首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
As we pursue the means to improve yields to meet growing therapy demands, it is important to examine the impact of process control on glycosylation patterns to ensure product efficacy and consistency. In this study, we describe a dynamic on-line fed-batch strategy based on low glutamine/glucose concentrations and its impact on cellular metabolism and, more importantly, the productivity and N-glycosylation quality of a model recombinant glycoprotein, interferon gamma (IFN-gamma). We found that low glutamine fed-batch strategy enabled up to 10-fold improvement in IFN-gamma yields, which can be attributed to reduced specific productivity of ammonia and lactate. Furthermore, the low glutamine concentration (0.3 mM) used in this fed-batch strategy could maintain both the N-glycosylation macro- and microheterogeneity of IFN-gamma. However, very low glutamine (<0.1 mM) or glucose (<0.70 mM) concentrations can lead to decreased sialylation and increased presence of minor glycan species consisting of hybrid and high-mannose types. This shows that glycan chain extension and sialylation can be affected by nutrient limitation. In addition to nutrient limitation, we also found that N-glycosylation quality can be detrimentally affected by low culture viability. IFN-gamma purified at low culture viability had both lower sialylation as well as glycans of lower molecular masses, which can be attributed to extensive degradation by intracellular glycosidases released by cytolysis. Therefore, in order to maintain good N-glycosylation quality, there is a need to consider both culture viability and nutrient control setpoint in a nutrient-limiting fed-batch culture strategy. A greater understanding of these major factors that affect N-glycosylation quality would surely facilitate future development of effective process controls.  相似文献   

3.
4.
Culture media design is central to the optimization of monoclonal antibody (mAb) production. Although general strategies do not currently exist for optimization of culture media, the combined use of statistical design and analysis of experiments and strategies based on simple material balances can facilitate culture media design. In this study, we evaluate the effect of selected amino acids on the growth rate and monoclonal antibody production of a Chinese hamster ovary DG-44 (CHO-DG44) cell line. These amino acids were selected based on their relative mass fraction in the specific mAb produced in this study, their consumption rate during bioreactor experiments, and also through a literature review. A Plackett-Burman statistical design was conducted to minimize the number of experiments needed to obtain statistically relevant information. The effect of this set of amino acids was evaluated during exponential cell culture (considering viable cell concentration and the specific growth rate as main output variables) and during the high cell-density stage (considering mAb final concentration and specific productivity as relevant output variables). For this particular cell line, leucine (Leu) and arginine (Arg) had the highest negative and positive effects on cell viability, respectively; Leu and threonine (Thr) had the highest negative effect on growth rate, and valine (Val) and Arg demonstrated the highest positive impact on mAb final concentration. Results suggest the pertinence of a two-stage strategy for amino acid supplementation, with a mixture optimized for cell growth and a different amino acid mixture for mAb production at high density.  相似文献   

5.
Chinese Hamster ovary (CHO) cells are regarded as one of the "work-horses" for complex biotherapeutics production. In these processes, loss in culture viability occurs primarily via apoptosis, a genetically controlled form of cellular suicide. Using our "in-house" developed CHO cDNA array and a mouse oligonucleotide array for time profile expression analysis of batch and fed-batch CHO cell cultures, the genetic circuitry that regulates and executes apoptosis induction were examined. During periods of high viability, most pro-apoptotic genes were down-regulated but upon loss in viability, several early pro-apoptotic signaling genes were up-regulated. At later stages of viability loss, we detected late pro-apoptotic effector genes such as caspases and DNases being up-regulated. This sequential regulation of apoptotic genes showed that DNA microarrays could be used as a tool to study apoptosis. We found that in batch and fed-batch cultures, apoptosis signaling occurred primarily via death receptor- and mitochondria-mediated signaling pathways rather than endoplasmic reticulum-mediated signaling. These insights provide a greater understanding of the regulatory circuitry of apoptosis during cell culture and allow for subsequent targeting of relevant apoptosis signaling genes to prolong cell culture.  相似文献   

