首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
NarE is a 16 kDa protein identified from Neisseria meningitidis, one of the bacterial pathogens responsible for meningitis. NarE belongs to the ADP-ribosyltransferase family and catalyses the transfer of ADP-ribose moieties to arginine residues in target protein acceptors. Many pathogenic bacteria utilize ADP-ribosylating toxins to modify and alter essential functions of eukaryotic cells. NarE was proposed to bind iron through a Fe–S center which is supposed to be implied in catalysis. We have produced and purified uniformly labeled 15N- and 15N/13C-NarE and assigned backbone and side-chain resonances using multidimensional heteronuclear NMR spectroscopy. These assignments provide the starting point for the three-dimensional structure determination of NarE and the characterization of the role of the Fe–S center in the catalytic mechanism.  相似文献   

2.
ADP-ribosyltransferases (ADPRTs) form an interesting class of enzymes with well-established roles as potent bacterial toxins and metabolic regulators. ADPRTs catalyze the transfer of the ADP-ribose moiety from NAD(+) onto specific substrates including proteins. ADP-ribosylation usually inactivates the function of the target. ADPRTs have become adapted to function in extra- and intracellular settings. Regulation of ADPRT activity can be mediated by ligand binding to associated regulatory domains, proteolytic cleavage, disulphide bond reduction, and association with other proteins. Crystallisation has revealed a conserved core set of elements that define an unusual minimal scaffold of the catalytic domain with remarkably plastic sequence requirements--only a single glutamic acid residue critical to catalytic activity is invariant. These inherent properties of ADPRTs suggest that the ADPRT catalytic fold is an attractive, malleable subject for protein design.  相似文献   

3.
Mono ADP-ribosyltransferases (ADPRTs) are a class of functionally conserved enzymes present in prokaryotic and eukaryotic organisms. In bacteria, these enzymes often act as potent toxins and play an important role in pathogenesis. Here we report a profile-based computational approach that, assisted by secondary structure predictions, has allowed the identification of a previously undiscovered ADP-ribosyltransferase in Neisseria meningitidis (NarE). NarE shows structural homologies with E. coli heat-labile enterotoxin (LT) and cholera toxin (CT) and possesses ADP-ribosylating and NAD-glycohydrolase activities. As in the case of LT and CT, NarE catalyses the transfer of the ADP-ribose moiety to arginine residues. Despite the absence of a signal peptide, the protein is efficiently exported into the periplasm of Neisseria. The narE gene is present in 25 out of 43 strains analysed, is always present in ET-5 and Lineage 3 but absent in ET-37 and Cluster A4 hypervirulent lineages. When present, the gene is 100% conserved in sequence and is inserted upstream of and co-transcribed with the lipoamide dehydrogenase E3 gene. Possible roles in the pathogenesis of N. meningitidis are discussed.  相似文献   

4.
The mitochondrial protein frataxin is essential for cellular regulation of iron homeostasis. Although the exact function of frataxin is not yet clear, recent reports indicate the protein binds iron and can act as a mitochondrial iron chaperone to transport Fe(II) to ferrochelatase and ISU proteins within the heme and iron-sulfur cluster biosynthetic pathways, respectively. We have determined the solution structure of apo yeast frataxin to provide a structural basis of how frataxin binds and donates iron to the ferrochelatase. While the protein's alpha-beta-sandwich structural motif is similar to that observed for human and bacterial frataxins, the yeast structure presented in this report includes the full N-terminus observed for the mature processed protein found within the mitochondrion. In addition, NMR spectroscopy was used to identify frataxin amino acids that are perturbed by the presence of iron. Conserved acidic residues in the helix 1-strand 1 protein region undergo amide chemical shift changes in the presence of Fe(II), indicating a possible iron-binding site on frataxin. NMR spectroscopy was further used to identify the intermolecular binding interface between ferrochelatase and frataxin. Ferrochelatase appears to bind to frataxin's helical plane in a manner that includes its iron-binding interface.  相似文献   

