首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
RNA editing in an untranslated region of the Ginkgo chloroplast genome.   总被引:7,自引:0,他引:7  
J Kudla  R Bock 《Gene》1999,234(1):81-86
mRNAs in plant cell organelles can be subject to RNA editing, an RNA processing step altering the identity of single nucleotide residues. In higher plant chloroplasts, editing proceeds by C-to-U conversions at highly specific sites. All known plastid RNA editing sites are located in protein-coding regions and, typically, change the coding properties of the mRNA. To gain more insight into the evolution of editing, we have determined the molecular structure and RNA editing pattern of the psbE operon of the primitive seed plant Ginkgo biloba. We report here the identification of altogether four sites of C-to-U editing, two of which are unique to Ginkgo and have not been found in other species. Surprisingly, one of the sites is located in an intercistronic spacer, thus being the first chloroplast editing site detected outside a protein-coding region. This indicates that the plastid editing machinery can operate also in untranslated regions and without having apparent functional consequences.  相似文献   

14.
15.
16.
17.
18.
Substitutional RNA editing plays a crucial role in the regulation of biological processes. Cleavage of target RNA that depends on the specific site of substitutional RNA editing is a useful tool for analyzing and regulating intracellular processes related to RNA editing. Hammerhead ribozymes have been utilized as small catalytic RNAs for cleaving target RNA at a specific site and may be used for RNA-editing-specific RNA cleavage. Here we reveal a design strategy for a hammerhead ribozyme that specifically recognizes adenosine to inosine (A-to-I) and cytosine to uracil (C-to-U) substitutional RNA-editing sites and cleaves target RNA. Because the hammerhead ribozyme cleaves one base upstream of the target-editing site, the base that pairs with the target-editing site was utilized for recognition. RNA-editing-specific ribozymes were designed such that the recognition base paired only with the edited base. These ribozymes showed A-to-I and C-to-U editing-specific cleavage activity against synthetic serotonin receptor 2C and apolipoprotein B mRNA fragments in vitro, respectively. Additionally, the ribozyme designed for recognizing A-to-I RNA editing at the Q/R site on filamin A (FLNA) showed editing-specific cleavage activity against physiologically edited FLNA mRNA extracted from cells. We demonstrated that our strategy is effective for cleaving target RNA in an editing-dependent manner. The data in this study provided an experimental basis for the RNA-editing-dependent degradation of specific target RNA in vivo.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号