首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Onchocerca volvulus is the causative agent of onchocerciasis, or “river blindness”. Ivermectin has been used for mass treatment of onchocerciasis for up to 18 years, and recently there have been reports of poor parasitological responses to the drug. Should ivermectin resistance be developing, it would have a genetic basis. We monitored genetic changes in parasites obtained from the same patients before use of ivermectin and following different levels of ivermectin exposure.

Methods and Findings

O. volvulus adult worms were obtained from 73 patients before exposure to ivermectin and in the same patients following three years of annual or three-monthly treatment at 150 µg/kg or 800 µg/kg. Genotype frequencies were determined in β-tubulin, a gene previously found to be linked to ivermectin selection and resistance in parasitic nematodes. Such frequencies were also determined in two other genes, heat shock protein 60 and acidic ribosomal protein, not known to be linked to ivermectin effects. In addition, we investigated the relationship between β-tubulin genotype and female parasite fertility. We found a significant selection for β-tubulin heterozygotes in female worms. There was no significant selection for the two other genes. Quarterly ivermectin treatment over three years reduced the frequency of the β-tubulin “aa” homozygotes from 68.6% to 25.6%, while the “ab” heterozygotes increased from 20.9% to 69.2% in the female parasites. The female worms that were homozygous at the β-tubulin locus were more fertile than the heterozygous female worms before treatment (67% versus 37%; p = 0.003) and twelve months after the last dose of ivermectin in the groups treated annually (60% versus 17%; p<0.001). Differences in fertility between heterozygous and homozygous worms were less apparent three months after the last treatment in the groups treated three-monthly.

Conclusions

The results indicate that ivermectin is causing genetic selection on O. volvulus. This genetic selection is associated with a lower reproductive rate in the female parasites. We hypothesize that this genetic selection indicates that a population of O. volvulus, which is more tolerant to ivermectin, is being selected. This selection could have implications for the development of ivermectin resistance in O. volvulus and for the ongoing onchocerciasis control programmes.  相似文献   

2.

Background

Many neglected tropical infectious diseases affecting humans are transmitted by arthropods such as mosquitoes and ticks. New mode-of-action chemistries are urgently sought to enhance vector management practices in countries where arthropod-borne diseases are endemic, especially where vector populations have acquired widespread resistance to insecticides.

Methodology/Principal Findings

We describe a “genome-to-lead” approach for insecticide discovery that incorporates the first reported chemical screen of a G protein-coupled receptor (GPCR) mined from a mosquito genome. A combination of molecular and pharmacological studies was used to functionally characterize two dopamine receptors (AaDOP1 and AaDOP2) from the yellow fever mosquito, Aedes aegypti. Sequence analyses indicated that these receptors are orthologous to arthropod D1-like (Gαs-coupled) receptors, but share less than 55% amino acid identity in conserved domains with mammalian dopamine receptors. Heterologous expression of AaDOP1 and AaDOP2 in HEK293 cells revealed dose-dependent responses to dopamine (EC50: AaDOP1 = 3.1±1.1 nM; AaDOP2 = 240±16 nM). Interestingly, only AaDOP1 exhibited sensitivity to epinephrine (EC50 = 5.8±1.5 nM) and norepinephrine (EC50 = 760±180 nM), while neither receptor was activated by other biogenic amines tested. Differential responses were observed between these receptors regarding their sensitivity to dopamine agonists and antagonists, level of maximal stimulation, and constitutive activity. Subsequently, a chemical library screen was implemented to discover lead chemistries active at AaDOP2. Fifty-one compounds were identified as “hits,” and follow-up validation assays confirmed the antagonistic effect of selected compounds at AaDOP2. In vitro comparison studies between AaDOP2 and the human D1 dopamine receptor (hD1) revealed markedly different pharmacological profiles and identified amitriptyline and doxepin as AaDOP2-selective compounds. In subsequent Ae. aegypti larval bioassays, significant mortality was observed for amitriptyline (93%) and doxepin (72%), confirming these chemistries as “leads” for insecticide discovery.

