首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Forty-six monoclonal antibodies (MAbs) able to bind to the native, monomeric gp120 glycoprotein of the human immunodeficiency virus type 1 (HIV-1) LAI (HXBc2) strain were used to generate a competition matrix. The data suggest the existence of two faces of the gp120 glycoprotein. The binding sites for the viral receptor, CD4, and neutralizing MAbs appear to cluster on one face, which is presumably exposed on the assembled, oligomeric envelope glycoprotein complex. A second gp120 face, which is presumably inaccessible on the envelope glycoprotein complex, contains a number of epitopes for nonneutralizing antibodies. This analysis should be useful for understanding both the interaction of antibodies with the HIV-1 gp120 glycoprotein and neutralization of HIV-1.  相似文献   

2.
In a natural context, membrane fusion mediated by the human immunodeficiency virus type 1 (HIV-1) envelope glycoproteins involves both the exterior envelope glycoprotein (gp120) and the transmembrane glycoprotein (gp41). Perez et al. (J. Virol. 66:4134-4143, 1992) reported that a mutant HIV-1 envelope glycoprotein containing only the signal peptide and carboxyl terminus of the gp120 exterior glycoprotein fused to the complete gp41 glycoprotein was properly cleaved and that the resultant gp41 glycoprotein was able to induce the fusion of even CD4-negative cells. In the studies reported herein, mutant proteins identical or similar to those studied by Perez et al. lacked detectable cell fusion activity. The proteolytic processing of these proteins was very inefficient, and one processed product identified by Perez et al. as the authentic gp41 glycoprotein was shown to contain carboxyl-terminal gp120 sequences. Furthermore, no fusion activity was observed for gp41 glycoproteins exposed after shedding of the gp120 glycoprotein by soluble CD4. Thus, evidence supporting a gp120-independent cell fusion activity for the HIV-1 gp41 glycoprotein is currently lacking.  相似文献   

3.
K Fujita  J Silver    K Peden 《Journal of virology》1992,66(7):4445-4451
Virus derived from an infectious molecular clone of the ELI strain of human immunodeficiency virus type 1 (HIV-1) replicates well in peripheral blood mononuclear cells and in some CD4-positive cell lines but exhibits a delayed time course of infection in CEM and H9 cells and fails to infect SupT1 and U937 cells. If the virus that emerges from infected H9 cells is used to infect CEM and H9 cells, the time course of infection is accelerated and the virus is able to infect U937 and SupT1 cells. In this study, we used the technique of polymerase chain reaction-single-strand conformation polymorphism to localize changes in both the extracellular gp120 and the transmembrane gp41 components of the envelope gene associated with adaptation to growth in tissue culture cell lines. Specifically, mutations were identified both in a region of gp120 implicated in CD4 binding and in the amino-terminal portion of gp41 adjacent to the region involved in fusion. No changes were found in the V3 loop of gp120, a region previously shown to be involved in viral tropism. When these mutations were introduced into the original molecular clone, they conferred an enhanced replicative capacity on ELI. These results demonstrate that two additional determinants in the HIV-1 envelope protein influence viral tropism and growth in vitro. They also may have important implications for the generation of viruses with increased growth potential and expanded host range seen in the late stages of HIV disease.  相似文献   

4.
The human immunodeficiency virus type 1 (HIV-1) gp120 exterior envelope glycoprotein interacts with the viral receptor (CD4) and with the gp41 transmembrane envelope glycoprotein. To study the interaction of the gp120 and gp41 envelope glycoproteins, we compared the abilities of anti-gp120 monoclonal antibodies to bind soluble gp120 and a soluble glycoprotein, sgp140, that contains gp120 and gp41 exterior domains. The occlusion or alteration of a subset of gp120 epitopes on the latter molecule allowed the definition of a gp41 "footprint" on the gp120 antibody competition map. The occlusion of these epitopes on the sgp140 glycoprotein was decreased by the binding of soluble CD4. The gp120 epitopes implicated in the interaction with the gp41 ectodomain were disrupted by deletions of the first (C1) and fifth (C5) conserved gp120 regions. These deletions did not affect the integrity of the discontinuous binding sites for CD4 and neutralizing monoclonal antibodies. Thus, the gp41 interface on the HIV-1 gp120 glycoprotein, which elicits nonneutralizing antibodies, can be removed while retaining immunologically desirable gp120 structures.  相似文献   

