首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
S100A8/A9 activate key genes and pathways in colon tumor progression   总被引:1,自引:0,他引:1  
The tumor microenvironment plays an important role in modulating tumor progression. Earlier, we showed that S100A8/A9 proteins secreted by myeloid-derived suppressor cells (MDSC) present within tumors and metastatic sites promote an autocrine pathway for accumulation of MDSC. In a mouse model of colitis-associated colon cancer, we also showed that S100A8/A9-positive cells accumulate in all regions of dysplasia and adenoma. Here we present evidence that S100A8/A9 interact with RAGE and carboxylated glycans on colon tumor cells and promote activation of MAPK and NF-κB signaling pathways. Comparison of gene expression profiles of S100A8/A9-activated colon tumor cells versus unactivated cells led us to identify a small cohort of genes upregulated in activated cells, including Cxcl1, Ccl5 and Ccl7, Slc39a10, Lcn2, Zc3h12a, Enpp2, and other genes, whose products promote leukocyte recruitment, angiogenesis, tumor migration, wound healing, and formation of premetastatic niches in distal metastatic organs. Consistent with this observation, in murine colon tumor models we found that chemokines were upregulated in tumors, and elevated in sera of tumor-bearing wild-type mice. Mice lacking S100A9 showed significantly reduced tumor incidence, growth and metastasis, reduced chemokine levels, and reduced infiltration of CD11b(+)Gr1(+) cells within tumors and premetastatic organs. Studies using bone marrow chimeric mice revealed that S100A8/A9 expression on myeloid cells is essential for development of colon tumors. Our results thus reveal a novel role for myeloid-derived S100A8/A9 in activating specific downstream genes associated with tumorigenesis and in promoting tumor growth and metastasis.  相似文献   

2.
3.
Sphingosine 1-phosphate (S1P) is a bioactive sphingolipid with a variety of biological activities.It is generated from the conversion of ceramide to sphingosine by ceramidase and the subsequent conversion of sphingosine to S1P,which is catalyzed by sphingosine kinases.Through increasing its intracellular levels by sphingolipid metabolism and binding to its cell surface receptors,S1P regulates several physiological and pathological processes,including cell proliferation,migration,angiogenesis and autophagy.These processes are responsible for tumor growth,metastasis and invasion and promote tumor survival.Since ceramide and S1P have distinct functions in regulating in cell fate decision,the balance between the ceramide/sphingosine/S1P rheostat becomes a potent therapeutic target for cancer cells.Herein,we summarize our current understanding of S1P signaling on tumorigenesis and its potential as a target for cancer therapy.  相似文献   

4.
Cancer cells possess metabolic properties that are different from those of benign cells. p21, encoded by CDKN1A gene, also named p21Cip1/WAF1, was first identified as a cyclin-dependent kinase regulator that suppresses cell cycle G1/S phase and retinoblastoma protein phosphorylation. CDKN1A (p21) acts as the downstream target gene of TP53 (p53), and its expression is induced by wild-type p53 and it is not associated with mutant p53. p21 has been characterized as a vital regulator that involves multiple cell functions, including G1/S cell cycle progression, cell growth, DNA damage, and cell stemness. In 1994, p21 was found as a tumor suppressor in brain, lung and colon cancer by targeting p53 and was associated with tumorigenesis and metastasis. Notably, p21 plays a significant role in tumor development through p53-dependent and p53-independent pathways. In addition, expression of p21 is closely related to the resting state or terminal differentiation of cells. p21 is also associated with cancer stem cells and acts as a biomarker for such cells. In cancer therapy, given the importance of p21 in regulating the G1/S and G2 check points, it is not surprising that p21 is implicated in response to many cancer treatments and p21 promotes the effect of oncolytic virotherapy.  相似文献   

