首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Damselflies provide a classic example of female colour polymorphism. Usually, one female morph resembles the blue male colour (andromorph) while one, or more, female morphs are seen as typically female (gynomorph). Damselfly species fall in two distinct groups with respect to recent developments in mimicry theory: in some species females are perfect, they match male colouration and black patterning, and in other species they are supposed to be imperfect mimics, only matching male colouration. However, the underlying assumption of one female morph looking male-like is mostly based on human vision. Therefore we investigated the black patterning and colour of the three female morphs in Coenagrion puella, an imperfect mimic, using image analysis. In C. puella the blue female morph is perceived as male-like. We found that the black patterning of such females cannot be distinguished from the other female morphs, and is clearly different from males. Furthermore, the blue colour of andromorph females differs from the blue colour of males. Intriguingly, however, the red content did not differ between blue males and females.  相似文献   

2.
Coexistence of female colour morphs in animal populations is often considered the result of sexual conflict, where polymorphic females benefit from reduced male sexual harassment. Mate-searching males easily detect suitable partners when only one type of female is present, but become challenged when multiple female morphs coexist, which may result in frequency-dependent mate preferences. Intriguingly, in damselflies, one female morph often closely resembles the conspecific male in body coloration, which has lead to hypotheses regarding intra-specific male-mimicry. However, few studies have quantitatively evaluated the correspondence between colour reflectance spectra from males and male-like females, relying instead on qualitative visual assessments of coloration. Using colour analyses of reflectance spectra, we compared characteristics of the body coloration of ontogenetic male and female colour morphs of the damselfly Ischnura elegans. In addition, we evaluated whether males appear to (1) discriminate between immature and mature female colour morphs, and (2) whether male-like females experience reduced male mating attention and low mating frequencies as predicted from male-mimicry. Spectral reflectance data show that immature female morphs differ substantially in coloration from mature individuals. Mating frequencies were much lower for immature than mature female morphs. For the male-like female morph, measures of colour were statistically indistinguishable from that of both immature and mature conspecific males. Mating frequencies of male-like females were lower than those of other mature female morphs under field and experimental conditions. Together, our results indicate that males may use the observed spectral differences in mate choice decisions. Furthermore, male-like females may be regarded as functional mimics that have reduced attractiveness and lowered rates of sexual harassment by mate-searching males.  相似文献   

3.
Batesian mimics that show similar coloration to unpalatable models gain a fitness advantage of reduced predation. Beyond physical similarity, mimics often exhibit behaviour similar to their models, further enhancing their protection against predation by mimicking not only the model''s physical appearance but also activity. In butterflies, there is a strong correlation between palatability and flight velocity, but there is only weak correlation between palatability and flight path. Little is known about how Batesian mimics fly. Here, we explored the flight behaviour of four butterfly species/morphs: unpalatable model Pachliopta aristolochiae, mimetic and non-mimetic females of female-limited mimic Papilio polytes, and palatable control Papilio xuthus. We demonstrated that the directional change (DC) generated by wingbeats and the standard deviation of directional change (SDDC) of mimetic females and their models were smaller than those of non-mimetic females and palatable controls. Furthermore, we found no significant difference in flight velocity among all species/morphs. By showing that DC and SDDC of mimetic females resemble those of models, we provide the first evidence for the existence of behavioural mimicry in flight path by a Batesian mimic butterfly.  相似文献   

4.
Colour polymorphisms can be maintained in a population if all morphs have equal fitness on average, if fitness is frequency dependent or if fitness functions cross for some environmental or social variable. We studied female-limited colour polymorphism in the Rambur's forktail damselfly, Ischnura ramburi, in which one female morph looks like the male. The most commonly cited hypotheses to explain this polymorphism involve an advantage to andromorphs of avoiding costly matings through male mimicry. An alternative hypothesis argues that males learn the most common morph and that the polymorphism is maintained by a rare-morph advantage of mating avoidance, irrespective of male mimicry. We tested predictions of the male mimicry hypothesis, learned mate recognition hypothesis (LMR) and two new hypotheses. We used censuses and a mark-resight study to estimate density, sex ratio, morph frequency and mating frequencies. We observed interactions to test for male mimicry and female competition and to evaluate the frequency of mating attempts. Andromorphs were less likely than gynomorphs to receive mating attempts in encounters with males, but did not mate less frequently, or attack males or interrupt oviposition by other females more frequently. Contrary to the LMR hypothesis, the rarer morph was more likely to receive mating attempts. Andromorph frequency was greater in older females than in younger females, suggesting higher mortality or dispersal of gynomorphs. Our results support a modification of the male mimicry hypothesis, the signal detection hypothesis. Together with past studies, our results suggest that the female morphs may be alternative mating avoidance strategies.  相似文献   

