首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A simple procedure is described for determining the location of phosphorylation sites in phosphopeptides. The method employs measurement of 32P-labeled inorganic phosphate release during Edman degradation cycles using a gas-phase sequencer. The procedure is based on extracting peptides and inorganic phosphate from portions of the sample filter at strategic cycles in the sequence analysis followed by determination of the relative amounts of phosphate and phosphopeptide. One advantage of this technique is the very high recovery of the phosphate associated with the peptide, 80-97% in this study. In the course of this work, it was also found that phosphoserine residues themselves caused reduced efficiency of the Edman degradation as compared with unesterified serine residues. The present procedure has the merit of being simple and easy to apply.  相似文献   

2.
3.
Recent large scale phosphoproteomics studies have helped identify many phosphorylation sites of both membrane and soluble proteins. In most cases the relevance of specific sites has yet to be established whereas in a small number of cases their potency in modulating protein activity is evident. With the increasing amount of data it is becoming clear that phosphosites are often conserved within protein families, pointing to generic regulatory mechanisms. In addition, such mechanisms may be conserved across species. In this addendum evidence is presented for these phenomena occurring in rice and Arabidopsis.Key words: Arabidopsis, kinase, phosphoproteomics, rice  相似文献   

4.
3-Phosphoinositide-dependent protein kinase-1 (PDK1) plays a central role in signal transduction pathways that activate phosphoinositide 3-kinase. Despite its key role as an upstream activator of enzymes such as protein kinase B and p70 ribosomal protein S6 kinase, the regulatory mechanisms controlling PDK1 activity are poorly understood. PDK1 has been reported to be constitutively active in resting cells and not further activated by growth factor stimulation (Casamayor, A., Morrice, N. A., and Alessi, D. R. (1999) Biochem. J. 342, 287-292). Here, we report that PDK1 becomes tyrosine-phosphorylated and translocates to the plasma membrane in response to pervanadate and insulin. Following pervanadate treatment, PDK1 kinase activity increased 1.5- to 3-fold whereas the activity of PDK1 associated with the plasma membrane increased approximately 6-fold. The activity of PDK1 localized to the plasma membrane was also increased by insulin treatment. Three tyrosine phosphorylation sites of PDK1 (Tyr-9 and Tyr-373/376) were identified using in vivo labeling and mass spectrometry. Using site-directed mutants, we show that, although phosphorylation on Tyr-373/376 is important for PDK1 activity, phosphorylation on Tyr-9 has no effect on the activity of the kinase. Both of these residues can be phosphorylated by v-Src tyrosine kinase in vitro, and co-expression of v-Src leads to tyrosine phosphorylation and activation of PDK1. Thus, these data suggest that PDK1 activity is regulated by reversible phosphorylation, possibly by a member of the Src kinase family.  相似文献   

5.
The primary sequence of the microtubule-associated protein tau contains multiple repeats of the sequence -X-Ser/Thr-Pro-X-, the consensus sequence for the proline-directed protein kinase (p34cdc2/p58cyclin A). When phosphorylated by proline-directed protein kinase in vitro, tau was found to incorporate up to 4.4 mol of phosphate/mol of protein. Isoelectric focusing of the tryptic phosphopeptides demonstrated the presence of five distinct peptides with pI values of approximately 6.9, 6.5, 5.6-5.9, 4.7, and 3.6. Mapping of the tryptic phosphopeptides by high performance liquid chromatography techniques demonstrated three distinct peaks. Data from gas phase sequencing, amino acid analysis, and phosphoamino acid analysis suggest that proline-directed protein kinase phosphorylates tau at four sites. Each site demonstrates the presence of a proline residue on the carboxyl-terminal side of the phosphorylated residue. Two phosphorylation sites are located adjacent to the three-repeat microtubule-binding domain that has been found to be required for the in vivo co-localization of tau protein to microtubules. Two other putative phosphorylation sites are located within the identified epitope of the monoclonal antibody Tau-1. Phosphorylation of these sites altered the immunoreactivity of tau to Tau-1 antibody. Since the neuronal microtubule-associated protein tau is multiply phosphorylated in Alzheimer's disease, and Tau-1 immunoreactivity is similarly reduced in neurofibrillary tangles and enhanced after dephosphorylation, phosphorylation at one or more of these sites may correlate with abnormally phosphorylated sites in tau protein in Alzheimer's disease.  相似文献   