5.
Chen Y  Lin MC  Wang H  Chan CY  Jiang L  Ngai SM  Yu J  He ML  Shaw PC  Yew DT  Sung JJ  Kung HF 《Proteomics》2007,7(17):3097-3104
Enhancer of zeste homolog 2 (EZH2) is suggested to be a potential therapeutic target and a diagnostic marker for cancer. Our previous study also showed the critical role of EZH2 in hepatocellular carcinoma (HCC) tumorigenesis. The present study is aimed at revealing the comprehensive downstream pathways of EZH2 by functional proteomic profiling. Lentivirus mediated RNA interference (RNAi) was employed to knockdown EZH2 in HCC cells. The 2-DE was employed to compare the expression profile difference between parental and EZH2-knockdown HCC cells. In total, 28 spots were differentially expressed during EZH2 inhibition. Among all, 18 proteins were identified by PMF with MALDI-TOF MS. Western blotting further validated upregulation of 60S acidic ribosomal protein P0 (L10E), and downregulation of two proteins with EZH2 inhibition: stathmin1 and probable protein disulfide isomerase (PDI) ER-60 precursor (ERp57). Moreover, L10E was downregulated with overexpression of EZH2 in hepatocytes, and L10E reversed the effect of EZH2 on cell proliferation, suggesting it a downstream target of EZH2. The comprehensive and comparative analyses of proteins associated with EZH2 could further our understanding on the downstream signal cascade of EZH2 leading to tumorigenesis.  相似文献   

6.
Aberrant beta-catenin-TCF target gene activation plays a key role in colorectal cancer, both in the initiation stage and during invasion and metastasis. We identified the neuronal cell adhesion molecule L1, as a target gene of beta-catenin-TCF signaling in colorectal cancer cells. L1 expression was high in sparse cultures and coregulated with ADAM10, a metalloprotease involved in cleaving and shedding L1's extracellular domain. L1 expression conferred increased cell motility, growth in low serum, transformation and tumorigenesis, whereas its suppression in colon cancer cells decreased motility. L1 was exclusively localized in the invasive front of human colorectal tumors together with ADAM10. The transmembrane localization and shedding of L1 by metalloproteases could be useful for detection and as target for colon cancer therapy.  相似文献   

7.
8.
S100P: a novel therapeutic target for cancer   总被引:1,自引:0,他引:1  
S100P expression is described in many different cancers, and its expression is associated with drug resistance, metastasis, and poor clinical outcome. S100P is member of the S100 family of small calcium-binding proteins that have been reported to have either intracellular or extracellular functions, or both. Extracellular S100P can bind with the receptor for advanced glycation end products (RAGE) and activate cellular signaling. Through RAGE, S100P has been shown to mediate tumor growth, drug resistance, and metastasis. S100P is specifically expressed in cancer cells in the adult. Therefore, S100P is a useful marker for differentiating cancer cells from normal cells, and can aid in the diagnosis of cancer by cytological examination. The expression of S100P in cancer cells has been related to hypomethylation of the gene. Multiple studies have confirmed the beneficial effects of blocking S100P/RAGE in cancer cells, and different blockers are being developed including small molecules and antagonist peptides. This review summarizes the role and significance of S100P in different cancers.  相似文献   

9.
10.
Tumor metastasis is the leading cause of death in cancer patients. Identifying metastatic biomarkers in tumor cells would help cancer diagnoses and the development of therapeutic targets. Yes-associated protein (YAP) plays an important role in organ development and has gained much attention in tumorigenesis. However, the role of YAP and the underlying mechanism in tumor metastasis of colorectal cancer (CRC) is still unclear. In this study, we generated metastatic 116-LM cells from the HCT116 CRC cell line. We found that the capacity for tumor aggressiveness was elevated in 116-LM cells and identified that YAP and its mRNA level were upregulated in 116-LM cells. Moreover, expression of YAP was found to correlate with epithelial-mesenchymal transition (EMT) marker expressions, whereas suppression of YAP decreased EMT marker expressions and impeded tumor migration and invasion. Additionally, upregulation of YAP was identified in colon cancer patients, and it was correlated with EMT gene expressions. Furthermore, we identified LBH589, a histone deacetylase inhibitor, that was capable of inhibiting tumor growth and aggressiveness in both HCT116 and 116-LM cells. LBH589 potentially inhibited YAP and its mRNA expression, accompanied by diminished expressions of YAP downstream genes and EMT markers. Together, YAP plays a crucial role in aggressiveness and metastasis of CRC, and YAP may be an attractive therapeutic target.  相似文献   

