首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This report describes several key aspects of a novel form of RecA-independent homologous recombination. We found that synthetic single-stranded DNA oligonucleotides (oligos) introduced into bacteria by transformation can site-specifically recombine with bacterial chromosomes in the absence of any additional phage-encoded functions. Oligo recombination was tested in four genera of Gram-negative bacteria and in all cases evidence for recombination was apparent. The experiments presented here were designed with an eye towards learning to use oligo recombination in order to bootstrap identification and development of phage-encoded recombination systems for recombineering in a wide range of bacteria. The results show that oligo concentration and sequence have the greatest influence on recombination frequency, while oligo length was less important. Apart from the utility of oligo recombination, these findings also provide insights regarding the details of recombination mediated by phage-encoded functions. Establishing that oligos can recombine with bacterial genomes provides a link to similar observations of oligo recombination in archaea and eukaryotes suggesting the possibility that this process is evolutionary conserved.  相似文献   

2.
Synthetic single‐strand oligonucleotides (oligos) with homology to genomic DNA have proved to be highly effective for constructing designed mutations in targeted genomes, a process referred to as recombineering. The cellular functions important for this type of homologous recombination have yet to be determined. Towards this end, we have identified Escherichia coli functions that process the recombining oligo and affect bacteriophage λ Red‐mediated oligo recombination. To determine the nature of oligo processing during recombination, each oligo contained multiple nucleotide changes: a single base change allowing recombinant selection, and silent changes serving as genetic markers to determine the extent of oligo processing during the recombination. Such oligos were often not incorporated into the host chromosome intact; many were partially degraded in the process of recombination. The position and number of these silent nucleotide changes within the oligo strongly affect both oligo processing and recombination frequency. Exonucleases, especially those associated with DNA Polymerases I and III, affect inheritance of the silent nucleotide changes in the oligos. We demonstrate for the first time that the major DNA polymerases (Pol I and Pol III) and DNA ligase are directly involved with oligo recombination.  相似文献   

3.
4.
Recombination with single-strand DNA oligonucleotides (oligos) in Escherichia coli is an efficient and rapid way to modify replicons in vivo. The generation of nucleotide alteration by oligo recombination provides novel assays for studying cellular processes. Single-strand exonucleases inhibit oligo recombination, and recombination is increased by mutating all four known exonucleases. Increasing oligo concentration or adding nonspecific carrier oligo titrates out the exonucleases. In a model for oligo recombination, λ Beta protein anneals the oligo to complementary single-strand DNA at the replication fork. Mismatches are created, and the methyl-directed mismatch repair (MMR) system acts to eliminate the mismatches inhibiting recombination. Three ways to evade MMR through oligo design include, in addition to the desired change (1) a C·C mismatch  6 bp from that change; (2) four or more adjacent mismatches; or (3) mismatches at four or more consecutive wobble positions. The latter proves useful for making high-frequency changes that alter only the target amino acid sequence and even allows modification of essential genes. Efficient uptake of DNA is important for oligo-mediated recombination. Uptake of oligos or plasmids is dependent on media and is 10,000-fold reduced for cells grown in minimal versus rich medium. Genomewide engineering technologies utilizing recombineering will benefit from both optimized recombination frequencies and a greater understanding of how biological processes such as DNA replication and cell division impact recombinants formed at multiple chromosomal loci. Recombination events at multiple loci in individual cells are described here.  相似文献   

5.
p53-mediated DNA renaturation can mimic strand exchange.   总被引:1,自引:0,他引:1       下载免费PDF全文
The process of strand exchange is considered to be the hallmark of DNA recombination. Proteins known to carry out such exchange are believed to operate via one or the other of two mechanisms. RecA-like proteins promote the formation of a three-stranded or triplex synaptic intermediate in which strand exchange occurs, whereas other proteins would allow the coordinated exonucleolytic degradation of one strand in the duplex DNA and its replacement by an invading strand of similar sequence and polarity. In view of properties ascribed to it, we have attempted to determine whether p53 belongs to one or the other of these groups of proteins. The in vitro assay used relies on a double-stranded (ds) oligonucleotide (oligo 1+2) and a single-stranded (ss) oligonucleotide (oligo 3), part of which is complementary to oligo 1. The data collected suggest that, under the conditions of the assay, oligo 1+2 undergoes partial denaturation; p53 then catalyzes renaturation of oligo 1 with oligo 3, rather than true strand exchange. Since p53 is not known for being able to 'melt' DNA, it would seem unlikely that this protein would effect strand exchange in vivo without assistance from another, denaturing, protein.  相似文献   