6.
Both phosphorylation and O-GlcNAc glycosylation posttranslationally modify microtubule-associated Tau proteins. Whereas the hyperphosphorylation of these proteins that occurs in Alzheimer's disease is well characterized, little is known about the O-GlcNAc glycosylation. The present study demonstrates that a balance exists between phosphorylation and O-GlcNAc glycosylation of Tau proteins, and furthermore that a dysfunction of this balance correlates with reduced nuclear localization.The affinity of Tau proteins for WGA lectin, together with evidence from [3H]-galactose transfer and analysis of beta-eliminated products, demonstrated the presence of O-GlcNAc residues on both cytosolic and nuclear Tau proteins. In addition, our data indicated the existence of a balance between phosphorylation and O-GlcNAc glycosylation events. Indeed, as demonstrated by 2D-electrophoresis and Western blotting, O-GlcNAc residues were mainly located on the less phosphorylated Tau 441 variants, whereas the more phosphorylated forms were devoid of O-GlcNAc residues. Furthermore, the Tau protein hyperphosphorylation induced by cellular okadaic acid treatment was correlated with reduced incorporation of O-GlcNAc residues into Tau proteins and with diminished Tau transfer into the nucleus. Hence, this paper establishes a direct relationship between O-GlcNAc glycosylation, phosphorylation and cellular localization of Tau proteins.  相似文献   

7.
Tec family protein tyrosine kinases (TFKs) play a central role in hematopoietic cellular signaling. Initial activation takes place through specific tyrosine phosphorylation situated in the activation loop. Further activation occurs within the SH3 domain via a transphosphorylation mechanism, which for Bruton's tyrosine kinase (Btk) affects tyrosine 223. We found that TFKs phosphorylate preferentially their own SH3 domains, but differentially phosphorylate other member family SH3 domains, whereas non-related SH3 domains are not phosphorylated. We demonstrate that SH3 domains are good and reliable substrates. We observe that transphosphorylation is selective not only for SH3 domains, but also for dual SH3SH2 domains. However, the dual domain is phosphorylated more effectively. The major phosphorylation sites were identified as conserved tyrosines, for Itk Y180 and for Bmx Y215, both sites being homologous to the Y223 site in Btk. There is, however, one exception because the Tec-SH3 domain is phosphorylated at a non-homologous site, nevertheless a conserved tyrosine, Y206. Consistent with these findings, the 3D structures for SH3 domains point out that these phosphorylated tyrosines are located on the ligand-binding surface. Because a number of Tec family kinases are coexpressed in cells, it is possible that they could regulate the activity of each other through transphosphorylation.  相似文献   

8.
Post-translational modifications are used by cells to control the functions of proteins. Phosducin-like protein (PhLP) is a regulator of G-protein signaling that is post-translationally modified via phosphorylation. Phosphorylation of PhLP initiates its degradation by the 26S proteasome in serum-stimulated cells. In this report, we show that PhLP is phosphorylated in serum-stimulated Chinese hamster ovary (CHO) cells. Through the use of tandem mass spectrometry (MS/MS), the specific amino acids phosphorylated can be identified. A PhLP-myc-His construct was purified and phosphorylated by serum-stimulated CHO extract. The resulting protein was digested with trypsin and the peptides were identified by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Automated collison-induced dissociation data acquisition was compared with LC-MS/MS of manually chosen parents. In general, LC-MS/MS is superior for parent ions chosen manually, with the notable exception that automated fragmentation employs dynamic collision energy, which can result in higher quality collison-induced dissociation. Using the LC-MS/MS methods, four phosphorylation sites on PhLP were positively identified.  相似文献   

9.
The survival motor neuron (SMN) protein plays an essential role in the assembly of uridine-rich small nuclear ribonuclear protein complexes. Phosphorylation of SMN can regulate its function, stability, and sub-cellular localization. This study shows that protein kinase A (PKA) phosphorylates SMN both in vitro and in vivo. Bioinformatic analysis predicts 12 potential PKA phosphorylation sites in human SMN. Mass spectrometric analysis of a tryptic digest of SMN after PKA phosphorylation identified five distinct phosphorylation sites in SMN (serines 4, 5, 8, 187 and threonine 85). Mutagenesis of this subset of PKA-phosphorylated sites in SMN affects association of SMN with Gemin2 and Gemin8. This result indicates that phosphorylation of SMN by PKA may play a role in regulation of the in vivo function of SMN.  相似文献   