6.
The adoption of disposable bioreactor technology as an alternate to traditional nondisposable technology is gaining momentum in the biotechnology industry. Evaluation of current disposable bioreactors systems to sustain high intensity fed-batch mammalian cell culture processes needs to be explored. In this study, an assessment was performed comparing single-use bioreactors (SUBs) systems of 50-, 250-, and 1,000-L operating scales with traditional stainless steel (SS) and glass vessels using four distinct mammalian cell culture processes. This comparison focuses on expansion and production stage performance. The SUB performance was evaluated based on three main areas: operability, process scalability, and process performance. The process performance and operability aspects were assessed over time and product quality performance was compared at the day of harvest. Expansion stage results showed disposable bioreactors mirror traditional bioreactors in terms of cellular growth and metabolism. Set-up and disposal times were dramatically reduced using the SUB systems when compared with traditional systems. Production stage runs for both Chinese hamster ovary and NS0 cell lines in the SUB system were able to model SS bioreactors runs at 100-, 200-, 2,000-, and 15,000-L scales. A single 1,000-L SUB run applying a high intensity fed-batch process was able to generate 7.5 kg of antibody with comparable product quality.  相似文献   

7.
8.
In large‐scale mammalian cell culture, the key toxic by‐products assessed and monitored are lactate and ammonia. Often no distinction between the two isoforms of lactate is made. Here, we present profiles of both D ‐ and L ‐lactate. D ‐Lactate is the end molecule of the methylglyoxal pathway. D ‐Lactate unlike L ‐lactate is not re‐utilized, and although during normal culture time frames it represents one‐tenth of total lactate, during lactate re‐use it represents nearly 35%. This indicates significant carbon flow through pathways not associated with primary metabolites. We have observed that the behavior of D ‐lactate is radically different from that of L ‐lactate with the level of one isoform changing, whilst the concentration of the other remains constant. This is an example of an alternate carbon flow pathway containing metabolic intermediates that may potentially have a detrimental effect on cells. The activity of the methylglyoxal pathway when measured as a proportion of glucose consumption in this study far exceeds any previously reported. This highlights the potential importance of “non‐primary” metabolisms to long lifespan mammalian fermentation practices. Biotechnol. Bioeng. 2010;107: 182–189. © 2010 Wiley Periodicals, Inc.  相似文献   

9.
A metabolic shift from lactate production (LP) to net lactate consumption (LC) phenotype was observed in certain Chinese hamster ovary (CHO) cell lines during the implementation of a new chemically defined medium (CDM) formulation for antibody production. In addition, this metabolic shift typically leads to process performance improvements in cell growth, productivity, process robustness, and scalability. In our previous studies, a correlation between a key media component, copper, and this lactate metabolism shift was observed. To further investigate this phenomenon, two complementary studies were conducted. In the first study, a single cell line was cultivated in two media that only differed in their copper concentrations, yet were known to generate an LP or LC phenotype with that cell line. In the second study, two different cell lines, which were known to possess inherently different lactate metabolic characteristics, were cultivated in the same medium with a high level of copper; one cell line produced lactate throughout the duration of the culture, and the other consumed lactate after an initial period of LP. Cell pellet and supernatant samples from both studies were collected at regular time intervals, and their metabolite profiles were investigated. The primary finding from the metabolic analysis was that the cells in LP conditions exhibited a less efficient energy metabolism, with glucose primarily being converted into pyruvate, sorbitol, lactate, and other glycolytic intermediates. This decrease in energy efficiency may be due to an inability of pyruvate and acetyl-CoA to progress into the TCA cycle. The lack of progression into the TCA cycle or overflow metabolism in the LP phenotype resulted in the inadequate supply of ATP for the cells. As a consequence, the glycolysis pathway remained the major source of ATP, which in turn, resulted in continuous LP throughout the culture. In addition, the accumulation of free fatty acids was observed; this was thought to be a result of phospholipid catabolism that was being used to supplement the energy produced through glycolysis in order to meet the needs of LP cells. A thorough review of the metabolic profiles indicated that the lactate metabolic shift could be related to the oxidative metabolic capacity of cells.  相似文献   