5.
In prokaryotes, mono-ADP-ribose transfer enzymes represent a family of exotoxins that display activity in a variety of bacterial pathogens responsible for causing disease in plants and animals, including those affecting mankind, such as diphtheria, cholera, and whooping cough. We report here that NarE, a putative ADP-ribosylating toxin previously identified from Neisseria meningitidis, which shares structural homologies with Escherichia coli heat labile enterotoxin and toxin from Vibrio cholerae, possesses an iron-sulfur center. The recombinant protein was expressed in E. coli, and when purified at high concentration, NarE is a distinctive golden brown in color. Evidence from UV-visible spectrophotometry and EPR spectroscopy revealed characteristics consistent of an iron-binding protein. The presence of iron was determined by colorimetric method and by an atomic absorption spectrophotometer. To identify the amino acids involved in binding iron, a combination of site-directed mutagenesis and UV-visible and enzymatic assays were performed. All four cysteine residues were individually replaced by serine. Substitution of Cys67 and Cys128 into serine caused a drastic reduction in the E420/E280 ratio, suggesting that these two residues are essential for the formation of a stable coordination. This modification led to a consistent loss in ADP-ribosyltransferase activity, while decrease in NAD-glycohydrolase activity was less dramatic in these mutants, indicating that the correct assembly of the iron-binding site is essential for transferase but not hydrolase activity. This is the first observation suggesting that a member of the ADP-ribosyltransferase family contains an Fe-S cluster implicated in catalysis. This observation may unravel novel functions exerted by this class of enzymes.  相似文献   

6.
Ras specific GTPase activating proteins (GAPs), neurofibromin and p120GAP, bind GTP bound Ras and efficiently complement its active site. Here we present comparative data from mutations and fluorescence-based assays of the catalytic domains of both RasGAPs and interpret them using the crystal structures. Three prominent regions in RasGAPs, the arginine-finger loop, the phenylalanine-leucine-arginine (FLR) region and alpha7/variable loop contain structural fingerprints governing the GAP function. The finger loop is crucial for the stabilization of the transition state of the GTPase reaction. This function is controlled by residues proximal to the catalytic arginine, which are strikingly different between the two RasGAPs. These residues specifically determine the orientation and therefore the positioning of the arginine finger in the Ras active site. The invariant FLR region, a hallmark for RasGAPs, indirectly contributes to GTPase stimulation by forming a scaffold, which stabilizes Ras switch regions. We show that a long hydrophobic side-chain in the FLR region is crucial for this function. The alpha7/variable loop uses several conserved residues including two lysine residues, which are involved in numerous interactions with the switch I region of Ras. This region determines the specificity of the Ras-RasGAP interaction.  相似文献   

7.
Intramembrane proteases execute fundamental biological processes ranging from crucial signaling events to general membrane proteostasis. Despite the availability of structural information on these proteases, it remains unclear how these enzymes bind and recruit substrates, particularly for the Alzheimer's disease‐associated γ‐secretase. Systematically scanning amyloid precursor protein substrates containing a genetically inserted photocrosslinkable amino acid for binding to γ‐secretase allowed us to identify residues contacting the protease. These were primarily found in the transmembrane cleavage domain of the substrate and were also present in the extramembranous domains. The N‐terminal fragment of the catalytic subunit presenilin was determined as principal substrate‐binding site. Clinical presenilin mutations altered substrate binding in the active site region, implying a pathogenic mechanism for familial Alzheimer's disease. Remarkably, PEN‐2 was identified besides nicastrin as additional substrate‐binding subunit. Probing proteolysis of crosslinked substrates revealed a mechanistic model of how these subunits interact to mediate a stepwise transfer of bound substrate to the catalytic site. We propose that sequential binding steps might be common for intramembrane proteases to sample and select cognate substrates for catalysis.  相似文献   