10.
As an extension of our previous reports that cardiac and skeletal muscle troponin I (Tn-I) and troponin T (Tn-T) are excellent substrates for protein kinase C (PKC) (Katoh, N., Wise, B. C., and Kuo, J. F. (1983) Biochem. J. 209, 189-195; Mazzei, G. J., and Kuo, J. F. (1984) Biochem. J. 218, 361-369), we have now determined that PKC phosphorylated serine 43 (and/or serine 45), serine 78, and threonine 144 in the free Tn-I subunit and threonine 190, threonine 199, and threonine 280 in the free Tn-T subunit of bovine cardiac troponin. PKC appeared to phosphorylate the same sites of the subunits present in the form of the troponin complex, as indicated by the similarity in the two-dimensional phosphopeptide maps. Although some of the phosphorylation sites were shared by other classes of protein kinases, PKC exhibited a distinct substrate specificity. It was also noted that phosphorylated serine and threonine residues in Tn-I and Tn-T had neighboring basic amino acid residues separated by 1 or 2 other residues both at the amino and carboxyl termini, in agreement with the conclusion of House et al. (House, C., Wettenhall, R. E. H., and Kemp, B. E. (1987) J. Biol. Chem. 262, 772-777) based upon their studies on other substrate proteins. Several peptides having sequences around the phosphorylating sites have been synthesized. The phosphorylation experiments indicated that these peptides were substrates for PKC, and their relative substrate activity (determined by the ratios of Vmax/Km) compared with other proteins, in descending order, was Tn-I = Tn-I(134-154) greater than Tn-T much greater than histone H1 greater than Tn-I(33-35) approximately Tn-T(268-284) greater than Tn-T(179-198) approximately Tn-T(191-209). It is suggested that PKC phosphorylation of Tn-I and Tn-T could be biologically significant in terms of possible modifications in interactions among the individual contractile protein components as well as the Ca2+ sensitivity and activity of actomyosin ATPase.  相似文献   

11.
To determine the phosphate binding sites in hen egg white riboflavin binding protein (RBP), a highly phosphorylated peptide, which consisted of 23 amino acid residues including eight phosphoserines, was isolated from the tryptic digest of reduced and carboxymethylated RBP. The conditions of the beta-elimination-addition reaction to convert phosphoserine residues in the peptide to cysteic acids, S-methylcysteines, alanines, and beta-methylaminoalanines (DL-alpha-amino-beta-methylamino propionic acid) were examined. These converted peptides were purified by HPLC and subjected to Edman degradation. The results of Edman degradation indicated that the S-methylcysteine derivative of the peptide gave the most satisfactory result for determining the phosphate binding sites in the peptide. The phosphorylation sites of the peptide determined by the method mentioned above are as follows: His182-Leu-Leu-Ser185-Glu-Ser(P)-Ser(P)-Glu-Glu190-Ser (P)-Ser(P)-Ser(P)-Met-Ser195(P)-Ser(P)-Ser(P)-Glu-Glu-. These studies indicated that the conversion of phosphoserines in phosphoproteins to S-methylcysteines followed by Edman analysis was a useful method for the elucidation of the phosphorylation sites in phosphopeptides.  相似文献   

12.
Mammalian mitochondrial ribosomes synthesize 13 proteins that are essential for oxidative phosphorylation. In addition to their role in protein synthesis, some of the mitochondrial ribosomal proteins have acquired functions in other cellular processes such as apoptosis. Death-associated protein 3 (DAP3), also referred to as mitochondrial ribosomal protein S29 (MRP-S29), is a GTP-binding pro-apoptotic protein located in the small subunit of the ribosome. Previous studies have shown that phosphorylation is one of the most likely regulatory mechanisms for DAP3 function in apoptosis and may be in protein synthesis; however, no phosphorylation sites were identified. In this study, we have investigated the phosphorylation status of ribosomal DAP3 and mapped the phosphorylation sites by tandem mass spectrometry. Mitochondrial ribosomal DAP3 is phosphorylated at Ser215 or Thr216, Ser220, Ser251 or Ser252, and Ser280. In addition, phosphorylation of recombinant DAP3 by Protein kinase A and Protein kinase Cdelta at residues that are endogenously phosphorylated in ribosomal DAP3 suggests both of these kinases as potential candidates responsible for the in vivo phosphorylation of DAP3 in mammalian mitochondria. Interestingly, the majority of the phosphorylation sites detected in our study are clustered around the highly conserved GTP-binding motifs, speculating on the significance of these residues on protein conformation and activity. Site-directed mutagenesis studies on selected phosphorylation sites were performed to determine the effect of phosphorylation on cell proliferation and PARP cleavage as indication of caspase activation. Overall, our findings suggest DAP3, a mitochondrial ribosomal small subunit protein, is a novel phosphorylated target.  相似文献   