Conclusions/Significance

This research provides a “proof-of-concept” for a novel approach toward insecticide discovery, in which genome sequence data are utilized for functional characterization and chemical compound screening of GPCRs. We provide a pipeline useful for future prioritization, pharmacological characterization, and expanded chemical screening of additional GPCRs in disease-vector arthropods. The differential molecular and pharmacological properties of the mosquito dopamine receptors highlight the potential for the identification of target-specific chemistries for vector-borne disease management, and we report the first study to identify dopamine receptor antagonists with in vivo toxicity toward mosquitoes.  相似文献   

3.
Chew C  Eysenbach G 《PloS one》2010,5(11):e14118

Background

Surveys are popular methods to measure public perceptions in emergencies but can be costly and time consuming. We suggest and evaluate a complementary “infoveillance” approach using Twitter during the 2009 H1N1 pandemic. Our study aimed to: 1) monitor the use of the terms “H1N1” versus “swine flu” over time; 2) conduct a content analysis of “tweets”; and 3) validate Twitter as a real-time content, sentiment, and public attention trend-tracking tool.

Methodology/Principal Findings

Between May 1 and December 31, 2009, we archived over 2 million Twitter posts containing keywords “swine flu,” “swineflu,” and/or “H1N1.” using Infovigil, an infoveillance system. Tweets using “H1N1” increased from 8.8% to 40.5% (R 2 = .788; p<.001), indicating a gradual adoption of World Health Organization-recommended terminology. 5,395 tweets were randomly selected from 9 days, 4 weeks apart and coded using a tri-axial coding scheme. To track tweet content and to test the feasibility of automated coding, we created database queries for keywords and correlated these results with manual coding. Content analysis indicated resource-related posts were most commonly shared (52.6%). 4.5% of cases were identified as misinformation. News websites were the most popular sources (23.2%), while government and health agencies were linked only 1.5% of the time. 7/10 automated queries correlated with manual coding. Several Twitter activity peaks coincided with major news stories. Our results correlated well with H1N1 incidence data.

Conclusions

This study illustrates the potential of using social media to conduct “infodemiology” studies for public health. 2009 H1N1-related tweets were primarily used to disseminate information from credible sources, but were also a source of opinions and experiences. Tweets can be used for real-time content analysis and knowledge translation research, allowing health authorities to respond to public concerns.  相似文献   

4.

Background

Adaptation is an evolutionary process in which traits in a population are tailored by natural selection to better meet the challenges presented by the local environment. The major discussion relating to natural selection concerns the portraying of the cause and effect relationship between a presumably adaptive trait and selection agents generating it. Therefore, it is necessary to identify trait(s) that evolve in direct response to selection, enhancing the organism''s fitness. “Evolution Canyon” (EC) in Israel mirrors a microcosmic evolutionary system across life and is ideal to study natural selection and local adaptation under sharply, microclimatically divergent environments. The south-facing, tropical, sunny and xeric “African” slope (AS) receives 200%–800% higher solar radiation than the north-facing, temperate, shady and mesic “European” slope (ES), 200 meters apart. Thus, solar ultraviolet radiation (UVR) is a major selection agent in EC influencing the organism-environment interaction. Melanin is a trait postulated to have evolved for UV-screening in microorganisms. Here we investigate the cause and effect relationship between differential UVR on the opposing slopes of EC and the conidial melanin concentration of the filamentous soil fungus Aspergillus niger. We test the working hypothesis that the AS strains exhibit higher melanin content than strains from the ES resulting in higher UV resistance.

Methodology/Principal Findings

We measured conidial melanin concentration of 80 strains from the EC using a spectrophotometer. The results indicated that mean conidial melanin concentration of AS strains were threefold higher than ES strains and the former resisted UVA irradiation better than the latter. Comparisons of melanin in the conidia of A. niger strains from sunny and shady microniches on the predominantly sunny AS and predominantly shady ES indicated that shady conditions on the AS have no influence on the selection on melanin; in contrast, the sunny strains from the ES displayed higher melanin concentrations.

Conclusions/Significance

We conclude that melanin in A. niger is an adaptive trait against UVR generated by natural selection.  相似文献   

5.

Background

Parasitic nematodes of humans, other animals and plants continue to impose a significant public health and economic burden worldwide, due to the diseases they cause. Promising antiparasitic drug and vaccine candidates have been discovered from excreted or secreted (ES) proteins released from the parasite and exposed to the immune system of the host. Mining the entire expressed sequence tag (EST) data available from parasitic nematodes represents an approach to discover such ES targets.