5.
We compared the immune responses to the human immunodeficiency virus type 1 (HIV-1) envelope glycoproteins in humans and macaques with the use of clade A and clade B isogenic V3 loop glycan-possessing and -deficient viruses. We found that the presence or absence of the V3 loop glycan affects to similar extents immune recognition by a panel of anti-HIV human and anti-simian/human immunodeficiency virus (anti-SHIV) macaque sera. All sera tested neutralized the glycan-deficient viruses, in which the conserved CD4BS and CD4i epitopes are more exposed, better than the glycan-containing viruses. The titer of broadly neutralizing antibodies appears to be higher in the sera of macaques infected with glycan-deficient viruses. Collectively, our data add legitimacy to the use of SHIV-macaque models for testing the efficacy of HIV-1 Env-based immunogens. Furthermore, they suggest that antibodies to the CD4BS and CD4i sites of gp120 are prevalent in human and macaque sera and that the use of immunogens in which these conserved neutralizing epitopes are more exposed is likely to increase their immunogenicity.  相似文献   

6.
7.
The intracellular folding of the human immunodeficiency virus type 1 gp120 has been assessed by analyzing the ability of the glycoprotein to bind to the viral receptor CD4. Pulse-chase experiments revealed that the glycoprotein was initially produced in a conformation that was unable to bind to CD4 and that the protein attained the appropriate tertiary structure for binding with a half-life of approximately 30 min. The protein appears to fold within the rough endoplasmic reticulum, since blocking of transport to the Golgi apparatus by the oxidative phosphorylation inhibitor carbonyl cyanide m-chlorophenylhydrazone did not appear to perturb the folding kinetics of the molecule. The relatively lengthy folding time was not due to modification of the large number of N-linked glycosylation sites on gp120, since inhibition of the first steps in oligosaccharide modification by the inhibitors deoxynojirimycin or deoxymannojirimycin did not impair the CD4-binding activity of the glycoprotein. However, production of the glycoprotein in the presence of tunicamycin and removal of the N-linked sugars by endoglycosidase H treatment both resulted in deglycosylated proteins that were unable to bind to CD4, suggesting in agreement with previous results, that glycosylation contributes to the ability of gp120 to bind to CD4. Interestingly, incomplete endoglycosidase H treatment revealed that a partially glycosylated glycoprotein could bind to the receptor, implying that a subset of glycosylation sites, perhaps some of those conserved in different isolates of human immunodeficiency virus type 1, might be important for binding of the viral glycoprotein to the CD4 receptor.  相似文献   

8.
Hötzel I  Cheevers WP 《Journal of virology》2003,77(21):11578-11587
A sequence similarity between surface envelope glycoprotein (SU) gp135 of the lentiviruses maedi-visna virus and caprine arthritis-encephalitis virus (CAEV) and human immunodeficiency virus type 1 (HIV-1) gp120 has been described. The regions of sequence similarity are in the second and fifth conserved regions of gp120, and the similarity is highest in sequences coinciding with beta-strands 4 to 8 and 25, which are located in the most virion-proximal region of the gp120 inner domain. A subset of this structure, formed by gp120 beta-strands 4, 5, and 25, is conserved in most or all lentiviruses. Because of the orientation of gp120 on the virion, this highly conserved virion-proximal region of the gp120 core may interact with the transmembrane glycoprotein (TM) together with the amino and carboxy termini of full-length gp120. Therefore, interactions between SU and TM of lentiviruses may be structurally related. Here we tested whether the amino acid residues in the putative virion-proximal region of CAEV gp135 comprising putative beta-strands 4, 5, and 25, as well as its amino and carboxy termini, are important for stable interactions with TM. An amino acid change at gp135 position 119 or 521, located in the turn between putative beta-strands 4 and 5 and near beta-strand 25, respectively, specifically disrupted the epitope recognized by monoclonal antibody 29A. Thus, similar to the corresponding gp120 regions, these gp135 residues are located in close proximity to each other in the folded protein, supporting the hypothesis of a structural similarity between the gp120 virion-proximal inner domain and gp135. Amino acid changes in the amino- and carboxy-terminal and putative virion-proximal regions of gp135 increased gp135 shedding from the cell surface, indicating that these gp135 regions are involved in interactions with TM. Our results indicate structural and functional parallels between CAEV gp135 and HIV-1 gp120 that may be more broadly applicable to the SU of other lentiviruses.  相似文献   