13.
14.
The glucocorticoid receptor (GR) and the progestin receptor (PR) bind specifically to a variety of DNA sequences, glucocorticoid/progestin response elements (GRE/PRE), located in the proximity of responsive gene promoters. Using the isolated recombinant GR DNA-binding domain (DBD), it has recently been shown that GR interacts with the GRE/PRE, a 15-basepair partially palindromic consensus sequence, as a dimer. In this study an investigation into the GR-GRE/PRE and PR-GRE/PRE interaction has been performed using missing base contact analysis with the tyrosine aminotransferase GREII (TATII) and recombinant GR DBD as well as a fusion protein consisting of the PR DBD fused to Staph. aureus protein-A. GR and PR had identical base contact points, localized within two consecutive major grooves, binding to the same face of the DNA. Ethylation interference was also performed on the GR DBD-TATII interaction. The contact points with the backbone phosphate groups flank the contacts within the major groove for each of the two half-sites. Knowledge of the contact points within the DNA sequence together with the three-dimensional structure of the protein enables modelling of the protein-DNA interaction.  相似文献   

15.
The functions of the neuronal microtubule-associated protein Tau in the central nervous system are regulated by manifold posttranslational modifications at more than 50 sites. Tau in healthy neurons carries multiple phosphate groups, mostly in its microtubule assembly domain. Elevated phosphorylation and aggregation of Tau are widely considered pathological hallmarks in Alzheimer’s disease (AD) and other tauopathies, triggering the quest for Tau posttranslational modifications in the disease context. However, the phosphorylation patterns of physiological and pathological Tau are surprisingly similar and heterogenous, making it difficult to identify specific modifications as therapeutic targets and biomarkers for AD. We present a concise summary of - and view on - important previous and recent advances in Tau phosphorylation analysis in the context of AD.  相似文献   

16.
The Na+/I- symporter (NIS)-mediated iodide uptake activity is the basis for targeted radioiodide ablation of thyroid cancers. Although it has been shown that NIS protein is phosphorylated, neither the in vivo phosphorylation sites nor their functional significance has been reported. In this study, Ser-43, Thr-49, Ser-227, Thr-577, and Ser-581 were identified as in vivo NIS phosphorylation sites by mass spectrometry. Kinetic analysis of NIS mutants of the corresponding phosphorylated amino acid residue indicated that the velocity of iodide transport of NIS is modulated by the phosphorylation status of Ser-43 and Ser-581. We also found that the phosphorylation status of Thr-577 may be important for NIS protein stability and that the phosphorylation status of Ser-227 is functionally silent. Thr-49 appears to be critical for proper local structure/conformation of NIS because mutation of Thr-49 to alanine, aspartic acid, or serine results in reduced NIS activity without alterations in total or cell surface NIS protein levels. Taken together, we showed that NIS protein levels and functional activity could be modulated by phosphorylation through distinct mechanisms.  相似文献   

17.
A major goal of the Alliance for Cellular Signaling is to elaborate the components of signal transduction networks in model cell systems, including murine B lymphocytes. Due to the importance of protein phosphorylation in many aspects of cell signaling, the initial efforts have focused on the identification of phosphorylated proteins. In order to identify serine- and threonine-phosphorylated proteins on a proteome-wide basis, WEHI-231 cells were treated with calyculin A, a serine/threonine phosphatase inhibitor, to induce high levels of protein phosphorylation. Proteins were extracted from whole-cell lysates and digested with trypsin. Phosphorylated peptides were then enriched using immobilized metal affinity chromatography and identified by liquid chromatography-tandem mass spectrometry. A total of 107 proteins and 193 phosphorylation sites were identified using these methods. Forty-two of these proteins have been reported to be phosphorylated, but only some of them have been detected in B cells. Fifty-four of the identified proteins were not previously known to be phosphorylated. The remaining 11 phosphoproteins have previously only been characterized as novel cDNA or genomic sequences. Many of the identified proteins were phosphorylated at multiple sites. The proteins identified in this study significantly expand the repertoire of proteins known to be phosphorylated in B cells. The number of newly identified phosphoproteins indicates that B cell signaling pathways utilizing protein phosphorylation are likely to be more complex than previously appreciated.  相似文献   