Methods and Findings

In this study, we predicted, using EST2Secretome, a novel, high-throughput, computational workflow system, 4,710 ES proteins from 452,134 ESTs derived from 39 different species of nematodes, parasitic in animals (including humans) or plants. In total, 2,632, 786, and 1,292 ES proteins were predicted for animal-, human-, and plant-parasitic nematodes. Subsequently, we systematically analysed ES proteins using computational methods. Of these 4,710 proteins, 2,490 (52.8%) had orthologues in Caenorhabditis elegans, whereas 621 (13.8%) appeared to be novel, currently having no significant match to any molecule available in public databases. Of the C. elegans homologues, 267 had strong “loss-of-function” phenotypes by RNA interference (RNAi) in this nematode. We could functionally classify 1,948 (41.3%) sequences using the Gene Ontology (GO) terms, establish pathway associations for 573 (12.2%) sequences using Kyoto Encyclopaedia of Genes and Genomes (KEGG), and identify protein interaction partners for 1,774 (37.6%) molecules. We also mapped 758 (16.1%) proteins to protein domains including the nematode-specific protein family “transthyretin-like” and “chromadorea ALT,” considered as vaccine candidates against filariasis in humans.

Conclusions

We report the large-scale analysis of ES proteins inferred from EST data for a range of parasitic nematodes. This set of ES proteins provides an inventory of known and novel members of ES proteins as a foundation for studies focused on understanding the biology of parasitic nematodes and their interactions with their hosts, as well as for the development of novel drugs or vaccines for parasite intervention and control.  相似文献   

6.

Background

Syphilis is resurgent in many regions of the world. Molecular typing is a robust tool for investigating strain diversity and epidemiology. This study aimed to review original research on molecular typing of Treponema pallidum (T. pallidum) with three objectives: (1) to determine specimen types most suitable for molecular typing; (2) to determine T. pallidum subtype distribution across geographic areas; and (3) to summarize available information on subtypes associated with neurosyphilis and macrolide resistance.

Methodology/Principal Findings

Two researchers independently searched five databases from 1998 through 2010, assessed for eligibility and study quality, and extracted data. Search terms included “Treponema pallidum,” or “syphilis,” combined with the subject headings “molecular,” “subtyping,” “typing,” “genotype,” and “epidemiology.” Sixteen eligible studies were included. Publication bias was not statistically significant by the Begg rank correlation test. Medians, inter-quartile ranges, and 95% confidence intervals were determined for DNA extraction and full typing efficiency. A random-effects model was used to perform subgroup analyses to reduce obvious between-study heterogeneity. Primary and secondary lesions and ear lobe blood specimens had an average higher yield of T. pallidum DNA (83.0% vs. 28.2%, χ2 = 247.6, p<0.001) and an average higher efficiency of full molecular typing (80.9% vs. 43.1%, χ2 = 102.3, p<0.001) compared to plasma, whole blood, and cerebrospinal fluid. A pooled analysis of subtype distribution based on country location showed that 14d was the most common subtype, and subtype distribution varied across geographic areas. Subtype data associated with macrolide resistance and neurosyphilis were limited.

Conclusions/Significance

Primary lesion was a better specimen for obtaining T. pallidum DNA than blood. There was wide geographic variation in T. pallidum subtypes. More research is needed on the relationship between clinical presentation and subtype, and further validation of ear lobe blood for obtaining T. pallidum DNA would be useful for future molecular studies of syphilis.  相似文献   

7.

Background

Trypanosoma brucei brucei infects livestock, with severe effects in horses and dogs. Mouse strains differ greatly in susceptibility to this parasite. However, no genes controlling these differences were mapped.

Methods

We studied the genetic control of survival after T. b. brucei infection using recombinant congenic (RC) strains, which have a high mapping power. Each RC strain of BALB/c-c-STS/A (CcS/Dem) series contains a different random subset of 12.5% genes from the parental “donor” strain STS/A and 87.5% genes from the “background” strain BALB/c. Although BALB/c and STS/A mice are similarly susceptible to T. b. brucei, the RC strain CcS-11 is more susceptible than either of them. We analyzed genetics of survival in T. b. brucei-infected F2 hybrids between BALB/c and CcS-11. CcS-11 strain carries STS-derived segments on eight chromosomes. They were genotyped in the F2 hybrid mice and their linkage with survival was tested by analysis of variance.

Results

We mapped four Tbbr (Trypanosoma brucei brucei response) loci that influence survival after T. b. brucei infection. Tbbr1 (chromosome 3) and Tbbr2 (chromosome 12) have effects on survival independent of inter-genic interactions (main effects). Tbbr3 (chromosome 7) influences survival in interaction with Tbbr4 (chromosome 19). Tbbr2 is located on a segment 2.15 Mb short that contains only 26 genes.