6.
We have developed a novel and easily performed procedure for the targeted excision, cloning, and broad-host-range transfer of large bacterial genomic DNA segments. This procedure, called Vector-mediated excision and Capture (VEX-Capture), represents a new molecular tool for the convenient manipulation and exchange of large (20-40+ kb) bacterial genomic fragments. VEX-Capture utilizes lox/Cre-mediated site-specific recombination for excision of the targeted genomic segment and homologous recombination for cloning of the excised DNA section onto a self-transmissible, broad-host-range IncP plasmid. The "captured" genomic DNA segment can then be transferred to a wide variety of Gram-negative hosts for basic research and bioengineering purposes. To demonstrate the utility and function of VEX-Capture, we have excised and cloned three separate genomic islands from the Salmonella typhimurium chromosome ranging in size from 26.7 to 40.0 kb. To test the ability of these islands to be established in different bacterial hosts, we transferred them to six other Gram-negative species and monitored their establishment via phenotypic and molecular analysis. RT-PCR was used to assay the expression of selected S. typhimurium island genes in the different species. This analysis led to the discovery that an island-encoded master regulator of S. typhimurium virulence functions is expressed in a species-specific manner. Our results demonstrate the potential for VEX-Capture to be used as a convenient genetic technique for fundamental biological applications in a wide variety of bacterial species.  相似文献   

7.
8.
Cohan FM 《Genetica》2002,116(2-3):359-370
Like organisms from all other walks of life, bacteria are capable of sexual recombination. However, unlike most plants and animals, bacteria recombine only rarely, and when they do they are extremely promiscuous in their choice of sexual partners. There may be no absolute constraints on the evolutionary distances that can be traversed through recombination in the bacterial world, but interspecies recombination is reduced by a variety of factors, including ecological isolation, behavioral isolation, obstacles to DNA entry, restriction endonuclease activity, resistance to integration of divergent DNA sequences, reversal of recombination by mismatch repair, and functional incompatibility of recombined segments. Typically, individual bacterial species are genetically variable for most of these factors. Therefore, natural selection can modulate levels of sexual isolation, to increase the transfer of genes useful to the recipient while minimizing the transfer of harmful genes. Interspecies recombination is optimized when recombination involves short segments that are just long enough to transfer an adaptation, without co-transferring potentially harmful DNA flanking the adaptation. Natural selection has apparently acted to reduce sexual isolation between bacterial species. Evolution of sexual isolation is not a milestone toward speciation in bacteria, since bacterial recombination is too rare to oppose adaptive divergence between incipient species. Ironically, recombination between incipient bacterial species may actually foster the speciation process, by prohibiting one incipient species from out-competing the other to extinction. Interspecific recombination may also foster speciation by introducing novel gene loci from divergent species, allowing invasion of new niches.  相似文献   

9.
Adeno-associated virus (AAV) transduction initiates a signaling cascade that culminates in a transient DNA damage response. During this time, host DNA repair proteins convert the linear single-strand AAV genomes to double-strand circular monomers and concatemers in processes stimulated by the AAV inverted terminal repeats (ITRs). As the orientation of AAV genome concatemerization appears unbiased, the likelihood of concatemerization in a desired orientation is low (less than 1 in 6). Using a novel recombineering method, Oligo-Assisted AAV Genome Recombination (OAGR), this work demonstrates the ability to direct concatemerization specifically to a desired orientation in human cells. This was achieved by a single-strand DNA oligonucleotide (oligo) displaying homology to distinct AAV genomes capable of forming an intermolecular bridge for recombination. This DNA repair process results in concatemers with genomic junctions corresponding to the sequence of oligo homology. Furthermore, OAGR was restricted to single-strand, not duplexed, AAV genomes suggestive of replication-dependent recombination. Consistent with this process, OAGR demonstrated oligo polarity biases in all tested configurations except when a portion of the oligo targeted the ITR. This approach, in addition to being useful for the elucidation of intermolecular homologous recombination, may find eventual relevance for AAV mediated large gene therapy.  相似文献   

10.
Interspecies genetic exchange is an important evolutionary mechanism in bacteria. It allows rapid acquisition of novel functions by transmission of adaptive genes between related species. However, the frequency of homologous recombination between bacterial species decreases sharply with the extent of DNA sequence divergence between the donor and the recipient. In Bacillus and Escherichia, this sexual isolation has been shown to be an exponential function of sequence divergence. Here we demonstrate that sexual isolation in transformation between Streptococcus pneumoniae recipient strains and donor DNA from related strains and species follows the described exponential relationship. We show that the Hex mismatch repair system poses a significant barrier to recombination over the entire range of sequence divergence (0.6 to 27%) investigated. Although mismatch repair becomes partially saturated, it is responsible for 34% of the observed sexual isolation. This is greater than the role of mismatch repair in Bacillus but less than that in Escherichia. The remaining non-Hex-mediated barrier to recombination can be provided by a variety of mechanisms. We discuss the possible additional mechanisms of sexual isolation, in view of earlier findings from Bacillus, Escherichia, and Streptococcus.  相似文献   