5.
Conflicts of interests between males and females over reproduction is a universal feature of sexually reproducing organisms and has driven the evolution of intersexual mimicry, mating behaviours and reproductive polymorphisms. Here, we show how temperature drives pre‐reproductive selection in a female colour polymorphic insect that is subject to strong sexual conflict. These species have three female colour morphs, one of which is a male mimic. This polymorphism is maintained by frequency‐dependent sexual conflict caused by male mating harassment. The frequency of female morphs varies geographically, with higher frequency of the male mimic at higher latitudes. We show that differential temperature sensitivity of the female morphs and faster sexual maturation of the male mimic increases the frequency of this morph in the north. These results suggest that sexual conflict during the adult stage is shaped by abiotic factors and frequency‐independent pre‐reproductive selection that operate earlier during ontogeny of these female morphs.  相似文献   

6.
Predation exerts strong selection on mimetic butterfly wing color patterns, which also serve other functions such as sexual selection. Therefore, specific selection pressures may affect the sexes and signal components differentially. We tested three predictions about the evolution of mimetic resemblance by comparing wing coloration of aposematic butterflies and their Batesian mimics: (a) females gain greater mimetic advantage than males and therefore are better mimics, (b) due to intersexual genetic correlations, sexually monomorphic mimics are better mimics than female‐limited mimics, and (c) mimetic resemblance is better on the dorsal wing surface that is visible to predators in flight. Using a physiological model of avian color vision, we quantified mimetic resemblance from predators’ perspective, which showed that female butterflies were better mimics than males. Mimetic resemblance in female‐limited mimics was comparable to that in sexually monomorphic mimics, suggesting that intersexual genetic correlations did not constrain adaptive response to selection for female‐limited mimicry. Mimetic resemblance on the ventral wing surface was better than that on the dorsal wing surface, implying stronger natural and sexual selection on ventral and dorsal surfaces, respectively. These results suggest that mimetic resemblance in butterfly mimicry rings has evolved under various selective pressures acting in a sex‐ and wing surface‐specific manner.  相似文献   

7.
《Animal behaviour》2002,63(4):677-685
The existence of several female colour morphs is a conspicuous characteristic of many damselflies that show one male-like (androchrome) and several nonmale-like (gynochrome) morphs. We tested several adaptive hypotheses and the null model for the maintenance of female polychromatism (one androchrome and two gynochromes) in the damselfly Ceriagrion tenellum. We tested the null model by comparing the degree of genetic differentiation between the colour locus and a set of 19 neutral RAPD loci in five populations. Our results indicate that selection is acting to maintain similar frequencies between populations at the colour locus. Using mark–recapture techniques we found that mating success is not dependent on female coloration. We tested the mimicry hypothesis by presenting live and dead models to males. Dead models were highly attractive irrespective of coloration. In contrast, with live models males could not distinguish between androchromes and other males, and were more attracted to gynochrome females. Despite this, within populations morph frequencies remained constant over time and mating was at random with respect to female coloration. However, there was a positive relationship between male density and androchrome frequency in a comparative study of eight populations. We discuss our results in the framework of sexual conflict theory and suggest that andro- and gynochrome females are using different strategies to control their number of matings. The different morphs might be maintained in a balanced polymorphism by a combination of density- and frequency-dependent mechanisms.Copyright 2002 Published by Elsevier Science Ltd on behalf of The Association for the Study of Animal Behaviour  相似文献   

