首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Family GH19 chitinases have been recognized as important in the plant defense against fungal pathogens. However, their substrate-recognition mechanism is still unknown. We report here the first resonance assignment of NMR spectrum of a GH19 chitinase from moss, Bryum coronatum (BcChi-A). The backbone signals were nearly completely assigned, and the secondary structure was estimated based on the chemical shift values. The addition of the chitin dimer to the enzyme solution perturbed the chemical shifts of HSQC resonances of the amino acid residues forming the putative substrate-binding cleft. Further NMR analysis of the ligand binding to BcChi-A will improve understanding of the substrate-recognition mechanism of GH-19 enzymes.  相似文献   

2.
3.
细菌几丁质酶结构、功能及分子设计的研究进展   总被引:1,自引:0,他引:1       下载免费PDF全文
几丁质是仅次于纤维素的第二大天然多糖,由N-乙酰-D-氨基葡萄糖聚合而成,具有重要的应用价值。自然界中几丁质可被细菌高效降解。细菌可分泌多种几丁质降解酶类,主要分布在GH18家族和GH19家族中。细菌中几丁质降解酶基因存在明显的基因扩增及多结构域组合现象,不同家族、不同作用模式的几丁质酶系协同作用打破复杂的抗降解屏障,完成结晶几丁质的高效降解。因此,深入分析细菌几丁质酶结构与功能,对几丁质高效降解与高值转化应用具有重要意义。本文介绍了细菌几丁质酶的分类、结构特点与催化作用机制;总结了不同细菌胞外几丁质降解酶系的协同降解模式;针对几丁质酶家族分子改造的研究进展,展望了以结构生物信息学及大数据深度学习为基础的蛋白质工程设计策略在今后改造中的作用,为几丁质酶的设计与理性改造提供新的视角与思路。  相似文献   

4.
Chitinases help plants defend themselves against fungal attack, and play roles in other processes, including development. The catalytic modules of most plant chitinases belong to glycoside hydrolase family 19. We report here x-ray structures of such a module from a Norway spruce enzyme, the first for any family 19 class IV chitinase. The bi-lobed structure has a wide cleft lined by conserved residues; the most interesting for catalysis are Glu113, the proton donor, and Glu122, believed to be a general base that activate a catalytic water molecule. Comparisons to class I and II enzymes show that loop deletions in the class IV proteins make the catalytic cleft shorter and wider; from modeling studies, it is predicted that only three N-acetylglucosamine-binding subsites exist in class IV. Further, the structural comparisons suggest that the family 19 enzymes become more closed on substrate binding. Attempts to solve the structure of the complete protein including the associated chitin-binding module failed, however, modeling studies based on close relatives indicate that the binding module recognizes at most three N-acetylglucosamine units. The combined results suggest that the class IV enzymes are optimized for shorter substrates than the class I and II enzymes, or alternatively, that they are better suited for action on substrates where only small regions of chitin chain are accessible. Intact spruce chitinase is shown to possess antifungal activity, which requires the binding module; removing this module had no effect on measured chitinase activity.  相似文献   

5.
Two chitinases were purified from Rhizopus oligosporus, a filamentous fungus belonging to the class Zygomycetes, and designated chitinase I and chitinase II. Their N-terminal amino acid sequences were determined, and two synthetic oligonucleotide probes corresponding to these amino acid sequences were synthesized. Southern blot analyses of the total genomic DNA from R. oligosporus with these oligonucleotides as probes indicated that one of the two genes encoding these two chitinases was contained in a 2.9-kb EcoRI fragment and in a 3.6-kb HindIII fragment and that the other one was contained in a 2.9-kb EcoRI fragment and in a 11.5-kb HindIII fragment. Two DNA fragments were isolated from the phage bank of R. oligosporus genomic DNA with the synthetic oligonucleotides as probes. The restriction enzyme analyses of these fragments coincided with the Southern blot analyses described above and the amino acid sequences deduced from their nucleotide sequences contained those identical to the determined N-terminal amino acid sequences of the purified chitinases, indicating that each of these fragments contained a gene encoding chitinase (designated chi 1 and chi 2, encoding chitinase I and II, respectively). The deduced amino acid sequences of these two genes had domain structures similar to that of the published sequence of chitinase of Saccharomyces cerevisiae, except that they had an additional C-terminal domain. Furthermore, there were significant differences between the molecular weights experimentally determined with the two purified enzymes and those deduced from the nucleotide sequences for both genes. Analysis of the N- and C-terminal amino acid sequences of both chitinases and comparison of them with the amino acid sequences deduced from the nucleotide sequences revealed posttranslational processing not only at the N-terminal signal sequences but also at the C-terminal domains. It is concluded that these chitinases are synthesized with pre- and prosequences in addition to the mature enzyme sequences and that the prosequences are located at the C terminal.  相似文献   