11.
Muscarinic receptors (CHRM) are overexpressed in colon cancer. To explore a role for muscarinic receptor signaling in colon cancer metastasis, we used human H508 and HT29 colon cancer cells that coexpress epidermal growth factor (ERBB) and CHRM3 receptors. In a wound closure model, following 8-h incubation of H508 cells with 100 μM ACh we observed a threefold increase in cell migration indistinguishable from the actions of epidermal growth factor (EGF). Atropine blocked the actions of ACh but not of EGF. In SNU-C4 colon cancer cells that express ERBB but not CHRM, EGF caused a threefold increase in migration; ACh had no effect. ACh-induced cell migration was attenuated by chemical inhibitors of ERBB1 activation, by anti-ERBB1 antibody, and by inhibitors of ERK and phosphatidylinositol 3-kinase (PI3K) signaling. Consistent with matrix metalloproteinase-7 (MMP7)-mediated release of an ERBB1 ligand, heparin binding epidermal growth factor-like growth factor (HBEGF), ACh-induced migration was inhibited by an MMP inhibitor and by anti-MMP7 and -HBEGF antibodies. ACh-induced cell migration was blocked by inhibiting RhoA and ROCK, key proteins that interact with the actin cytoskeleton. ACh-induced RhoA activation was attenuated by agents that inhibit ERBB1, ERK, and PI3K activation. Collectively, these findings indicate that ACh-induced cell migration is mediated by MMP7-mediated release of HBEGF, an ERBB ligand that activates ERBB1 and downstream ERK and PI3K signaling. In a cell invasion model, ACh-induced HT29 cell invasion was blocked by atropine. In concert with previous observations, these findings indicate that muscarinic receptor signaling plays a key role in colon cancer cell proliferation, survival, migration, and invasion.  相似文献   

12.
13.
Wang W  Liu H  Wang S  Hao X  Li L 《Cell research》2011,21(5):730-740
The Wnt/β-catenin signaling pathway is a highly conserved pathway in organism evolution and regulates many biological processes. Aberrant activation of the Wnt/β-catenin signaling pathway is closely related to tumorigenesis. In order to identify potent small molecules to treat the over-activated Wnt signaling-mediated cancer, such as colon cancer, we established a mammalian cell line-based reporter gene screening system. The screen revealed a diterpenoid derivative, 15-oxospiramilactone (NC043) that inhibits Wnt3a or LiCl-stimulated Top-flash reporter activity in HEK293T cells and growth of colon cancer cells, SW480 and Caco-2. Treatment of SW480 cells with NC043 led to decreases in the mRNA and/or protein expression of Wnt target genes Axin2, Cyclin D1 and Survivin , as well as decreases in the protein levels of Cdc25c and Cdc2. NC043 did not affect the cytosol-nuclear distribution and protein level of soluble β-catenin, but decreased β-catenin/TCF4 association in SW480 cells. Moreover, NC043 inhibited anchorage-independent growth and xenograft tumorigenesis of SW480 cells. Collectively these results demonstrate that NC043 is a novel small molecule that inhibits canonical Wnt signaling downstream of β-catenin stability and may be a potential compound for treating colorectal cancer.  相似文献   

14.
15.
目的:通过检测S100A4基因在结肠癌细胞系及结肠癌组织中的表达,探讨其与结肠癌的关系。方法:运用RT-PCR法检测不同结肠癌细胞系中S100A4基因的表达情况;通过原位杂交和免疫组化方法检测61例结肠癌标本中S100A4基因的表达。结果:结肠癌细胞系Lovo及HT29均有S100A4基因表达。S100A4蛋白和RNA在结肠癌中表达率分别为36.1%和34.4%,而在正常结肠组织中不表达(p〈0.05)。临床分期晚比临床分期早的患者S100A4表达明显增高(p〈0.05);有淋巴结转移的患者比无淋巴结转移的患者S100A4表达明显增高(p〈0.05)。此外,S100A4表达还与肿瘤大小,病理学分级,肉眼分型等相关。结论:结肠癌中S100A4基因表达增高,而且与肿瘤的侵袭及转移密切相关,是判断结肠癌生物学行为及预后的有价值的指标。  相似文献   