8.
The resemblance between mimetic organisms and their models varies from near perfect to very crude. One possible explanation, which has received surprisingly little attention, is that evolution can improve mimicry only at some cost to the mimetic organism. In this article, an evolutionary game theory model of mimicry is presented that incorporates such constraints. The model generates novel and testable predictions. First, Batesian mimics that are very common and/or mimic very weakly defended models should evolve either inaccurate mimicry (by stabilizing selection) or mimetic polymorphism. Second, Batesian mimics that are very common and/or mimic very weakly defended models are more likely to evolve mimetic polymorphism if they encounter predators at high rates and/or are bad at evading predator attacks. The model also examines how cognitive constraints acting on signal receivers may help determine evolutionarily stable levels of mimicry. Surprisingly, improved discrimination abilities among signal receivers may sometimes select for less accurate mimicry.  相似文献   

9.
Vocal mimicry is one of the more striking aspects of avian vocalization and is widespread across songbirds. However, little is known about how mimics acquire heterospecific and environmental sounds. We investigated geographical and individual variation in the mimetic repertoires of males of a proficient mimic, the spotted bowerbird Ptilonorhynchus maculatus. Male bower owners shared more of their mimetic repertoires with neighbouring bower owners than with more distant males. However, interbower distance did not explain variation in the highly repeatable renditions given by bower owners of two commonly mimicked species. From the similarity between model and mimic vocalizations and the patterns of repertoire sharing among males, we suggest that the bowerbirds are learning their mimetic repertoire from heterospecifics and not from each other.  相似文献   

10.
Identifying the genetic basis of mimetic signals is critical to understanding both the origin and dynamics of mimicry over time. For species not amenable to large laboratory breeding studies, widespread color polymorphism across natural populations offers a powerful way to assess the relative likelihood of different genetic systems given observed phenotypic frequencies. We classified color phenotype for 2175 ground snakes (Sonora semiannulata) across the continental United States to analyze morph ratios and test among competing hypotheses about the genetic architecture underlying red and black coloration in coral snake mimics. We found strong support for a two‐locus model under simple Mendelian inheritance, with red and black pigmentation being controlled by separate loci. We found no evidence of either linkage disequilibrium between loci or sex linkage. In contrast to Batesian mimicry systems such as butterflies in which all color signal components are linked into a single “supergene,” our results suggest that the mimetic signal in colubrid snakes can be disrupted through simple recombination and that color evolution is likely to involve discrete gains and losses of each signal component. Both outcomes are likely to contribute to the exponential increase in rates of color evolution seen in snake mimicry systems over insect systems.  相似文献   

11.
In animal species that have morphological polymorphisms maintained by unique or divergent selection pressures, understanding the preservation of shared traits is important for identifying the factors that are influencing overall evolutionary processes. In the Eastern tiger swallowtail butterfly, Papilio glaucus, females are dimorphic. One morph (‘dark-morph’) is mostly black and mimics the toxic pipevine swallowtail, Battus philenor. These females have large amounts of blue coloration on the dorsal hind wings that enhances their mimetic resemblance. Conversely, the alternate female type (‘yellow-morph’) is similar to males in coloration with the exception of extensive dorsal blue coloration, comparable to dark-morph females. Such coloration is almost completely absent in males. We examined dorsal blue coloration in P. glaucus to determine if mimetic resemblance in dark morphs is predominantly responsible for the maintenance of dorsal blue color in both female types, or whether mate recognition and/or sexual selection by males has a stronger influence on this trait. We measured the relative amount and variance of dorsal and ventral blue coloration in females of both color morphs, as well as males. We also compared these measurements to similar ones taken in the sister species, P. canadensis (which does not exhibit female dimorphism). Lastly, we investigated mate recognition and preferences of wild males. Our results suggest that mimetic resemblance may be more important than sexual selection for sustaining dorsal blue coloration in dark-morph females and that yellow-morphs could have elevated levels of blue due to currently unknown genetic associations. Although trait correlation between sexes is common, intrasexual trait correlation in a sex-limited, polymorphic species has not been frequently observed.  相似文献   