11.
N Z Ehtesham  A Das  S E Hasnain 《Gene》1992,111(2):261-263
A synthetic oligodeoxyribonucleotide (oligo) containing crossover initiating hotspot-like sequences was designed on the assumption that hypervariability is partly due to the presence of molecular signals which promote recombination. This oligo, when used as a probe for human DNA fingerprinting, generated individual-specific DNA band patterns. The probability of two unrelated individuals having the same DNA band pattern, using this probe, was estimated to be 1.9 x 10(-13).  相似文献   

12.
Selection of oligonucleotide probes for protein coding sequences   总被引:7,自引:0,他引:7  
MOTIVATION: Large arrays of oligonucleotide probes have become popular tools for analyzing RNA expression. However to date most oligo collections contain poorly validated sequences or are biased toward untranslated regions (UTRs). Here we present a strategy for picking oligos for microarrays that focus on a design universe consisting exclusively of protein coding regions. We describe the constraints in oligo design that are imposed by this strategy, as well as a software tool that allows the strategy to be applied broadly. RESULT: In this work we sequentially apply a variety of simple filters to candidate sequences for oligo probes. The primary filter is a rejection of probes that contain contiguous identity with any other sequence in the sample universe that exceeds a pre-established threshold length. We find that rejection of oligos that contain 15 bases of perfect match with other sequences in the design universe is a feasible strategy for oligo selection for probe arrays designed to interrogate mammalian RNA populations. Filters to remove sequences with low complexity and predicted poor probe accessibility narrow the candidate probe space only slightly. Rejection based on global sequence alignment is performed as a secondary, rather than primary, test, leading to an algorithm that is computationally efficient. Splice isoforms pose unique challenges and we find that isoform prevalence will for the most part have to be determined by analysis of the patterns of hybridization of partially redundant oligonucleotides. AVAILABILITY: The oligo design program OligoPicker and its source code are freely available at our website.  相似文献   

13.
Two single-stranded nucleic acid binding proteins mCBP and mCTBP were identified by means of their binding to a potential recombination hotspot in LTRs of mouse retro-transposons. Both are nuclear proteins of 35 and 55 kDa respectively. mCBP binds preferentially to oligo dC, mCTBP to oligo dCdT. mCBP was purified and its cDNA was isolated and sequenced.  相似文献   

14.
The same evolutionary forces that cause diversification in sexual eukaryotes are expected to cause diversification in bacteria. However, in bacteria, the wider variety of mechanisms for gene exchange (or lack thereof) increases the range of expected diversity patterns compared to those of sexual organisms. Two parallel concepts for bacterial speciation have developed, based on ecological divergence or barriers to recombination in turn. Recent evidence from DNA sequence data shows that both processes can generate independently evolving groups that are equivalent to sexual species and that represent separate arenas within which recombination (when it occurs), selection and drift occur. It remains unclear, however, how often different processes act in concert to generate simple units of diversity, or whether a more complex model of diversity is required, specifying hierarchical levels at which different cohesive processes operate. We advocate an integrative approach that evaluates the effects of multiple evolutionary forces on diversity patterns. There is also great potential for laboratory studies of bacterial evolution that test evolutionary mechanisms inferred from population genetic analyses of multi-locus and genome sequence data.  相似文献   

15.
Helicobacter pylori is a genetically diverse bacterial species, owing in part to its natural competence for DNA uptake that facilitates recombination between strains. Inter-strain DNA recombination occurs during human infection and the H. pylori genome is in linkage equilibrium worldwide. Despite this high propensity for DNA exchange, little is known about the factors that limit the extent of recombination during natural transformation. Here, we identify restriction-modification (R-M) systems as a barrier to transformation with homeologous DNA and find that R-M systems and several components of the recombination machinery control integration length. Type II R-M systems, the nuclease nucT and resolvase ruvC reduced integration length whereas the helicase recG increased it. In addition, we characterized a new factor that promotes natural transformation in H. pylori, dprB. Although free recombination has been widely observed in H. pylori, our study suggests that this bacterium uses multiple systems to limit inter-strain recombination.  相似文献   