Conclusion

This study presents the first identification of chromosomal loci controlling susceptibility to T. b. brucei infection. While mapping in F2 hybrids of inbred strains usually has a precision of 40–80 Mb, in RC strains we mapped Tbbr2 to a 2.15 Mb segment containing only 26 genes, which will enable an effective search for the candidate gene. Definition of susceptibility genes will improve the understanding of pathways and genetic diversity underlying the disease and may result in new strategies to overcome the active subversion of the immune system by T. b. brucei.  相似文献   

8.
Zhou YH  Liu FL  Yao ZH  Duo L  Li H  Sun Y  Zheng YT 《PloS one》2011,6(1):e16349

Background

Co-infection with HIV and HCV and/or HBV is highly prevalent in intravenous drug users (IDUs). Because of the proximity to the “Golden Triangle”, HIV prevalence among the IDUs is very high in the China-Myanmar border region. However, there are few studies about co-infection with HIV and HCV and/or HBV, especially in the region that belongs to Myanmar.

Methods

721 IDUs, including 403 Chinese and 318 Burmese, were investigated for their HIV, hepatitis B virus (HBV), and hepatitis C virus (HCV) serological status. Statistical analysis was performed to evaluate the differences of the epidemic situation between the Chinese IDUs and the Burmese IDUs.

Results

Among the Chinese IDUs and the Burmese IDUs, HCV infection was the most prevalent (69.0% vs 48.1%, P<0.001), followed by HBV (51.6% vs 43.1%, P<0.05) and HIV (33.7% vs 27.0%, P>0.05). Besides, there were more HIV-HBV co-infected IDUs (20.1% vs 11.3%, P<0.005), and HIV-HCV co-infected IDUs (31.8% vs 23.9%, P<0.05) in China than in Myanmar, as well as HIV-HBV-HCV triple infection (19.1% vs 10.4%, P<0.005).

Conclusion

Co-infection with HIV and HCV and/or HBV is highly prevalent among the IDUs in the China-Myanmar border region. The HIV epidemic appears to be in a downward trend, compared with previous reports. However, all infections were more prevalent among the Chinese IDUs than among the Burmese.  相似文献   

9.

Background

Genetic variability in the regulation of the nitric oxide (NO) pathway may influence hemodynamic changes in pediatric sepsis. We sought to determine whether functional polymorphisms in DDAH2, which metabolizes the NO synthase inhibitor asymmetric dimethylarginine (ADMA), are associated with susceptibility to sepsis, plasma ADMA, distinct hemodynamic states, and vasopressor requirements in pediatric septic shock.

Methodology/Principal Findings

In a prospective study, blood and buccal swabs were obtained from 82 patients ≤18 years (29 with severe sepsis/septic shock plus 27 febrile and 26 healthy controls). Plasma ADMA was measured using tandem mass spectrometry. DDAH2 gene was partially sequenced to determine the −871 6g/7g insertion/deletion and −449G/C single nucleotide polymorphisms. Shock type (“warm” versus “cold”) was characterized by clinical assessment. The −871 7g allele was more common in septic (17%) then febrile (4%) and healthy (8%) patients, though this was not significant after controlling for sex and race (p = 0.96). ADMA did not differ between −871 6g/7g genotypes. While genotype frequencies also did not vary between groups for the −449G/C SNP (p = 0.75), septic patients with at least one −449G allele had lower ADMA (median, IQR 0.36, 0.30–0.41 µmol/L) than patients with the −449CC genotype (0.55, 0.49–0.64 µmol/L, p = 0.008) and exhibited a higher incidence of “cold” shock (45% versus 0%, p = 0.01). However, after controlling for race, the association with shock type became non-significant (p = 0.32). Neither polymorphism was associated with inotrope score or vasoactive infusion duration.

Conclusions/Significance

The −449G polymorphism in the DDAH2 gene was associated with both low plasma ADMA and an increased likelihood of presenting with “cold” shock in pediatric sepsis, but not with vasopressor requirement. Race, however, was an important confounder. These results support and justify the need for larger studies in racially homogenous populations to further examine whether genotypic differences in NO metabolism contribute to phenotypic variability in sepsis pathophysiology.  相似文献   

10.

Background

Based on spatiotemporal clustering of human dengue virus (DENV) infections, transmission is thought to occur at fine spatiotemporal scales by horizontal transfer of virus between humans and mosquito vectors. To define the dimensions of local transmission and quantify the factors that support it, we examined relationships between infected humans and Aedes aegypti in Thai villages.