8.
Iota-toxin from Clostridium perfringens type E is an ADP-ribosylating toxin (ADPRT) that ADP-ribosylates actin, which is lethal and dermonecrotic in mammals. It is a binary toxin composed of an enzymatic component (Ia) and a binding component (Ib). Ia ADP-ribosylates G-actin at arginine 177, resulting in the depolymerization of the actin cytoskeleton. Here, we report on studies of the structure-function relationship by the crystal structures of Ia complexed with NADH and NADPH (at 1.8 A and 2.1 A resolution, respectively) and mutagenesis that map the active residues. The catalytic C-domain structure was similar to that of Bacillus cereus vegetative insecticidal protein (VIP2), which is an insect-targeted toxin, except for the EXE loop region. However, a significant structural difference could be seen in the N-domain, which interacts with Ib, suggesting an evolutionary difference between mammalian-targeted and insect-targeted ADPRT. The high resolution structure analysis revealed specific NAD conformation (a ring-like conformation of nicotinamide mononucleotide (NMN)) supported by Arg295, Arg296, Asn335, Arg352 and Glu380. Additionally, the mutagenesis study showed that the residues Tyr251, Arg295, Glu301, Ser338, Phe349, Arg352 and Glu380, including a newly identified one, are essential for NAD(+)-glycohydrolase (NADase) activity. At least one residue, Glu378, is an essential residue for ADP-ribosyltransferase (ARTase), but not for NADase. Consequently, the structural feature and these mutagenesis findings suggest that the catalytic mechanism of Ia proceeds via an Sn1-type reaction.  相似文献   

9.
G protein-activated inwardly rectifying potassium channel (GIRK) plays crucial roles in regulating heart rate and neuronal excitability in eukaryotic cells. GIRK is activated by the direct binding of heterotrimeric G protein βγ subunits (Gβγ) upon stimulation of G protein-coupled receptors, such as M2 acetylcholine receptor. The binding of Gβγ to the cytoplasmic pore (CP) region of GIRK causes structural rearrangements, which are assumed to open the transmembrane ion gate. However, the crucial residues involved in the Gβγ binding and the structural mechanism of GIRK gating have not been fully elucidated. Here, we have characterized the interaction between the CP region of GIRK and Gβγ, by ITC and NMR. The ITC analyses indicated that four Gβγ molecules bind to a tetramer of the CP region of GIRK with a dissociation constant of 250 μM. The NMR analyses revealed that the Gβγ binding site spans two neighboring subunits of the GIRK tetramer, which causes conformational rearrangements between subunits. A possible binding mode and mechanism of GIRK gating are proposed.  相似文献   

10.
We have examined the effects of active site residues on ligand binding to the heme iron of mouse neuroglobin using steady-state and time-resolved visible spectroscopy. Absorption spectra of the native protein, mutants H64L and K67L and double mutant H64L/K67L were recorded for the ferric and ferrous states over a wide pH range (pH 4-11), which allowed us to identify a number of different species with different ligands at the sixth coordination, to characterize their spectroscopic properties, and to determine the pK values of active site residues. In flash photolysis experiments on CO-ligated samples, reaction intermediates and the competition of ligands for the sixth coordination were studied. These data provide insights into structural changes in the active site and the role of the key residues His64 and Lys67. His64 interferes with exogenous ligand access to the heme iron. Lys67 sequesters the distal pocket from the solvent. The heme iron is very reactive, as inferred from the fast ligand binding kinetics and the ability to bind water or hydroxyl ligands to the ferrous heme. Fast bond formation favors geminate rebinding; yet the large fraction of bimolecular rebinding observed in the kinetics implies that ligand escape from the distal pocket is highly efficient. Even slight pH variations cause pronounced changes in the association rate of exogenous ligands near physiological pH, which may be important in functional processes.  相似文献   

11.
The role of two "basic patch" residues, Arg-38 and His-62, in the catalytic function and anion-dependent activation of yeast 3-phosphoglycerate kinase (PGK) was investigated by site-directed mutagenesis. Steady-state kinetics and NMR experiments were conducted to characterize the functional properties and structural integrity of the R38A and H62A mutants. The results of these studies, in combination with earlier mutagenesis experiments, suggest that Arg-38 is the only catalytically essential residue among the conserved histidines and arginines of the basic patch. It appears that, similar to the remaining basic patch residues, His-62 is important for anion-dependent activation but not for enzyme activity. Cumulative evidence from this study and from previous mutagenesis experiments suggests that the basic patch region is in effect an extended anion binding site that encompasses both the catalytic and the general anion-binding site. It is proposed that substitution of any one of the basic patch residues results in an increased localization of the catalytic site. Substrate and product may still bind to this site, but a simultaneous binding of activatory anions, required for activation, has been impaired. NMR experiments suggest that the conformational changes observed upon binding of 3-PG to wild-type PGK are necessary for anion- and substrate-dependent activation.  相似文献   