6.
《Carbohydrate research》1987,165(1):93-104
Chitinases have been purified from melon plants infected with the fungal pathogen Colletotrichum lagenarium. Six different chitinases have been separated through a 4-step purification procedure. The two major enzymes, chitinases I and II, have been purified to homogeneity, and have molecular weights of 29,000 and 34,000, basic pI values of 8.4 and 10.0, and similar amino acid compositions. Chitinase I acts as an endo-enzyme, and chitinase II as an exo-enzyme, hydrolysing preferentially short oligosaccharide substrates.  相似文献   

7.
Glycoside hydrolase family 19 chitinases (EC 3.2.1.14) widely distributed in plants, bacteria and viruses catalyse the hydrolysis of chitin and play a major role in plant defense mechanisms and development. Rice possesses several classes of chitinase, out of which a single structure of class I has been reported in PDB to date. In the present study an attempt was made to gain more insight into the structure, function and evolution of class I, II and IV chitinases of GH family 19 from rice. The three-dimensional structures of chitinases were modelled and validated based on available X-ray crystal structures. The structural study revealed that they are highly α-helical and bilobed in nature. These enzymes are single or multi domain and multi-functional in which chitin-binding domain (CBD) and catalytic domain (CatD) are present in class I and IV whereas class II lacks CBD. The CatD possesses a catalytic triad which is thought to be involved in catalytic process. Loop III, which is common in all three classes of chitinases, reflects that it may play a significant role in their function. Our study also confirms that the absence and presence of different loops in GH family 19 of rice may be responsible for various sized products. Molecular phylogeny revealed chitinases in monocotyledons and dicotyledons differed from each other forming two different clusters and may have evolved differentially. More structural study of this enzyme from different plants is required to enhance the knowledge of catalytic mechanism and substrate binding.  相似文献   

8.
The complete amino acid sequence of acidic chitinase from yam (Dioscorea japonica) aerial tubers was determined. The protein is composed of a single polypeptide chain of 250 amino acid residues and has a calculated molecular mass of 27,890 Da. There is an NH2-terminal domain, a hinge region, and a main structure, typical for class I chitinases (Shinshi, H., Neuhaus, J.-M., Ryals, J., and Meins, F., Jr. (1990) Plant Mol. Biol. 14, 357-368). We have obtained the first evidence for an acidic class I chitinase. Comparison with sequences of other class I chitinases revealed approximately 40% sequence similarity, a value lower than that for other class I chitinases (70-80%). We assume that there is a local conformational change in the molecule; cysteine residues that probably form disulfide bonds are completely conserved, with the exception of Cys-178. The difference in structure between this chitinase and other basic class I chitinases suggests that acidic and basic isoforms should be grouped into subclasses; this protein is an ethylene- or a pathogen-independent chitinase produced by a gene that is inherent in the tuber.  相似文献   

9.
To characterize the acidic endochitinase EP3, able to rescue somatic embryos of the carrot cell linets11, the enzyme was purified from the medium of wild-type suspension cultures. Peptide sequences, deduced amino acid sequences of corresponding PCR-generated cDNA clones, serological relation and biochemical properties showed that there were at least five closely related chitinases, four of which could be identified as class IV EP3 chitinases with an apparent size of 30 kDa. Two other proteins were identified as a serologically related class I acidic chitinase (DcChitI) of 34 kDa, and a serologically unrelated 29 kDa class II acidic chitinase (DcChitII), respectively. Additional cDNA sequences, Western and Southern analysis showed the presence of a least two, but possibly more, highly homologous class IV EP3 genes in the carrot genome. Two class IV EP3 chitinases were tested and found to be able to increase the number ofts11 globular embryos formed under non-permissive conditions. One of the class IV EP3 chitinases as well as the class I chitinase DcChitI promoted the transition from globular to heart-stagets11 embryos. The class II endochitinase and a heterologous class IV chitinase from sugar-beet were not active onts11. This suggests that there are differences in the specificity of chitinases in terms of their effect on plant somatic embryos.  相似文献   

10.
Complementary DNA clones encoding acidic and basic isoforms of tomato chitinases were isolated fromCladosporium fulvum-infected leaves. The clones were sequenced and found to encode the 30 kDa basic intracellular and the 26 and 27 kDa acidic extracellular tomato chitinases previously purified (M.H.A.J. Joostenet al., in preparation). A fourth truncated cDNA which appears to encode an extracellular chitinase with 82% amino acid similarity to the 30 kDa intracellular chitinase was also isolated. Characterization of the clones revealed that the 30 kDa basic intracellular protein is a class I chitinase and that the 26 and 27 kDa acidic extracellular proteins which have 85% peptide sequence similarity are class II chitinases. The characterized cDNA clones represent four from a family of at least six tomato chitinases. Southern blot analysis indicated that, with the exception of the 30 kDa basic intracellular chitinase, the tomato chitinases are encoded by one or two genes. Northern blot analysis showed that the mRNA encoding the 26 kDa acidic extracellular chitinase is induced more rapidly during an incompatibleC. fulvum-tomato interaction than during a compatible interaction. This difference in timing of mRNA induction was not observed for the 30 kDa basic intracellular chitinase.  相似文献   