Methodology/Principal Findings

Geographic cluster investigations of 100-meter radius were conducted around DENV-positive and DENV-negative febrile “index” cases (positive and negative clusters, respectively) from a longitudinal cohort study in rural Thailand. Child contacts and Ae. aegypti from cluster houses were assessed for DENV infection. Spatiotemporal, demographic, and entomological parameters were evaluated. In positive clusters, the DENV infection rate among child contacts was 35.3% in index houses, 29.9% in houses within 20 meters, and decreased with distance from the index house to 6.2% in houses 80–100 meters away (p<0.001). Significantly more Ae. aegypti were DENV-infectious (i.e., DENV-positive in head/thorax) in positive clusters (23/1755; 1.3%) than negative clusters (1/1548; 0.1%). In positive clusters, 8.2% of mosquitoes were DENV-infectious in index houses, 4.2% in other houses with DENV-infected children, and 0.4% in houses without infected children (p<0.001). The DENV infection rate in contacts was 47.4% in houses with infectious mosquitoes, 28.7% in other houses in the same cluster, and 10.8% in positive clusters without infectious mosquitoes (p<0.001). Ae. aegypti pupae and adult females were more numerous only in houses containing infectious mosquitoes.

Conclusions/Significance

Human and mosquito infections are positively associated at the level of individual houses and neighboring residences. Certain houses with high transmission risk contribute disproportionately to DENV spread to neighboring houses. Small groups of houses with elevated transmission risk are consistent with over-dispersion of transmission (i.e., at a given point in time, people/mosquitoes from a small portion of houses are responsible for the majority of transmission).  相似文献   

11.

Background

Trigonopterus weevils are widely distributed throughout Melanesia and hyperdiverse in New Guinea. They are a dominant feature in natural forests, with narrow altitudinal zonation. Their use in community ecology has been precluded by the “taxonomic impediment”.

Methodology/Principal Findings

We sampled >6,500 specimens from seven areas across New Guinea; 1,002 specimens assigned to 270 morphospecies were DNA sequenced. Objective clustering of a refined dataset (excluding nine cryptic species) at 3% threshold revealed 324 genetic clusters (DNA group count relative to number of morphospecies = 20.0% overestimation of species diversity, or 120.0% agreement) and 85.6% taxonomic accuracy (the proportion of DNA groups that “perfectly” agree with morphology-based species hypotheses). Agreement and accuracy were best at an 8% threshold. GMYC analysis revealed 328 entities (21.5% overestimation) with 227 perfect GMYC entities (84.1% taxonomic accuracy). Both methods outperform the parataxonomist (19% underestimation; 31.6% taxonomic accuracy). The number of species found in more than one sampling area was highest in the Eastern Highlands and Huon (Sørensen similarity index 0.07, 4 shared species); ⅓ of all areas had no species overlap. Success rates of DNA barcoding methods were lowest when species showed a pronounced geographical structure. In general, Trigonopterus show high α and β-diversity across New Guinea.

Conclusions/Significance

DNA barcoding is an excellent tool for biodiversity surveys but success rates might drop when closer localities are included. Hyperdiverse Trigonopterus are a useful taxon for evaluating forest remnants in Melanesia, allowing finer-grained analyses than would be possible with vertebrate taxa commonly used to date. Our protocol should help establish other groups of hyperdiverse fauna as target taxa for community ecology. Sequencing delivers objective data on taxa of incredible diversity but mostly without a solid taxonomic foundation and should help pave the road for the eventual formal naming of new species.  相似文献   

12.

Background

Amhara Regional State of Ethiopia has a population of approximately 19.6 million, is prone to unstable and epidemic malaria, and is severely affected by trachoma. An integrated malaria and trachoma control program is being implemented by the Regional Health Bureau. To provide baseline data, a survey was conducted during December 2006 to estimate malaria parasite prevalence, malaria indicators, prevalence of trachoma, and trachoma risk factors in households and people of all ages in each of the ten zones of the state, excluding three urban centers (0.4% of the population).