9.
Insertion of four amino acids into various locations within the amino-terminal halves of the human immunodeficiency virus type 1 gp120 or gp41 envelope glycoprotein disrupts the noncovalent association of these two envelope subunits (M. Kowalski, J. Potz, L. Basiripour, T. Dorfman, W. C. Goh, E. Terwilliger, A. Dayton, C. Rosen, W. A. Haseltine, and J. Sodroski, Science 237:1351-1355, 1987). To localize the determinants on the gp120 envelope glycoprotein important for subunit association, amino acids conserved among primate immunodeficiency viruses were changed. Substitution mutations affecting either of two highly conserved regions located at the amino (residues 36 to 45) and carboxyl (residues 491 to 501) ends of the mature gp120 molecule resulted in nearly complete dissociation of the envelope glycoprotein subunits. Partial dissociation phenotypes were observed for some changes affecting residues in the third and fourth conserved gp120 regions. These results suggest that hydrophobic regions at both ends of the gp120 glycoprotein contribute to noncovalent association with the gp41 transmembrane glycoprotein.  相似文献   

10.
Host cell range, or tropism, combined with coreceptor usage defines viral phenotypes as macrophage tropic using CCR5 (M-R5), T-cell-line tropic using CXCR4 (T-X4), or dually lymphocyte and macrophage tropic using CXCR4 alone or in combination with CCR5 (D-X4 or D-R5X4). Although envelope gp120 V3 is necessary and sufficient for M-R5 and T-X4 phenotypes, the clarity of V3 as a dominant phenotypic determinant diminishes in the case of dualtropic viruses. We evaluated D-X4 phenotype, pathogenesis, and emergence of D-X4 viruses in vivo and mapped genetic determinants in gp120 that mediate use of CXCR4 on macrophages ex vivo. Viral quasispecies with D-X4 phenotypes were associated significantly with advanced CD4+-T-cell attrition and commingled with M-R5 or T-X4 viruses in postmortem thymic tissue and peripheral blood. A D-X4 phenotype required complex discontinuous genetic determinants in gp120, including charged and uncharged amino acids in V3, the V5 hypervariable domain, and novel V1/V2 regions distinct from prototypic M-R5 or T-X4 viruses. The D-X4 phenotype was associated with efficient use of CXCR4 and CD4 for fusion and entry but unrelated to levels of virion-associated gp120, indicating that gp120 conformation contributes to cell-specific tropism. The D-X4 phenotype describes a complex and heterogeneous class of envelopes that accumulate multiple amino acid changes along an evolutionary continuum. Unique gp120 determinants required for the use of CXCR4 on macrophages, in contrast to cells of lymphocytic lineage, can provide targets for development of novel strategies to block emergence of X4 quasispecies of human immunodeficiency virus type 1.  相似文献   

11.
C D Weiss  J A Levy    J M White 《Journal of virology》1990,64(11):5674-5677
The oligomeric structure of the human immunodeficiency virus type 1 envelope glycoprotein (gp120) was examined by treating infectious virions with chemical cross-linking agents and subjecting the protein to sodium dodecyl sulfate-polyacrylamide gel electrophoresis and velocity centrifugation. Immunoblots of cross-linked samples revealed three gp120 bands and an approximately threefold shift in gp120 sedimentation. Our finding of cross-linking solely between gp120 suggests that the gp120 subunits are closely associated in the native envelope structure.  相似文献   

12.
A soluble form of recombinant gp120 of human immunodeficiency virus type 1 was used as an immunogen for production of murine monoclonal antibodies. These monoclonal antibodies were characterized for their ability to block the interaction between gp120 and the acquired immunodeficiency syndrome virus receptor, CD4. Three of the monoclonal antibodies were found to inhibit this interaction, whereas the other antibodies were found to be ineffective at blocking binding. The gp120 epitopes which are recognized by these monoclonal antibodies were mapped by using a combination of Western blot (immunoblot) analysis of gp120 proteolytic fragments, immunoaffinity purification of fragments of gp120, and antibody screening of a random gp120 gene fragment expression library produced in the lambda gt11 expression system. Two monoclonal antibodies which blocked gp120-CD4 interaction were found to map to adjacent sites in the carboxy-terminal region of the glycoprotein, suggesting that this area is important in the interaction between gp120 and CD4. One nonblocking antibody was found to map to a position that was C terminal to this CD4 blocking region. Interestingly, the other nonblocking monoclonal antibodies were found to map either to a highly conserved region in the central part of the gp120 polypeptide or to a highly conserved region near the N terminus of the glycoprotein. N-terminal deletion mutants of the soluble envelope glycoprotein which lack these highly conserved domains but maintain the C-terminal CD4 interaction sites were unable to bind tightly to the CD4 receptor. These results suggest that although the N-terminal and central conserved domains of intact gp120 do not appear to be directly required for CD4 binding, they may contain information that allows other parts of the molecule to form the appropriate structure for CD4 interaction.  相似文献   