11.
Genomic DNA for a class IV chitinase was cloned from yam (Dioscorea opposita Thunb) leaves and sequenced. The deduced amino acid sequence shows 50 to 59% identity to class IV chitinases from other plants. The yam chitinase, however, has an additional sequence of 8 amino acids (a C-terminal extension) following the cysteine that was reported as the last amino acid for other class IV chitinases; this extension is perhaps involved in subcellular localization. A homology model based on the structure of a class II chitinase from barley was used as an aid to interpreting the available data. The analysis suggests that the class IV enzyme recognizes an even shorter segment of the substrate than class I or II enzymes. This observation might help to explain why class IV enzymes are better suited to attack against pathogen cell walls.  相似文献   

12.
Genomic DNA for a class IV chitinase was cloned from yam (Dioscorea opposita Thunb) leaves and sequenced. The deduced amino acid sequence shows 50 to 59% identity to class IV chitinases from other plants. The yam chitinase, however, has an additional sequence of 8 amino acids (a C-terminal extension) following the cysteine that was reported as the last amino acid for other class IV chitinases; this extension is perhaps involved in subcellular localization. A homology model based on the structure of a class II chitinase from barley was used as an aid to interpreting the available data. The analysis suggests that the class IV enzyme recognizes an even shorter segment of the substrate than class I or II enzymes. This observation might help to explain why class IV enzymes are better suited to attack against pathogen cell walls.  相似文献   

13.
14.
We have identified a chitinase with antifungal activity in the bulbs of the plant Urginea indica(Indian squill) and purified it about 26-fold. The purified preparation contained a Mr 29 kDa protein that was an active growth inhibitor of the fungal pathogens Fusarium oxysporum and Rhizoctonia solani in an in vitro assay. Amino acid sequence analysis of the Mr 29 kDa protein revealed it to be highly homologous to the family 19 glycoside hydrolases, which are known to possess chitinase activity. The U. indica chitinase lacked a cysteine-rich N-terminal domain (characteristic of class I chitinases) and contained a conserved motif indicative of the signature 1 of family 19 glycoside hydrolases. It shared a approximately 70% sequence identity with the 26 kDa endochitinase of Hordeum vulgare, a typical class II chitinase of family 19. The five cysteines in the partial sequence of the Mr 29 kDa chitinase were found to be identical in location to five of the seven cysteines present in the catalytic domain of the H. vulgare enzyme. The molecular weight, the lack of an N-terminal cysteine-rich sequence, and the striking identity to the H. vulgare endochitinase suggest that the Mr 29 kDa U. indica protein is a putative class II chitinase. The antifungal activity is presumably mediated through the chitinolytic activity of the Mr 29 kDa protein.  相似文献   

15.
16.
The discovery of GH (Glycoside Hydrolase) 19 chitinases in Streptomyces sp. raises the possibility of the presence of these proteins in other bacterial species, since they were initially thought to be confined to higher plants. The present study mainly concentrates on the phylogenetic distribution and homology conservation in GH19 family chitinases. Extensive database searches are performed to identify the presence of GH19 family chitinases in the three major super kingdoms of life. Multiple sequence alignment of all the identified GH19 chitinase family members resulted in the identification of globally conserved residues. We further identified conserved sequence motifs across the major sub groups within the family. Estimation of evolutionary distance between the various bacterial and plant chitinases are carried out to better understand the pattern of evolution. Our study also supports the horizontal gene transfer theory, which states that GH19 chitinase genes are transferred from higher plants to bacteria. Further, the present study sheds light on the phylogenetic distribution and identifies unique sequence signatures that define GH19 chitinase family of proteins. The identified motifs could be used as markers to delineate uncharacterized GH19 family chitinases. The estimation of evolutionary distance between chitinase identified in plants and bacteria shows that the flowering plants are more related to chitinase in actinobacteria than that of identified in purple bacteria. We propose a model to elucidate the natural history of GH19 family chitinases.  相似文献   

17.
An approximately 60-kDa protein with chitinase activity was purified from the pancreas of the toad Bufo japonicus. Its specific activity was 4.5 times higher than that of a commercial bacterial chitinase in fragmenting crab shell chitin, and its optimal pH was approximately 6.0. A cDNA clone encoding a protein consisting of 488 amino acid residues, including part of the peptide sequence determined from the isolated protein, was obtained from a toad pancreas cDNA library. The deduced amino acid sequence indicated that the protein contained regions with high homology to those present in chitinases from different species, with the amino acid residues for the chitinase activity and the chitin-binding ability being completely conserved. We designate the protein as toad pancreatic chitinase (tPCase). Northern blot analysis revealed the mRNA of this enzyme to be expressed exclusively in the pancreas. Toad PCase is the first amphibian chitinase to be identified as well as the first pancreatic chitinase identified in a vertebrate.  相似文献   