16.
How genomic diversity within bacterial populations originates and is maintained in the presence of frequent recombination is a central problem in understanding bacterial evolution. Natural populations of Borrelia burgdorferi, the bacterial agent of Lyme disease, consist of diverse genomic groups co-infecting single individual vertebrate hosts and tick vectors. To understand mechanisms of sympatric genome differentiation in B. burgdorferi, we sequenced and compared 23 genomes representing major genomic groups in North America and Europe. Linkage analysis of >13,500 single-nucleotide polymorphisms revealed pervasive horizontal DNA exchanges. Although three times more frequent than point mutation, recombination is localized and weakly affects genome-wide linkage disequilibrium. We show by computer simulations that, while enhancing population fitness, recombination constrains neutral and adaptive divergence among sympatric genomes through periodic selective sweeps. In contrast, simulations of frequency-dependent selection with recombination produced the observed pattern of a large number of sympatric genomic groups associated with major sequence variations at the selected locus. We conclude that negative frequency-dependent selection targeting a small number of surface-antigen loci (ospC in particular) sufficiently explains the maintenance of sympatric genome diversity in B. burgdorferi without adaptive divergence. We suggest that pervasive recombination makes it less likely for local B. burgdorferi genomic groups to achieve host specialization. B. burgdorferi genomic groups in the northeastern United States are thus best viewed as constituting a single bacterial species, whose generalist nature is a key to its rapid spread and human virulence.  相似文献   

17.
The variable portions of antigen receptor genes are assembled from component gene segments by a site-specific recombination reaction known as V(D)J recombination. The RAG1 and RAG2 proteins are the critical lymphoid cell-specific components of the recombination enzymatic machinery and are responsible for site-specific DNA recognition and cleavage. Previous studies had defined a minimal, recombinationally active core region of murine RAG1 consisting of amino acids 384 to 1008 of the 1,040-residue RAG1 protein. No recombination function has heretofore been ascribed to any portion of the 383-amino-acid N-terminal region that is missing from the core, but it seems likely to be of functional significance, based on its evolutionary conservation. Using extrachromosomal recombination substrates, we demonstrate here that the N-terminal region enhances the recombination activity of RAG1 by up to an order of magnitude in a variety of cell lines. Deletion analysis localized a region of the N terminus critical for this effect to amino acids 216 to 238, and further mutagenesis demonstrated that a small basic amino acid motif (BIIa) in this region is essential for enhancing the activity of RAG1. Despite the fact that BIIa is important for the interaction of RAG1 with the nuclear localization factor Srp-1, it does not appear to enhance recombination by facilitating nuclear transport of RAG1. A variety of models for how this region stimulates the recombination activity of RAG1 are considered.  相似文献   

18.
19.
Bacterial recombination is believed to be a major factor explaining the prevalence of multi-drug-resistance (MDR) among pathogenic bacteria. Despite extensive evidence for exchange of resistance genes from retrospective sequence analyses, experimental evidence for the evolutionary benefits of bacterial recombination is scarce. We compared the evolution of MDR between populations of Acinetobacter baylyi in which we manipulated both the recombination rate and the initial diversity of strains with resistance to single drugs. In populations lacking recombination, the initial presence of multiple strains resistant to different antibiotics inhibits the evolution of MDR. However, in populations with recombination, the inhibitory effect of standing diversity is alleviated and MDR evolves rapidly. Moreover, only the presence of DNA harbouring resistance genes promotes the evolution of resistance, ruling out other proposed benefits for recombination. Together, these results provide direct evidence for the fitness benefits of bacterial recombination and show that this occurs by mitigation of functional interference between genotypes resistant to single antibiotics. Although analogous to previously described mechanisms of clonal interference among alternative beneficial mutations, our results actually highlight a different mechanism by which interactions among co-occurring strains determine the benefits of recombination for bacterial evolution.  相似文献   

20.
Oligonucleotide- and polynucleotide-based gene modification strategies were developed as an alternative to transgene-based and classical gene targeting-based gene therapy approaches for treatment of genetic disorders. Unlike the transgene-based strategies, oligo/polynucleotide gene targeting approaches maintain gene integrity and the relationship between the protein coding and gene-specific regulatory sequences. Oligo/polynucleotide-based gene modification also has several advantages over classical vector-based homologous recombination approaches. These include essentially complete homology to the target sequence and the potential to rapidly engineer patient-specific oligo/polynucleotide gene modification reagents. Several oligo/polynucleotide-based approaches have been shown to successfully mediate sequence-specific modification of genomic DNA in mammalian cells. The strategies involve the use of polynucleotide small DNA fragments, triplex-forming oligonucleotides, and single-stranded oligodeoxynucleotides to mediate homologous exchange. The primary focus of this review will be on the mechanistic aspects of the small fragment homologous replacement, triplex-forming oligonucleotide-mediated, and single-stranded oligodeoxynucleotide-mediated gene modification strategies as it relates to their therapeutic potential.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号