12.
Functional comparison of the NAD binding cleft of ADP-ribosylating toxins   总被引:2,自引:0,他引:2  
Dolan KM  Lindenmayer G  Olson JC 《Biochemistry》2000,39(28):8266-8275
Although a common core structure forms the active site of ADP-ribosylating (ADPRT) toxins, the limited-sequence homology within this region suggests that different mechanisms are being used by toxins to perform their shared function. To explain differences in their mechanisms of NAD binding and hydrolysis, the functional interrelationship of residues predicted to perform similar functions in the beta3-strand of the NAD binding cleft of different ADPRT toxins was compared. Replacing Tyr54 in the A-subunit of diphtheria toxin (DTA) with a serine, its functional homologue in cholera toxin (CT), resulted in the loss of catalytic function but not NAD binding. The catalytic role of the aromatic portion of Tyr54 in the ADPRT reaction was confirmed by the ability of a Tyr54-to-phenylalanine DTA mutant to retain ADPRT activity. In reciprocal studies, positioning a tyrosine in the beta3-strand of the A1-subunit of CT (CTA1) caused both loss of function and altered structure. The restricted flexibility of the CTA1 active site relative to function became evident upon the loss of ADPRT activity when a conservative Val60-to-leucine mutation was performed. We conclude from our studies that DT and CT maintain a similar mechanism of NAD binding but differ in their mechanisms of NAD hydrolysis. The aromatic moiety at position 54 in DT is integral to NAD hydrolysis, while NAD hydrolysis in CT appears highly dependent on the precise positioning of specific residues within the beta3-strand of the active-site cleft.  相似文献   

13.
Zinc is the second most abundant metal ion incorporated in proteins, and is in many cases a crucial component of protein three-dimensional structures. Zinc ions are frequently coordinated by cysteine and histidine residues. Whereas cysteines bind to zinc via their unique S(γ) atom, histidines can coordinate zinc with two different coordination modes, either N(δ1) or N(ε2) is coordinating the zinc ion. The determination of this coordination mode is crucial for the accurate structure determination of a histidine-containing zinc-binding site by NMR. NMR chemical shifts contain a vast amount of information on local electronic and structural environments and surprisingly their utilization for the determination of the coordination mode of zinc-ligated histidines has been limited so far to (15)N nuclei. In the present report, we observed that the (13)C chemical shifts of aromatic carbons in zinc-ligated histidines represent a reliable signature of their coordination mode. Using a statistical analysis of (13)C chemical shifts, we show that (13)C(δ2) chemical shift is sensitive to the histidine coordination mode and that the chemical shift difference δ{(13)C(ε1)} - δ{(13)C(δ2)} provides a reference-independent marker of this coordination mode. The present approach allows the direct determination of the coordination mode of zinc-ligated histidines even with non-isotopically enriched protein samples and without any prior structural information.  相似文献   

14.
15.
16.
Metal ions play a crucial role in the conformation and splicing activity of Group II introns. Results from 2-aminopurine fluorescence and solution NMR studies suggest that metal ion binding within the branch site region of native D6 of the Group II intron is specific for alkaline earth metal ions and involves inner sphere coordination. Although Mg(2+) and Ca(2+) still bind to a mutant stem loop sequence from which the internal loop had been deleted, ion binding to the mutant RNA results in decreased, rather than increased, exposure of the branch site residue to solvent. These data further support the role of the internal loop in defining branch site conformation of the Group II intron. The specific bound Mg(2+) may play a bivalent role: facilitates the extrahelical conformation of the branch site and has the potential to act as a Lewis acid during splicing.  相似文献   