13.
We have compared the expression of full-length gp160 envelope protein from human immunodeficiency virus type 1 with that of a deletion mutant lacking the N-terminal 31 amino acids of the mature protein (gp160 delta 32). The gp160 and gp160 delta 32 proteins are processed to yield gp41 and gp120 or gp120 delta 32, respectively. In contrast to full-length gp120, gp120 delta 32 failed to associate with gp41 at the cell surface, despite conformational integrity as judged by soluble CD4 binding. Thus, the N-terminal 31 amino acids of gp120, which contain hyperconserved sequences, are likely involved in forming a contact site for gp41.  相似文献   

14.
In this study, we characterized the viral determinants of coreceptor usage in relation to susceptibility to antibody-mediated neutralization or enhancement of infectivity by using chimeras of three highly related human immunodeficiency virus type 1 (HIV-1) isolates of different phenotypes. We found that the V3 region was the main determinant of antibody-mediated enhancement and coreceptor specificity but that the overall structure of gp120 was also important for these properties. Constructs susceptible to antibody-mediated enhancement preferentially use CCR5 as a coreceptor, in contrast to constructs that were neutralized or not affected. Using monoclonal antibodies directed against CD4 or CCR5, we were able to show that antibody-mediated enhancement was CD4 dependent. Altogether, our results suggest that the modulation of the interaction of gp120 with CCR5 is the mechanism underlying antibody-mediated enhancement of HIV-1 infectivity.  相似文献   

15.
The Gag protein of human immunodeficiency virus type 1 (HIV-1) associates with the envelope protein complex during virus assembly. The available evidence indicates that this interaction involves recognition of the gp41 cytoplasmic tail (CT) by the matrix protein (MA) region of Pr55(Gag). Here we show that substitution of Asp for Leu at position 49 (L49D) in MA results in a specific reduction in particle-associated gp120 without affecting the levels of gp41. Mutant virions were markedly reduced in single-cycle infectivity despite a relatively modest defect in fusion with target cells. Studies with HIV-1 particles containing decreased levels of envelope proteins suggested that the L49D mutation also inhibits a postentry step in infection. Truncation of the gp41 tail, or pseudotyping by vesicular stomatitis virus glycoprotein, restored both the fusion and infectivity of L49D mutant virions to wild-type levels. Truncation of gp41 also resulted in equivalent levels of gp120 on particles with and without the MA mutation and enhanced the replication of the L49D mutant virus in T cells. The impaired fusion and infectivity of L49D mutant particles were also complemented by a single point mutation in the gp41 CT that disrupted the tyrosine-containing endocytic motif. Our results suggest that an altered interaction between the MA domain of Gag and the gp41 cytoplasmic tail leads to dissociation of gp120 from gp41 during HIV-1 particle assembly, thus resulting in impaired fusion and infectivity.  相似文献   

16.
17.
Monoclonal antibodies (MAbs) were obtained by immunizing mice with synthetic peptides corresponding to the third variable (V3) or the third conserved (C3) domain of the external envelope protein (gp120) of human immunodeficiency virus type 2 (HIV-2ROD). One MAb, designated B2C, which was raised against V3 peptide NKI26, bound to the surface of HIV-2-infected cells but not to their uninfected counterparts. B2C was capable of neutralizing cell-free and cell-associated virus infection in an isolate-specific fashion. The antibody-binding epitope was mapped to a 6-amino-acid peptide in the V3 variable domain which had the core sequence His-Tyr-Gln. Two MAbs, 2H1B and 2F19C, which were raised against the C3 peptide TND27 reacted with gp120 of HIV-2ROD in a Western immunoblot assay. The C3 epitopes recognized by these two MAbs appeared inaccessible because of their poor reactivity in a surface immunofluorescence assay. Although partial inhibition of syncytium formation was observed in the presence of the anti-C3 MAbs, their neutralizing activity appeared weak. Finally, the effects of these MAbs against CD4-gp120 binding were assessed. Partial inhibition of CD4-gp120 binding was observed in the presence of high concentrations of B2C. On the other hand, no inhibition of CD4-gp120 binding was observed in the presence of anti-C3 MAbs. Since complete neutralization could be achieved at a concentration corresponding to that of partial binding inhibition by B2C, some different mechanisms may be involved in the B2C-mediated neutralization. These results, taken together, indicated that analogous to the function of the V3 region of HIV-1, the V3 region of HIV-2ROD contained at least a type-specific fusion-inhibiting neutralizing epitope. In this respect, the V3 sequence of HIV-2 may be a useful target in an animal model for HIV vaccine development.  相似文献   