12.
Natural populations of Thymelaea hirsuta have previously been shown to comprise four distinct sexual morphs: males, females, protogynous individuals, i.e., first female then male, and protandrous individuals, i.e., first male then female. The objective of the present study has been to confirm the genetic basis of this sexual tetramorphism by quantifying morph ratios in the open-pollinated progeny of the four sexual phenotypes growing in a natural population. All four phenotypes were recovered in the progeny of each morph. All observed plants displayed a single sexual phenotype, thus confirming the genetic basis of the tetramorphism. The progeny sex ratios indicate that the genetic determination of sex in this species may be influenced by cytoplasmic factors, while the observed levels of functional female fertility suggest a near-dioecious system. The evolutionary significance of this tetramorphism as a transitional stage in the evolution of dioecy is discussed.  相似文献   

13.
Thomas Belt suggested that the frequent limitation of mimicry in butterflies to the female resulted from sexual selection. Because female butterflies store sperm they can be fully fertile after only one mating; the reproductive success of a male is proportional to the number of times he mates. Sexual selection is therefore much stronger in males than females, with selection coefficients being greater by a small multiple of the number of times a female is courted during her life (long-lived species) or of the reciprocal of the female mortality rate between courtships (short-lived species). As butterflies of both sexes respond to colour when courting, sexual selection resists colour changes especially strongly in males. As a result, genes conferring new mimetic colour patterns can often become established in a butterfly population much more readily if their expression is initially limited to females; when the population size of a Batesian mimic, its model, and its predator fluctuates, such sex-limited genes have an enhanced probability of ultimate fixation in the population, and a reduced chance of loss; this effect is accentuated by the selection of modifiers which improve the mimicry. When the establishment of unimodal mimicry (expressed in both sexes) is favoured in a Batesian mimic, the gene tends to rise to an equilibrium frequency at which modifiers suppressing the expression of the mimicry only in males and'modifiers enhancing the mimicry only in females are favoured. The outcome is female-limited mimicry, or unimodal mimicry with better mimicry in the females, the males either retaining some of their sexual colour or the selective behaviour of the females becoming altered. In a Muellerian mimic there is no such equilibrium and selection ultimately favours expression of mimicry in both sexes and an appropriate alteration in the courtship responses. Hence Muellerian mimicry is seldom female-limited. Exceptional cases appear to result from the sexes flying in separate habitats. The genetical evidence in Papilio and Heliconius favours initial limitation of expression over subsequent modification as the usual basis for female-limited mimicry. Other explanations of female-limited mimicry can be found wanting in various ways; a higher predation rate on females could produce sex-limitation, but is probably not a strong factor. But the greater variability of the female in Lepidoptera may indicate lesser developmental stability, which could result in greater penetrance of mutants in the female, and hence account for the initial female-limitation. At very high densities of a mimetic species which has no non-mimetic form, mimicry tends to deteriorate more rapidly in a unimodal than in an otherwise identical sex-limited species. Although by itself this would equally favour male-limitation, and hence cannot explain the predominance of female-limitation, this effect may over evolutionary time be causing a slight increase in the proportion of sex-limited species among mimics. The stability of some mimetic polymorphisms is investigated by linear approximation: in some instances a stable equilibrium can be changed into an oscillating equilibrium by changes in the population size.  相似文献   

14.
Wong A  Smith ML  Forbes MR 《Molecular ecology》2003,12(12):3505-3513
The damselfly, Nehalennia irene (Hagen), has two distinct female colour morphs. Individuals of one morph have male-like colouration and pattern (androchromes), whereas gynochromes are different from males and androchromes in these respects. In several damselflies, such female-limited polychromatism is attributable to a single genetic locus. We developed six polymorphic genetic markers, which were codominant, to test for genetic differentiation in N. irene, collected from two sites located 8 km from one another in eastern Ontario, Canada. Based on three censuses spanning a 10 year period (1992-2001), morph ratios differed consistently and significantly between these two sites. However, subpopulations at these sites were not genetically differentiated with respect to the putatively neutral markers. Our results suggest that site differences in morph ratios of female N. irene cannot be explained by genetic drift, but are consistent with spatially variable selection operating on different morphs, perhaps mediated by male density. Alternatively, morph type may be a plastic trait and cues for induction may differ between sites.  相似文献   