10.
Chinese hamster ovary cells (CHO) have been extensively utilized as the production platform for therapeutic proteins including monoclonal antibodies in pharmaceutical industry. For early development, it would be advantageous to rapidly produce large amounts of protein in the same cell line; therefore, development of a CHO transient transfection platform with high protein expression level is highly desirable. Here, we describe the development of such a platform in CHO cells. Polyethylenimine (PEI) was used as the transfection reagent. Different media were screened for the best transfection and expression performance, and UltraCHO was chosen as the best performer. DMSO and lithium acetate (LiAc) were discovered to improve CHO transient transfection expression levels significantly. A 14‐day fed‐batch process was successfully developed to further increase production yield. With an optimized transient transfection process, we were able to express monoclonal antibody (Mab) in CHO cells at a high level, averaging 80 mg/L. The process was successfully scaled up to 10 L working volume in a 20 L wave bioreactor. As expected, the Mabs had similar glycosylation patterns in comparison to the Mabs produced from a stably transfected CHO cell line, while in contrast Mabs expressed transiently from HEK293EBNA cells differed. Biotechnol. Bioeng. 2009;103: 542–551. © 2009 Wiley Periodicals, Inc.  相似文献   

11.
Protein glycation is a non-enzymatic glycosylation that can occur to proteins in the human body, and it is implicated in the pathogenesis of multiple chronic diseases. Glycation can also occur to recombinant antibodies during cell culture, which generates structural heterogeneity in the product. In a previous study, we discovered unusually high levels of glycation (>50%) in a recombinant monoclonal antibody (rhuMAb) produced by CHO cells. Prior to that discovery, we had not encountered such high levels of glycation in other in-house therapeutic antibodies. Our goal here is to develop cell culture strategies to decrease rhuMAb glycation in a reliable, reproducible, and scalable manner. Because glycation is a post-translational chemical reaction between a reducing sugar and a protein amine group, we hypothesized that lowering the concentration of glucose--the only source of reducing sugar in our fed-batch cultures--would lower the extent of rhuMAb glycation. When we decreased the supply of glucose to bioreactors from bolus nutrient and glucose feeds, rhuMAb glycation decreased to below 20% at both 2-L and 400-L scales. When we maintained glucose concentrations at lower levels in bioreactors with continuous feeds, we could further decrease rhuMAb glycation levels to below 10%. These results show that we can control glycation of secreted proteins by controlling the glucose concentration in the cell culture. In addition, our data suggest that rhuMAb glycation occurring during the cell culture process may be approximated as a second-order chemical reaction that is first order with respect to both glucose and non-glycated rhuMAb. The basic principles of this glycation model should apply to other recombinant proteins secreted during cell culture.  相似文献   

12.
The culture levels of glucose and CO(2) have been reported to independently have important influences on mammalian cell processes. In this work the combined effects of glucose limitation and CO(2) partial pressure (pCO(2)) on monoclonal antibody (IgG) producing Chinese Hamster Ovary cells were investigated in a perfusion reactor operated with controlled cell specific medium feed rate, pH and osmolality. Under high glucose conditions (14.3 +/- 0.8 mM), the apparent growth rate decreased (from 0.021 to 0.009 h(-1)) as the pCO(2) increased to approximately 220 mmHg, while the cell specific IgG productivity was almost unchanged. The lactate yield from glucose was not affected by pCO(2) up to approximately 220 mmHg and glucose was mainly converted to lactate. A feed medium modification from high (33 mM) to low (6 mM) glucose resulted in <0.1 mM glucose in the culture. As a result of apparently shifting metabolism towards the conversion of pyruvate to CO(2), both the ratio of lactate to glucose and the alanine production rate were lowered (1.51-1.14 and 17.7-0.56 nmol/10(6) cells h, respectively). Interestingly, when the pCO(2) was increased to approximately 140 mmHg, limiting glucose resulted in 1.7-fold higher growth rates, compared to high glucose conditions. However, at approximately 220 mmHg pCO(2) this beneficial effect of glucose limitation on these CHO cells was lost as the growth rate dropped dramatically to 0.008 h(-1) and the IgG productivity was lowered by 15% (P < 0.01) relative to the high glucose condition. The IgG galactosylation increased under glucose- limited compared to high-glucose conditions.  相似文献   