18.
The PKD1-encoded protein, "polycystin-1", has a large N-terminal extracellular portion, multiple transmembrane domains, and a short intracellular C-terminal tail with four tyrosine residues and two putative sites for serine phosphorylation. Its function in kidney development and autosomal dominant polycystic kidney disease (ADPKD) is still unknown. We have subcloned the cDNA encoding the polycystin-1 C-terminal domain (PKD1-CTD) into a prokaryotic expression vector, and site-directed mutagenesis was performed to target the four tyrosine residues and four serine residues in two putative phosphorylation sites. In vitro phosphorylation assays were conducted on both wild type and mutant PKD1-CTD fusion proteins. It was found that the wild type PKD1-CTD and all mutant fusion proteins, except S4251G/S4252G, could be phosphorylated by lysates from cultured normal human renal collecting tubule (NHCT) cells, as well as by commercially purified cAMP-dependent protein kinase (PKA). The phosphorylation of the PKD1-CTD fusion protein by NHCT lysates was greatly enhanced by cAMP and its analog 8-Br-cAMP, and inhibited by the specific PKA inhibitors PKI(6-22) and H-89. Activators and inhibitors of protein kinase C (PKC) had no effects on the phosphorylation of the PKD1-CTD fusion protein. Using commercially purified pp60(c-src) (c-src) it was also shown that the PKD1-CTD fusion protein could be phosphorylated by c-src in vitro, and that this phosphorylation could be abolished by a mutation Y4237F. By comparing the amino acid sequence at 4249-4253 (RRSSR) with the consensus sequence for PKA phosphorylation (RRXSX), we suggest that the serine residue at 4252 is the target of phosphorylation by a cAMP-dependent protein kinase in NHCT cell lysates. In addition, we suggest that Y4237 might be phosphorylated by c-src in living cells.  相似文献   

19.
The objective of the present investigation was to identify the substrate binding site(s) within the yeast mitochondrial citrate transport protein (CTP). Our strategy involved kinetically characterizing 30 single-Cys CTP mutants that we had previously constructed based on their hypothesized importance in the structure-based mechanism of this carrier. As part of these studies, a modified transport assay was developed that permitted, for the first time, the accurate determination of K(m) values that were elevated >100-fold compared with the Cys-less control value. We identified 10 single-Cys CTP mutants that displayed sharply elevated K(m) values (i.e. 5 to >300-fold). Each of these mutants displayed V(max) values that were reduced by > or = 98% and resultant catalytic efficiencies that were reduced by > or = 99.9%. Importantly, superposition of this functional data onto the three-dimensional homology-modeled CTP structure, which we previously had developed, revealed that nine of these ten residues form two topographically distinct clusters. Additional modeling showed that: (i) each cluster is capable of forming numerous hydrogen bonds with citrate and (ii) the two clusters are sufficiently distant from one another such that citrate is unlikely to interact with all of these residues at the same time. We deduced from these findings that the CTP contains at least two citrate binding sites per monomer, which are located at increasing depths within the translocation pathway. The identification of these sites, combined with an initial assessment of the citrate-amino acid side-chain interactions that may occur at these sites, substantially extends our understanding of CTP functioning at the molecular level.  相似文献   

20.
Myelin basic protein of rabbit brain (Mr = 18,200) was initially freed of the bulk of the nonphosphorylated species (mainly component 1) by Cm-cellulose chromatography at high pH. The remainder of the protein was subjected to peptic digestion at pH 6.00, which resulted in specific, essentially complete cleavage at several bonds (Phe-44--Phe-45, Phe-87--Phe-88, Leu-109--Ser-110, and Leu-151--Phe-152) and partial cleavage at the Tyr-14--Leu-15 bond. Gel filtration of the digest through Sephadex G-25 (fine) yielded three fractions, the first containing primarily peptides 1-44 and 45-87, the second peptides 15-44, 88-109, and 110-151, and the third peptides 1-14 and 152-168. Each fraction was chromatographed on Cm-cellulose at pH 8.2, and the resulting subfractions and partially purified peptides were analyzed for phosphoserine and phosphothreonine. Materials containing significant amounts of the phosphoamino acids were subsequently chromatographed on Cm-cellulose at pH 4.65, and the analyses for phosphoserine and phosphothreonine were repeated. The resulting purified peptic phosphopeptides were identified by amino acid analysis and tryptic peptide mapping. Comparison of the maps with those of the unphosphorylated counterparts located the tryptic phosphopeptides. These were recovered and their identities were established by amino acid analysis. In those cases where the phosphopeptide contained 2 Ser residues, the position of the phosphoserine was established by aminopeptidase M digestion. Five phosphorylation sites were found: Ser-7, Ser-56, Thr-96, Ser-113, and Ser-163. Only a small fraction of these sites was phosphorylated in the total basic protein, with values ranging from about 2 (ser-113) to 6% (Thr-96). With the possible exception of Ser-56, these sites are not the ones that have been reported to be phosphorylated in vitro by cyclic AMP-dependent protein kinase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号