 17q region where SERT is located. Parallel investigations of SERT knockout mice have uncovered multiple phenotypes that identify SERT as a candidate gene for additional human disorders ranging from irritable bowel syndrome to obesity. Replicated studies have demonstrated that the SERT 5'-flanking region polymorphism SS genotype is associated with poorer therapeutic responses and more frequent serious side effects during treatment with antidepressant SERT antagonists, namely, the serotonin reuptake inhibitors (SRIs).  相似文献   

17.
When viewed from the perspective of time, human genetic disorders give new insights into their etiology and evolution. Here, we have correlated a specific set of Alu repetitive DNA elements, known to be the basis of certain genetic defects, with their phylogenetic roots in primate evolution. From a differential distribution of Alu repeats among primate species, we identify the phylogenetic roots of three human genetic diseases involving the LPL, ApoB, and HPRT genes. The different phylogenetic age of these genetic disorders could explain the different susceptibility of various primate species to genetic diseases. Our results show that LPL deficiency is the oldest and should affect humans, apes, and monkeys. ApoB deficiency should affect humans and great apes, while a disorder in the HPRT gene (leading to the Lesch-Nyhan syndrome) is unique to human, chimpanzee, and gorilla. Similar results can be obtained for cancer. We submit that de novo transpositions of Alu elements, and saltatory appearances of Alu-mediated genetic disorders, represent singularities, places where behavior changes suddenly. Alus' propensity to spread, not only increased the regulatory and developmental complexity of the primate genome, it also increased its instability and susceptibility to genetic defects and cancer. The dynamic spread not only provided markers of primate phylogeny, it must have actively shaped the course of that phylogeny.  相似文献   

18.
19.
Abnormalities in circadian rhythms play an important role in the pathogenesis of bipolar disorders (BD). Previous genetic studies have reported discrepant results regarding associations between circadian genes and susceptibility to BD. Furthermore, plausible behavioral consequences of at-risk variants remain unclear since there is a paucity of correlates with phenotypic biomarkers such as chronotypes. Here, we combined association studies with a genotype/phenotype correlation in order to determine which circadian genes variants may be associated with the circadian phenotypes observed in patients with BD. First, we compared the allele frequencies of 353 single nucleotide polymorphisms spanning 21 circadian genes in two independent samples of patients with BD and controls. The meta-analysis combining both samples showed a significant association between rs774045 in TIMELESS (OR?=?1.49 95%CI[1.18–1.88]; p?=?0.0008) and rs782931 in RORA (OR?=?1.31 95%CI[1.12–1.54]; p?=?0.0006) and BD. Then we used a “reverse phenotyping approach” to look for association between these two polymorphisms and circadian phenotypes in a subsample of patients and controls. We found that rs774045 was associated with eveningness (p?=?0.04) and languid circadian type (p?=?0.01), whereas rs782931 was associated with rigid circadian type (p?=?0.01). Altogether, these findings suggest that these variants in the TIMELESS and RORA genes may confer susceptibility to BD and impact on circadian phenotypes in carriers who thus had lower ability to properly adapt to external cues.  相似文献   

20.
Online Mendelian Inheritance in Man (OMIM™) is a comprehensive, authoritative and timely knowledgebase of human genes and genetic disorders compiled to support research and education in human genomics and the practice of clinical genetics. Started by Dr Victor A. McKusick as the definitive reference Mendelian Inheritance in Man, OMIM (www.ncbi.nlm.nih.gov/omim) is now distributed electronically by the National Center for Biotechnology Information (NCBI), where it is integrated with the Entrez suite of databases. Derived from the biomedical literature, OMIM is written and edited at Johns Hopkins University with input from scientists and physicians around the world. Each OMIM entry has a full-text summary of a genetically determined phenotype and/or gene and has numerous links to other genetic databases such as DNA and protein sequence, PubMed references, general and locus-specific mutation databases, approved gene nomenclature, and the highly detailed mapviewer, as well as patient support groups and many others. OMIM is an easy and straightforward portal to the burgeoning information in human genetics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号