Methodology/Principal Findings

The study was designed to provide prevalence estimates at zone and state levels. Using multi-stage cluster random sampling, 16 clusters of 25 households were randomly selected in each of the ten zones. Household heads were interviewed for malaria indicators and trachoma risk factors (N = 4,101). All people were examined for trachoma signs (N = 17,242), and those in even-numbered households provided blood films for malaria parasite detection (N = 7,745); both thick and thin blood films were read.Zonal malaria parasite prevalence ranged from 2.4% to 6.1%, with the overall state-wide prevalence being 4.6% (95% confidence interval (CI): 3.8%–5.6%). The Plasmodium falciparum: Plasmodium vivax ratio ranged from 0.9–2.1 with an overall regional ratio of 1.2. A total of 14.8% of households reported indoor residual spraying in the past year, 34.7% had at least one mosquito net, and 16.1% had one or more long-lasting insecticidal net. Zonal trachoma prevalence (trachomatous inflammation follicular [WHO grade TF] in children aged 1–9 years) ranged from 12.6% to 60.1%, with the overall state-wide prevalence being 32.7% (95% CI: 29.2%–36.5%). State-wide prevalence of trachomatous trichiasis (TT) in persons aged over fifteen was 6.2% (95% CI: 5.3–7.4), and 0.3% (95% CI: 0.2–0.5) in children aged 0–14 years. Overall, an estimated 643,904 persons (lower bound 419,274, upper bound 975,635) have TT and require immediate corrective surgery.

Conclusions/Significance

The results provide extensive baseline data to guide planning, implementation, and evaluation of the integrated malaria and trachoma control program in Amhara. The success of the integrated survey is the first step towards demonstration that control of priority neglected tropical diseases can be integrated with one of the “big three” killer diseases.  相似文献   

13.
You JH  Chan ES  Leung MY  Ip M  Lee NL 《PloS one》2012,7(3):e33123

Background

Seasonal and 2009 H1N1 influenza viruses may cause severe diseases and result in excess hospitalization and mortality in the older and younger adults, respectively. Early antiviral treatment may improve clinical outcomes. We examined potential outcomes and costs of test-guided versus empirical treatment in patients hospitalized for suspected influenza in Hong Kong.

Methods

We designed a decision tree to simulate potential outcomes of four management strategies in adults hospitalized for severe respiratory infection suspected of influenza: “immunofluorescence-assay” (IFA) or “polymerase-chain-reaction” (PCR)-guided oseltamivir treatment, “empirical treatment plus PCR” and “empirical treatment alone”. Model inputs were derived from literature. The average prevalence (11%) of influenza in 2010–2011 (58% being 2009 H1N1) among cases of respiratory infections was used in the base-case analysis. Primary outcome simulated was cost per quality-adjusted life-year (QALY) expected (ICER) from the Hong Kong healthcare providers'' perspective.

Results

In base-case analysis, “empirical treatment alone” was shown to be the most cost-effective strategy and dominated the other three options. Sensitivity analyses showed that “PCR-guided treatment” would dominate “empirical treatment alone” when the daily cost of oseltamivir exceeded USD18, or when influenza prevalence was <2.5% and the predominant circulating viruses were not 2009 H1N1. Using USD50,000 as the threshold of willingness-to-pay, “empirical treatment alone” and “PCR-guided treatment” were cost-effective 97% and 3% of time, respectively, in 10,000 Monte-Carlo simulations.

Conclusions

During influenza epidemics, empirical antiviral treatment appears to be a cost-effective strategy in managing patients hospitalized with severe respiratory infection suspected of influenza, from the perspective of healthcare providers in Hong Kong.  相似文献   

14.

Background

The history of Chagas disease control in Peru and many other nations is marked by scattered and poorly documented vector control campaigns. The complexities of human migration and sporadic control campaigns complicate evaluation of the burden of Chagas disease and dynamics of Trypanosoma cruzi transmission.

Methodology/Principal Findings

We conducted a cross-sectional serological and entomological study to evaluate temporal and spatial patterns of T. cruzi transmission in a peri-rural region of La Joya, Peru. We use a multivariate catalytic model and Bayesian methods to estimate incidence of infection over time and thereby elucidate the complex history of transmission in the area. Of 1,333 study participants, 101 (7.6%; 95% CI: 6.2–9.0%) were confirmed T. cruzi seropositive. Spatial clustering of parasitic infection was found in vector insects, but not in human cases. Expanded catalytic models suggest that transmission was interrupted in the study area in 1996 (95% credible interval: 1991–2000), with a resultant decline in the average annual incidence of infection from 0.9% (95% credible interval: 0.6–1.3%) to 0.1% (95% credible interval: 0.005–0.3%). Through a search of archival newspaper reports, we uncovered documentation of a 1995 vector control campaign, and thereby independently validated the model estimates.

Conclusions/Significance

High levels of T. cruzi transmission had been ongoing in peri-rural La Joya prior to interruption of parasite transmission through a little-documented vector control campaign in 1995. Despite the efficacy of the 1995 control campaign, T. cruzi was rapidly reemerging in vector populations in La Joya, emphasizing the need for continuing surveillance and control at the rural-urban interface.  相似文献   

15.