15.
Mating displays often contain multiple signals. Different combinations of these signals may be equally successful at attracting a mate, as environment and signal combination may influence relative signal weighting by choosy individuals. This variation in signal weighting among choosy individuals may facilitate the maintenance of polymorphic displays and signalling behaviour. One group of animals known for their polymorphic patterning are Batesian mimetic butterflies, where the interaction of sexual selection and predation pressures is hypothesized to influence the maintenance of polymorphic wing patterning and behaviour. Males in the female‐limited polymorphic Batesian mimetic butterfly Papilio polytes use female wing pattern and female activity levels when determining whom to court. They court stationary females with mimetic wing patterns more often than stationary females with non‐mimetic, male‐like wing patterns and active females more often than inactive females. It is unclear whether females modify their behaviour to increase (or decrease) their likelihood of receiving male courtship, or whether non‐mimetic females spend more time in cryptic environments than mimetic females, to compensate for their lack of mimicry‐driven predation protection (at the cost of decreased visibility to males). In addition, relative signal weighting of female wing pattern and activity to male mate selection is unknown. To address these questions, we conducted a series of observational studies of a polymorphic P. polytes population in a large butterfly enclosure. We found that males exclusively courted active females, irrespective of female wing pattern. However, males did court active non‐mimetic females significantly more often than expected given their relative abundance in the population. Females exhibited similar activity levels, and selected similar resting environments, irrespective of wing pattern. Our results suggest that male preference for non‐mimetic females may play an active role in the maintenance of the non‐mimetic female form in natural populations, where males are likely to be in the presence of active, as well as inactive, mimetic and non‐mimetic females.  相似文献   

16.
In his stimulating discussion, Wolfgang Wickler criticizes fuzzy usage of term mimicry by drawing attention to its original definition by H. Bates. Mimicry refers to functional ‘model–mimic–selecting agent’ trinity (with varying number of species involved) when the selecting agent (i.e. signal receiver) responds similarly to mimic and model to the advantage of the mimic. Concurring with Wickler I argue that convergence is neither necessary nor sufficient to support similarity as evidence for mimicry and that it is artificial and unproductive to classify mimicry with respect to ontogeny (innate vs. learned similarity) or model species identity (learning from conspecifics vs. heterospecifics). Using butterfly ‘eye’‐spots, I argue that just identifying each of the supposed model, the mimic and the selective agent, and even demonstrating that mimic‐model similarity affects the agent's behaviour, provides no conclusive evidence for mimicry. Even a demonstration that the mimic benefits from receiver response may not provide conclusive evidence for mimicry. Using avian brood parasite–host egg and nestling mimicry, I emphasize that without experimental manipulation of the hypothesized mimetic traits, it is impossible to test the mimicry hypothesis robustly. Due to fundamental constraints on human perception, some cases of mimicry may in fact be just a by‐product of human inability to perceive relevant differences between animal phenotypes (what is similar for human eye, nose or ear may not be viewed, smelled or heard as similar for relevant animal observers), whereas many cases of real mimicry may escape our attention from the same reason (‘hidden’ mimicry). Surprisingly, the same mimetic phenotype may show completely different effects on selective agents under different ecological circumstances. Finally, relatively dissimilar species may be more mimetic than highly similar model–mimic pairs because mimicry may be more fruitfully understood as a co‐evolutionary process rather than a similarity.  相似文献   

17.
Biological mimicry has served as a salient example of natural selection for over a century, providing us with a dazzling array of very different examples across many unrelated taxa. We provide a conceptual framework that brings together apparently disparate examples of mimicry in a single model for the purpose of comparing how natural selection affects models, mimics and signal receivers across different interactions. We first analyse how model–mimic resemblance likely affects the fitness of models, mimics and receivers across diverse examples. These include classic Batesian and Müllerian butterfly systems, nectarless orchids that mimic Hymenoptera or nectar‐producing plants, caterpillars that mimic inert objects unlikely to be perceived as food, plants that mimic abiotic objects like carrion or dung and aggressive mimicry where predators mimic food items of their own prey. From this, we construct a conceptual framework of the selective forces that form the basis of all mimetic interactions. These interactions between models, mimics and receivers may follow four possible evolutionary pathways in terms of the direction of selection resulting from model–mimic resemblance. Two of these pathways correspond to the selective pressures associated with what is widely regarded as Batesian and Müllerian mimicry. The other two pathways suggest mimetic interactions underpinned by distinct selective pressures that have largely remained unrecognized. Each pathway is characterized by theoretical differences in how model–mimic resemblance influences the direction of selection acting on mimics, models and signal receivers, and the potential for consequent (co)evolutionary relationships between these three protagonists. The final part of this review describes how selective forces generated through model–mimic resemblance can be opposed by the basic ecology of interacting organisms and how those forces may affect the symmetry, strength and likelihood of (co)evolution between the three protagonists within the confines of the four broad evolutionary possibilities. We provide a clear and pragmatic visualization of selection pressures that portrays how different mimicry types may evolve. This conceptual framework provides clarity on how different selective forces acting on mimics, models and receivers are likely to interact and ultimately shape the evolutionary pathways taken by mimetic interactions, as well as the constraints inherent within these interactions.  相似文献   