18.
A soybean chitinase which has an apparent molecular mass of 28 kDa by SDS-PAGE, and has chitinase specific activity of 133 units per mg protein at pH 5.2 and an apparent pI of 5.7, was purified from mature dry seeds. Based upon the selected part (the residue positions 10–17) of the determined N-terminal 38 amino acid sequence, a 23-mer degenerate oligonucleotide was synthesized and used for the PCR cloning of the chitinase cDNA. The resulting 1340 bp cDNA was comprised of a 5-untranslated region of 39 bases, a coding region corresponding to a 25 amino acid signal sequence, followed by a mature 308 amino acid sequence (calculated molecular mass 34269, calculated pI 4.7), and a 235 nucleotide 3-terminal untranslated region including 24 bases of the poly(A) tail. By comparing the deduced primary sequence with those of plant chitinases known to date, this enzyme was more than 50% identical to every class III acidic chitinase, but has no significant similarity to other families of chitinases. The comparison also showed that the C-termininal region of this chitinase is markedly extended, by at least 31 residues. Northern blot analysis demonstrated that this mRNA species is remarkably transcribed from the early stage until the late middle stage of seed development, whilst it is hardly expressed in the leaves and the stems of soybean. Spatial and temporal expression of this single gene imply that this class III chitinase is mainly devoted to the seed defense, not only in development but also in dormancy of soybean seed. This is the first reported isolation and cDNA cloning of a class III acidic endochitinase from seeds. According to the chitinase nomenclature we propose that this enzyme would be classified into a new class of chitinase PR-8 family, together with a Sesbania homologue.  相似文献   

19.
Different isoforms of chitinases and [beta]-1,3-glucanases of tobacco (Nicotiana tabacum cv Samsun NN) were tested for their antifungal activities. The class I, vacuolar chitinase and [beta]-1,3-glucanase isoforms were the most active against Fusarium solani germlings, resulting in lysis of the hyphal tips and in growth inhibition. In additon, we observed that the class I chitinase and [beta]-1,3-glucanase acted synergistically. The class II isoforms of the two hydrolases exhibited no antifungal activity. However, the class II chitinases showed limited growth inhibitory activity in combination with higher amounts of class I [beta]-1,3-glucanase. The class II [beta]-1,3-glucanases showed no inhibitory activity in any combination. In transgenic tobacco plants producing modified forms of either a class I chitinase or a class I [beta]-1,3-glucanase, or both, these proteins were targeted extracellularly. Both modified proteins lack their C-terminal propeptide, which functions as a vacuolar targeting signal. Extracellular targeting had no effect on the specific activities of the chitinase and [beta]-1,3-glucanase enzymes. Furthermore, the extracellular washing fluid (EF) from leaves of transgenic plants expressing either of the secreted class I enzymes exhibited antifungal activity on F. solani germlings in vitro comparable to that of the purified vacuolar class I proteins. Mixing EF fractions from these plants revealed synergism in inhibitory activity against F. solani; the mixed fractions exhibited inhibitory activity similar to that of EF from plants expressing both secreted enzymes.  相似文献   

20.
KA-prep, a culture filtrate of Bacillus circulans KA-304 grown on a cell-wall preparation of Schizophyllum commune, has an activity to form protoplasts from S. commune mycelia, and a combination of alpha-1,3-glucanase and chitinase I, isolated from KA-prep, brings about the protoplast-forming activity. The gene of chitinase I was cloned from B. circulans KA-304 into pGEM-T Easy vector. The gene consists of 1,239 nucleotides, which encodes 413 amino acids including a putative signal peptide (24 amino acid residues). The molecular weight of 40,510, calculated depending on the open reading frame without the putative signal peptide, coincided with the apparent molecular weight of 41,000 of purified chitinase I estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The C-terminal domain of the deduced amino acid sequence showed high similarity to that of family 19 chitinases of actinomycetes and other organisms, indicating that chitinase I is the first example of family 19 chitinase in Bacillus species. Recombinant chitinase I without the putative signal peptide was expressed in Escherichia coli Rosetta-gami B (DE 3). The properties of the purified recombinant enzyme were almost the same as those of chitinase I purified from KA-prep, and showed the protoplast-forming activity when it was combined with alpha-1,3-glucanase from KA-prep. Recombinant chitinase I as well as the native enzyme inhibited hyphal extension of Trichoderma reesei.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号