Aims

The tendency to develop diabetic nephropathy is, in part, genetically determined, however this genetic risk is largely undefined. In this proof-of-concept study, we tested the hypothesis that combined analysis of multiple genetic variants can improve prediction.

Methods

Based on previous reports, we selected 27 SNPs in 15 genes from metabolic pathways involved in the pathogenesis of diabetic nephropathy and genotyped them in 1274 Ashkenazi or Sephardic Jewish patients with Type 1 or Type 2 diabetes of >10 years duration. A logistic regression model was built using a backward selection algorithm and SNPs nominally associated with nephropathy in our population. The model was validated by using random “training” (75%) and “test” (25%) subgroups of the original population and by applying the model to an independent dataset of 848 Ashkenazi patients.

Results

The logistic model based on 5 SNPs in 5 genes (HSPG2, NOS3, ADIPOR2, AGER, and CCL5) and 5 conventional variables (age, sex, ethnicity, diabetes type and duration), and allowing for all possible two-way interactions, predicted nephropathy in our initial population (C-statistic = 0.672) better than a model based on conventional variables only (C = 0.569). In the independent replication dataset, although the C-statistic of the genetic model decreased (0.576), it remained highly associated with diabetic nephropathy (χ2 = 17.79, p<0.0001). In the replication dataset, the model based on conventional variables only was not associated with nephropathy (χ2 = 3.2673, p = 0.07).

Conclusion

In this proof-of-concept study, we developed and validated a genetic model in the Ashkenazi/Sephardic population predicting nephropathy more effectively than a similarly constructed non-genetic model. Further testing is required to determine if this modeling approach, using an optimally selected panel of genetic markers, can provide clinically useful prediction and if generic models can be developed for use across multiple ethnic groups or if population-specific models are required.  相似文献   

16.
W Wang  W Fu  J Wu  XC Ma  XL Sun  Y Huang  K Hashimoto  CG Gao 《PloS one》2012,7(7):e41665

Context

On May12th 2008, a devastating earthquake measuring 8.0 on the Richter scale, struck Wenchuan county and surrounding areas in China. The prevalence of mental illness among children and adolescents in a rural town far from the earthquake epicenter is unknown.

Objective

To assess the prevalence of posttraumatic stress disorder (PTSD) and depression among junior middle school students in a rural town Ningqiang county, 327 km from the earthquake epicenter.

Design, Setting, and Participants

A population-based mental health survey was conducted in March, 2009.

Main Outcome Measure

Survey Self-designed General Condition Survey Scale, Children''s Revised Impact of Event Scale (CRIES-13), and the Depression Self-rating Scale for Children (DSRSC) were used to sample 1,841 junior middle school students in Ningqiang county, ten months after the Wenchuan earthquake.

Results

The prevalence rate of a high-risk for PTSD was 28.4%, with 32.7% among females, 23.8% among males (female vs. male, p<0.001), 38.6% in the severe exposure group and 24.3% in the mild exposure group (severe vs. mild exposure, p<0.001). For depressive symptoms, the overall prevalence was 19.5%, with 24.0% among females, 14.7% among males, 24.5% in the severe exposure group and 17.5% in the mild exposure group (female vs. male, p<0.001; severe vs. mild exposure, p<0.001, respectively). In multivariate analysis, factors such as “having felt despair”, or “danger” and “having own house destroyed or damaged” were significantly associated with PTSD symptoms. Female gender and delayed evacuation in females, and earthquake related experiences in males were significantly associated with depression.

Conclusion

Traumatic events experienced during the earthquake were significantly associated with symptoms of PTSD and depression in children and adolescents, ten months after the Wenchuan earthquake. These data highlight a need for mental health services for children and adolescents in rural areas, far from earthquake epicenters.  相似文献   

17.

Background

The World Health Organization (WHO) has called for the “virtual elimination” of pediatric HIV: a mother-to-child HIV transmission (MTCT) risk of less than 5%. We investigated uptake of prevention of MTCT (PMTCT) services, infant feeding recommendations, and specific drug regimens necessary to achieve this goal in Zimbabwe.