13.
Growth and phycocyanin production in batch and fed-batch cultures of the microalga Galdieria sulphuraria 074G, which was grown heterotrophically in darkness on glucose, fructose, sucrose, and sugar beet molasses, was investigated. In batch cultures, specific growth rates and yields of biomass dry weight on the pure sugars were 1.08-1.15 day-1 and 0.48-0.50 g g-1, respectively. They were slightly higher when molasses was the carbon source. Cellular phycocyanin contents during the exponential growth phase were 3-4 mg g-1 in dry weight. G. sulphuraria was able to tolerate concentrations of glucose and fructose of up to 166 g L-1 (0.9 M) and an ammonium sulfate concentration of 22 g L-1 (0.17 M) without negative effects on the specific growth rate. When the total concentration of dissolved substances in the growth medium exceeded 1-2 M, growth was completely inhibited. In carbon-limited fed-batch cultures, biomass dry weight concentrations of 80-120 g L-1 were obtained while phycocyanin accumulated to concentrations between 250 and 400 mg L-1. These results demonstrate that G. sulphuraria is well suited for growth in heterotrophic cultures at very high cell densities, and that such cultures produce significant amounts of phycocyanin. Furthermore, the productivity of phycocyanin in the heterotrophic fed-batch cultures of G. sulphuraria was higher than is attained in outdoor cultures of Spirulina platensis, where phycocyanin is presently obtained.  相似文献   

14.
15.
《MABS-AUSTIN》2013,5(8):1502-1514
ABSTRACT

Although process intensification by continuous operation has been successfully applied in the chemical industry, the biopharmaceutical industry primarily uses fed-batch, rather than continuous or perfusion methods, to produce stable monoclonal antibodies (mAbs) from Chinese hamster ovary (CHO) cells. Conventional fed-batch bioreactors may start with an inoculation viable cell density (VCD) of ~0.5 × 106 cells/mL. Increasing the inoculation VCD in the fed-batch production bioreactor (referred to as N stage bioreactor) to 2–10 × 106 cells/mL by introducing perfusion operation or process intensification at the seed step (N-1 step) prior to the production bioreactor has recently been used because it increases manufacturing output by shortening cell culture production duration. In this study, we report that increasing the inoculation VCD significantly improved the final titer in fed-batch production within the same 14-day duration for 3 mAbs produced by 3 CHO GS cell lines. We also report that other non-perfusion methods at the N-1 step using either fed batch or batch mode with enriched culture medium can similarly achieve high N-1 final VCD of 22–34 × 106 cells/mL. These non-perfusion N-1 seeds supported inoculation of subsequent production fed-batch production bioreactors at increased inoculation VCD of 3–6 × 106 cells/mL, where these achieved titer and product quality attributes comparable to those inoculated using the perfusion N-1 seeds demonstrated in both 5-L bioreactors, as well as scaled up to 500-L and 1000-L N-stage bioreactors. To operate the N-1 step using batch mode, enrichment of the basal medium was critical at both the N-1 and subsequent intensified fed-batch production steps. The non-perfusion N-1 methodologies reported here are much simpler alternatives in operation for process development, process characterization, and large-scale commercial manufacturing compared to perfusion N-1 seeds that require perfusion equipment, as well as preparation and storage vessels to accommodate large volumes of perfusion media. Although only 3 stable mAbs produced by CHO cell cultures are used in this study, the basic principles of the non-perfusion N-1 seed strategies for shortening seed train and production culture duration or improving titer should be applicable to other protein production by different mammalian cells and other hosts at any scale biologics facilities.  相似文献   

16.
Mycoplasma contamination events in biomanufacturing facilities can result in loss of production and costly cleanups. Mycoplasma may survive in mammalian cell cultures with only subtle changes to the culture and may penetrate the 0.2 µm filters often used in the primary clarification of harvested cell culture fluid. Culture cell-based and indicator cell-based assays that are used to detect mycoplasma are highly sensitive but can take up to 28 days to complete and cannot be used for real-time decision making during the biomanufacturing process. To support real-time measurements of mycoplasma contamination, there is a push to explore nucleic acid testing. However, cell-based methods measure growth or colony forming units and nucleic acid testing measures genome copy number; this has led to ambiguity regarding how to compare the sensitivity of the methods. In addition, the high risk of conducting experiments wherein one deliberately spikes mycoplasma into bioreactors has dissuaded commercial groups from performing studies to explore the multiple variables associated with the upstream effects of a mycoplasma contamination in a manufacturing setting. Here we studied the ability of Mycoplasma arginini to persist in a single-use, perfusion rocking bioreactor system containing a Chinese hamster ovary (CHO) DG44 cell line expressing a model monoclonal immunoglobulin G1 (IgG1) antibody. We examined M. arginini growth and detection by culture methods, as well as the effects of M. arginini on mammalian cell health, metabolism, and productivity. We compared process parameters and controls normally measured in bioreactors including dissolved oxygen, gas mix, and base addition to maintain pH, to examine parameter changes as potential indicators of contamination. Our work showed that M. arginini affects CHO cell growth profile, viability, nutrient consumption, oxygen use, and waste production at varying timepoints after M. arginini introduction to the culture. Importantly, how the M. arginini contamination impacts the CHO cells is influenced by the concentration of CHO cells and rate of perfusion at the time of M. arginini spike. Careful evaluation of dissolved oxygen, pH control parameters, ammonia, and arginine over time may be used to indicate mycoplasma contamination in CHO cell cultures in a bioreactor before a read-out from a traditional method.  相似文献   