18.
Sexual conflict can drive rapid intersexual arms races, and lead to pronounced sexual dimorphism. Such dimorphism is frequent in diving beetles, where males typically possess expanded front and middle tarsi, supplied with adhesive setae to grasp females during mating, and females often have rough dorsal surfaces which hinder male attachment. In a number of species, females are dimorphic, being either smooth and male-like, or heavily sculptured dorsally. Smooth and sculptured females often have distinct biogeographies, and may be expected to be associated with specific counter-adaptations in males. The European diving beetle, Hydroporus memnonius Nicolai, includes a smooth male-like female, and a matt morph, var. castaneus Aubé, which are largely allopatric in distribution. We show that the two morphs differ in the density and intensity of their surface microreticulation, and that matt females are associated with morphologically distinct males, which have developed specific countermeasures on their tarsi, including a greater number of large adhesive setae, individually larger in area. Such males are expected to be more successful in pairing with both matt and shining females, and it is suggested that a process of population replacement, partly driven by sexual interactions, may occur where the two forms overlap in range.  © 2008 The Linnean Society of London, Biological Journal of the Linnean Society , 2008, 94 , 685–697.  相似文献   

19.
Offspring allocation in structured populations with dimorphic males   总被引:2,自引:0,他引:2  
Summary Many fig wasp species have dimorphic males. These males often mate in different localities; one typically disperses before mating whereas the other does not disperse. In 1979 a model was developed for offspring allocation in dimorphic fig wasps, but it assumed that females only lay a single egg per fig. This assumption is not realistic and precludes any effects local mate competition (LMC) may exert on morph abundance. I develop a model without these restrictions and show that the optimal proportions of each morph is determined by two parameters. Firstly, the proportion of the non-dispersing morph is affected by the mean number of females that oviposit in a patch. This effect is due to the negative correlation between LMC between brothers and the number of females that oviposit in a patch. Secondly, the proportions of both male morphs correlate with the expected proportion of females which will mate with each morph. The separation of the two parameters generalizes the model to any other species which is spatially structured and which has two male morphs or even two alternative mating strategies. A comparison of two models shows that parent—offspring conflict involving morph ratios will not have far reaching consequences. I test these models using the 1979 model's data and both models accurately predict the variation in morph ratios in six species of dimorphic fig wasps.  相似文献   

20.
Biologists are still discovering diverse and powerful ways sexual conflicts shape biodiversity. The present study examines how the proportion of females in a population that exhibit male mimicry, a mating resistance trait, influences conspecific males’ behavior, condition, and survival. Like most female‐polymorphic damselflies, Ischnura ramburii harbors both “andromorph” females, which closely resemble males, and sexually dimorphic “gynomorph” counterparts. There is evidence that male mimicry helps andromorphs evade detection and harassment, but males can also learn to target locally prevalent morph(s) via prior mate encounters. I hypothesized that the presence of male mimics could therefore predispose males to mate recognition errors, and thereby increase rates of costly male‐male interactions. Consistent with this hypothesis, male‐male interaction rates were highest in mesocosms containing more andromorph (vs. gynomorph) females. Males in andromorph‐biased mesocosms also had lower final body mass and higher mortality than males assigned to gynomorph‐majority treatments. Male survival and body mass were each negatively affected by mesocosm density, and mortality data revealed a marginally significant interaction between andromorph frequency and population density. These findings suggest that, under sufficiently crowded conditions, female mating resistance traits such as male mimicry could have pronounced indirect effects on male behavior, condition, and survival.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号