16.
17.
内质网应激是细胞内广泛存在的一种应激反应。研究表明,内质网应激与肿瘤的发生发展密切相关。针对内质网应激及其相应信号通路进行肿瘤的预防或治疗受到了广泛关注。IRE1(inositol-requiring enzyme 1)通路是内质网应激诱发的最保守的信号通路。研究证实,IRE1及其主要的下游效应分子剪切型X 盒结合蛋白1与肿瘤进展密切相关。本文对IRE1通路与肿瘤发生发展、血管新生、肿瘤转移、肿瘤耐药性和恶性程度的相关性进行了阐述,同时分析了IRE1在不同肿瘤样本中的突变率、突变类型与病人存活状态的关系。作为肿瘤治疗的有效靶点,针对IRE1通路的调控能够有效延缓肿瘤的发生发展。  相似文献   

18.
The bioactive lipid sphingosine 1-phosphate (S1P) is implicated in many pivotal processes for the physiological and pathological actions via activating five types of G-protein-coupled S1P receptors (S1PR1‐5). The role of S1P in renal cell carcinoma (RCC) and its receptor subtype specific mediating mechanism are poorly studied. So we focus on the regulatory role of S1P in RCC progression and the receptor subtypes involved in S1P-induced actions, intending to further clarify a novel therapeutic target for RCC. Analysis of The Cancer Genome Atlas (TCGA) databases showed that the patients with high expression of S1PR3 had significantly worse overall than with low expression. We further demonstrated that S1P could promote proliferation, migration, and epithelial-mesenchymal transition (EMT) of renal cancer cells in vitro, and the actions were enhanced with the increase of S1PR3 expression. Meanwhile, the results in animal experiments also showed that S1PR3 could accelerate tumorigenesis and metastasis of RCC. Our study also clarified the mechanism for S1P induced cell proliferation is mediated by S1PR3/Gi/p38/Akt/p65/cyclin D1-CDK4 pathway and the main pathway for migration is S1PR3/Gi/q/ERK/p38/p65. In addition, S1PR3 was involved in epidermal growth factor (EGF)-induced actions by enhancing protein expression, not by transactivation of epidermal growth factor receptor (EGFR). These results also further supported our conclusion that the carcinogenic role of S1P/S1PR3 axis. Thus, our findings provide that S1PR3 may be a promising small molecular therapeutic target for S1PR3 expressed cancers.  相似文献   

19.
20.
LIV-1, a zinc transporter, is an effector molecule downstream from soluble growth factors. This protein has been shown to promote epithelial-to-mesenchymal transition (EMT) in human pancreatic, breast, and prostate cancer cells. Despite the implication of LIV-1 in cancer growth and metastasis, there has been no study to determine the role of LIV-1 in prostate cancer progression. Moreover, there was no clear delineation of the molecular mechanism underlying LIV-1 function in cancer cells. In the present communication, we found increased LIV-1 expression in benign, PIN, primary and bone metastatic human prostate cancer. We characterized the mechanism by which LIV-1 drives human prostate cancer EMT in an androgen-refractory prostate cancer cells (ARCaP) prostate cancer bone metastasis model. LIV-1, when overexpressed in ARCaP(E) (derivative cells of ARCaP with epithelial phenotype) cells, promoted EMT irreversibly. LIV-1 overexpressed ARCaP(E) cells had elevated levels of HB-EGF and matrix metalloproteinase (MMP) 2 and MMP 9 proteolytic enzyme activities, without affecting intracellular zinc concentration. The activation of MMPs resulted in the shedding of heparin binding-epidermal growth factor (HB-EGF) from ARCaP(E) cells that elicited constitutive epidermal growth factor receptor (EGFR) phosphorylation and its downstream extracellular signal regulated kinase (ERK) signaling. These results suggest that LIV-1 is involved in prostate cancer progression as an intracellular target of growth factor receptor signaling which promoted EMT and cancer metastasis. LIV-1 could be an attractive therapeutic target for the eradication of pre-existing human prostate cancer and bone and soft tissue metastases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号