17.
Understanding the cellular responses caused by metabolic stress is crucial for the design of robust fed-batch bioprocesses that maximize the expression of recombinant proteins. Chinese hamster ovary cells were investigated in chemically defined, serum-free cultures yielding 10(7) cells/mL and up to 500 mg/L recombinant tissue-plasminogen activator (t-PA). Upon glutamine depletion increased autophagosome formation and autophagic flux were observed, along with decreased proliferation and high viability. Higher lysosomal levels correlated with decreased productivity. Chemical inhibition of autophagy with 3-methyl adenine (3-MA) increased the t-PA yield by 2.8-fold. Autophagy-related MAP1LC3 and LAMP2 mRNA levels increased continuously in all cultures. Analysis of protein quality revealed that 3-MA treatment did not alter glycan antennarity while increasing fucosylation, galactosylation, and sialylation. Taken together, these findings indicate that inhibition of autophagy can considerably increase the yield of biotechnology fed-batch processes, without compromising the glycosylation capacity of cells. Monitoring or genetic engineering of autophagy provides novel avenues to improve the performance of cell culture-based recombinant protein production.  相似文献   

18.
Industrial CHO cell cultures run under fed‐batch conditions are required to be controlled in particular ranges of glucose, while glucose is constantly consumed and must be replenished by a feed. The most appropriate feeding rate is ideally stoichiometric and adaptive in nature to balance the dynamically changing rate of glucose consumption. However, high errors in biomass and glucose estimation as well as limited knowledge of the true metabolic state challenge the control strategy. In this contribution, we take these errors into account and simulate the output with uncertainty trajectories in silico in order to control glucose concentration. Other than many control strategies, which require parameter estimation, our assumptions are founded on two pillars: (i) first principles and (ii) prior knowledge about the variability of fed‐batch CHO cell culture. The algorithm was exposed to an in‐silico Design of Experiments (DoE), in which variations of parameters were changed simultaneously, such as clone‐specific behavior, precision of equipment and desired control range used. The results demonstrate that our method achieved the target of holding the glucose concentration within an acceptable range. A robust and sufficient level of control could be demonstrated even with high errors for biomass or metabolic state estimation. In a time where blockbuster drugs are queuing up for time slots of their production, this transferable control strategy that is independent of tedious establishment runs may be a decisive advantage for rapid implementation during technology transfer and scale up and decrease in campaign change over time. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:317–336, 2017  相似文献   

19.
A highly productive chemically defined fed-batch process was developed to maximize titer and volumetric productivity for Chinese hamster ovary cell-based recombinant protein manufacturing. Two cell lines producing a recombinant antibody (cell line A) and an Fc-fusion protein (cell line B) were used for development. Both processes achieved product titers of 10 g/L on day 18 under chemically defined conditions. For cell line B, the use of plant derived hydrolysates combined with the optimized chemically defined medium increased the titer to 13 g/L. Volumetric productivities were increased from a base line of about 200 mg/L/d to about 500 mg/L/d under chemically defined conditions and as high as 700 mg/L/d with cell line B using plant derived hydrolysates. Peak cell densities reached greater than 20E6 vc/mL, and cell viabilities were maintained above 80% on day 18 without the use of antiapoptotic genes or temperature shift. A rapid compound screening method was developed to effectively test positive factors within 72 h. Peak volumetric oxygen uptake rates (OUR) more than tripled from the baseline condition. Oxygen demand continued to increase after maximum cell density was reached with a maximal OUR of 3.7 mmol/L/h. The new process format was scaled up and verified at 100 L pilot scale using reactor equipment of similar configuration as used at manufacturing scale.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号