Methods and Findings

We used a computer model to simulate a cohort of HIV-infected, pregnant/breastfeeding women (mean age, 24 y; mean CD4, 451/µl; breastfeeding duration, 12 mo). Three PMTCT regimens were evaluated: (1) single-dose nevirapine (sdNVP), (2) WHO 2010 guidelines'' “Option A” (zidovudine in pregnancy, infant nevirapine throughout breastfeeding for women without advanced disease, lifelong combination antiretroviral therapy for women with advanced disease), and (3) WHO “Option B” (pregnancy/breastfeeding-limited combination antiretroviral drug regimens without advanced disease; lifelong antiretroviral therapy with advanced disease). We examined four levels of PMTCT uptake (proportion of pregnant women accessing and adhering to PMTCT services): reported rates in 2008 and 2009 (36% and 56%, respectively) and target goals in 2008 and 2009 (80% and 95%, respectively). The primary model outcome was MTCT risk at weaning.The 2008 sdNVP-based National PMTCT Program led to a projected 12-mo MTCT risk of 20.3%. Improved uptake in 2009 reduced projected risk to 18.0%. If sdNVP were replaced by more effective regimens, with 2009 (56%) uptake, estimated MTCT risk would be 14.4% (Option A) or 13.4% (Option B). Even with 95% uptake of Option A or B, projected transmission risks (6.1%–7.7%) would exceed the WHO goal of less than 5%. Only if the lowest published transmission risks were used for each drug regimen, or breastfeeding duration were shortened, would MTCT risks at 95% uptake fall below 5%.

Conclusions

Implementation of the WHO PMTCT guidelines must be accompanied by efforts to improve access to PMTCT services, retain women in care, and support medication adherence throughout pregnancy and breastfeeding, to approach the “virtual elimination” of pediatric HIV in Zimbabwe. Please see later in the article for the Editors'' Summary  相似文献   

18.

Background

The spread of Aedes albopictus, a vector for re-emergent arbovirus diseases like chikungunya and dengue, points up the need for better control strategies and new tools to evaluate transmission risk. Human antibody (Ab) responses to mosquito salivary proteins could represent a reliable biomarker for evaluating human-vector contact and the efficacy of control programs.

Methodology/Principal Findings

We used ELISA tests to evaluate specific immunoglobulin G (IgG) responses to salivary gland extracts (SGE) in adults exposed to Aedes albopictus in Reunion Island. The percentage of immune responders (88%) and levels of anti-SGE IgG Abs were high in exposed individuals. At an individual level, our results indicate heterogeneity of the exposure to Aedes albopictus bites. In addition, low-level immune cross-reactivity between Aedes albopictus and Aedes aegypti SGEs was observed, mainly in the highest responders.

Conclusion/Significance

Ab responses to saliva could be used as an immuno-epidemiological tool for evaluating exposure to Aedes albopictus bites. Combined with entomological and epidemiological methods, a “salivary” biomarker of exposure to Aedes albopictus could enhance surveillance of its spread and the risk of arbovirus transmission, and could be used as a direct tool for the evaluation of Aedes albopictus control strategies.  相似文献   

19.

Background

The population structure and diversity of Lactococcus lactis subsp. lactis, a major industrial bacterium involved in milk fermentation, was determined at both gene and genome level. Seventy-six lactococcal isolates of various origins were studied by different genotyping methods and thirty-six strains displaying unique macrorestriction fingerprints were analyzed by a new multilocus sequence typing (MLST) scheme. This gene-based analysis was compared to genomic characteristics determined by pulsed-field gel electrophoresis (PFGE).

Methodology/Principal Findings

The MLST analysis revealed that L. lactis subsp. lactis is essentially clonal with infrequent intra- and intergenic recombination; also, despite its taxonomical classification as a subspecies, it displays a genetic diversity as substantial as that within several other bacterial species. Genome-based analysis revealed a genome size variability of 20%, a value typical of bacteria inhabiting different ecological niches, and that suggests a large pan-genome for this subspecies. However, the genomic characteristics (macrorestriction pattern, genome or chromosome size, plasmid content) did not correlate to the MLST-based phylogeny, with strains from the same sequence type (ST) differing by up to 230 kb in genome size.

Conclusion/Significance

The gene-based phylogeny was not fully consistent with the traditional classification into dairy and non-dairy strains but supported a new classification based on ecological separation between “environmental” strains, the main contributors to the genetic diversity within the subspecies, and “domesticated” strains, subject to recent genetic bottlenecks. Comparison between gene- and genome-based analyses revealed little relationship between core and dispensable genome phylogenies, indicating that clonal diversification and phenotypic variability of the “domesticated” strains essentially arose through substantial genomic flux within the dispensable genome.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号