17.
The flavoenzyme UDP-galactopyranose mutase (UGM) is a mediator of cell wall biosynthesis in many pathogenic microorganisms. UGM catalyzes a unique ring contraction reaction that results in the conversion of UDP-galactopyranose (UDP-Galp) to UDP-galactofuranose (UDP-Galf). UDP-Galf is an essential precursor to the galactofuranose residues found in many different cell wall glycoconjugates. Due to the important consequences of UGM catalysis, structural and biochemical studies are needed to elucidate the mechanism and identify the key residues involved. Here, we report the results of site-directed mutagenesis studies on the absolutely conserved residues in the putative active site cleft. By generating variants of the UGM from Klebsiella pneumoniae, we have identified two arginine residues that play critical catalytic roles (alanine substitution abolishes detectable activity). These residues also have a profound effect on the binding of a fluorescent UDP derivative that inhibits UGM, suggesting that the Arg variants are defective in their ability to bind substrate. One of the residues, Arg280, is located in the putative active site, but, surprisingly, the structural studies conducted to date suggest that Arg174 is not. Molecular dynamics simulations indicate that closed UGM conformations can be accessed in which this residue contacts the pyrophosphoryl group of the UDP-Gal substrates. These results provide strong evidence that the mobile loop, noted in all the reported crystal structures, must move in order for UGM to bind its UDP-galactose substrate.  相似文献   

18.
The 2.1-A resolution crystal structure of native uncomplexed iron superoxide dismutase (EC 1.15.1.1) from Pseudomonas ovalis was solved and refined to a final R factor of 24%. The dimeric structure contains one catalytic iron center per monomer with an asymmetric trigonal-bipyramidal coordination of protein ligands to the metal. Each monomer contains two domains, with the trigonal ligands (histidines 74 and 160; aspartate 156) contributed by the large domain and stabilized by an extended hydrogen-bonded network, including residues from opposing monomers. The axial ligand (histidine 26) is found on the small domain and does not participate extensively in the stabilizing H-bond network. The open axial coordination position of the iron is devoid of bound water molecules or anions. The metal is located 0.5 A out of the plane of the trigonal ligands toward histidine 26, providing a slightly skewed coordination away from the iron binding site. The molecule contains a glutamine residue in the active site which is conserved between all iron enzymes sequenced to data but which is conserved among all manganese SODs at a separate position in the sequence. This residue shows the same structural interactions in both cases, implying that iron and manganese SODs are second-site revertants of one another.  相似文献   

19.
J T Lecomte  M J Cocco 《Biochemistry》1990,29(50):11057-11067
The structural properties of the complex formed by apomyoglobin and protoporphyrin IX (des-iron myoglobin) were studied to probe the influence of iron-to-histidine coordination on the native myoglobin fold and the heme binding site geometry. Standard two-dimensional proton nuclear magnetic resonance spectroscopy methods were applied to identify porphyrin and protein signals. A pronounced spectral resemblance between carbonmonoxymyoglobin and des-iron myoglobin was noticed that could be exploited to assign a number of resonances by nuclear Overhauser spectroscopy. Protoporphyrin IX was determined to bind in the same orientation as the heme. Most residues in contact with the prosthetic group were found in the holomyoglobin conformation. Several tertiary structure features were also characterized near the protein termini. It was concluded that the protoporphyrin-apomyoglobin interactions are capable of organizing the binding site and the unfolded region of the apoprotein into the native holoprotein structure.  相似文献   

20.
Molecular recognition models of both induced fit and conformational selection rely on coupled networks of flexible residues and/or structural rearrangements to promote protein function. While the atomic details of these motional events still remain elusive, members of the pancreatic ribonuclease superfamily were previously shown to depend on subtle conformational heterogeneity for optimal catalytic function. Human angiogenin, a structural homologue of bovine pancreatic RNase A, induces blood vessel formation and relies on a weak yet functionally mandatory ribonucleolytic activity to promote neovascularization. Here, we use the NMR chemical shift projection analysis (CHESPA) to clarify the mechanism of ligand binding in human angiogenin, further providing information on long-range intramolecular residue networks potentially involved in the function of this enzyme. We identify two main clusters of residue networks displaying correlated linear chemical shift trajectories upon binding of substrate fragments to the purine- and pyrimidine-specific subsites of the catalytic cleft. A large correlated residue network clusters in the region corresponding to the V1 domain, a site generally associated with the angiogenic response and structural stability of the enzyme. Another correlated network (residues 40–42) negatively affects the catalytic activity but also increases the angiogenic activity. 15N-CPMG relaxation dispersion experiments could not reveal the existence of millisecond timescale conformational exchange in this enzyme, a lack of flexibility supported by the very low-binding affinities and catalytic activity of angiogenin. Altogether, the current report potentially highlights the existence of long-range dynamic reorganization of the structure upon distinct subsite binding events in human angiogenin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号