18.
We recently described a sequence similarity between the small ruminant lentivirus surface unit glycoprotein (SU) gp135 and the second conserved region (C2) of the primate lentivirus gp120 which indicates a structural similarity between gp135 and the inner proximal domain of the human immunodeficiency virus type 1 gp120 (I. Hötzel and W. P. Cheevers, Virus Res. 69:47–54, 2000). Here we found that the seven-amino-acid sequence of the gp120 strand β25 in the C5 region, which is also part of the inner proximal domain, was conserved in the SU of all lentiviruses in similar or identical positions relative to the carboxy terminus of SU. Sequences conforming to the gp135-gp120 consensus for β-strand 5 in the C2 region, which is antiparallel to β25, were then sought in the SU of other lentiviruses and retroviruses. Except for the feline immunodeficiency virus, sequences similar to the gp120-gp135 consensus for β5 and part of the preceding strand β4 were present in the SU of all lentiviruses. This motif was highly conserved among strains of each lentivirus and included a strictly conserved cysteine residue in β4. In addition, the β4/β5 consensus motif was also present in the conserved carboxy-terminal region of all type A and B retroviral envelope surface glycoproteins analyzed. Thus, the antiparallel β-strands 5 and 25 of gp120 form an SU surface highly conserved among the lentiviruses and at least partially conserved in the type A and B retroviral envelope glycoproteins.Lentiviruses are a group of strictly exogenous retroviruses that infect a range of mammalian hosts. One characteristic of this group of retroviruses is the rapid sequence divergence observed between virus strains as well as different lentiviruses, which resulted in the evolution of viruses with large differences in genome organization and sequence (20). Most of the sequence homology between highly divergent lentiviruses is present in the gag and pol gene products (8, 21). Sequence homology between the envelope glycoproteins of different lentiviruses has previously been shown to occur only in the ectodomain of the transmembrane subunit (TM) but not in the surface unit (SU) glycoprotein (3, 8, 2123). Due to this apparent lack of sequence conservation in lentiviral SU, it has been unclear how the SU of different lentiviruses are structurally related to each other. To address this question, we recently compared SU sequences from the gp120 from primate lentiviruses and the gp135 of small ruminant lentiviruses and found a statistically significant sequence similarity between the second conserved region (C2) of gp120 and a 99-amino-acid region from gp135 (10). Analysis of this gp120-gp135 sequence similarity in the context of the gp120 structure revealed a partial structural similarity between gp120 and gp135.The human immunodeficiency virus type 1 (HIV-1) gp120 core bound to CD4 is composed of two major domains, the inner and outer domains, and a minidomain composed of four antiparallel β-strands, the bridging sheet (13). Sequences from the C2 region form most of the β-strands of a two-helix, two-strand bundle and a five-stranded β-sandwich in the inner domain as well as some β-strands of the outer domain of gp120 (13). Most of the similarity motifs between gp135 and the C2 region of gp120 coincide with sequences corresponding to β-strands 4 through 8 in the HIV-1 gp120 inner domain and β-strands 11 and 12 in the outer domain (10). Significantly, all four cysteines that form two disulfide bonds in the proximal region of the gp120 inner domain as well as the first cysteine of the gp120 V3 loop in β12 (13, 15) are conserved in gp135, indicating a partial similarity between the tertiary structures of gp120 and gp135 (10).The most conserved sequences between gp120 and gp135 correspond to strands β4 and β5 in the five-stranded β-sandwich structure of the proximal region of the inner proximal domain of HIV-1 gp120. Two additional β-strands in this five-stranded β-sandwich are derived from C1 and C5 sequences of HIV-1 gp120 (13). We hypothesized that C1 and C5 sequences, which are part of a structurally conserved SU inner proximal domain, should also be conserved between gp120 and gp135 and possibly in the SU of other lentiviruses. Here we show that two short motifs located in the gp120 C2 and C5 regions which are part of an antiparallel β-sheet in the gp120 inner proximal domain are conserved in the lentiviruses, indicating that a surface of the inner domain of HIV-1 gp120 is conserved in the SU of other lentiviruses. In addition, the C2 motif is also present in the envelope glycoproteins encoded by A-type endogenous retroviral elements and type B retroviruses (type A and B retroviruses), suggesting a local structural similarity between the SU of lentiviruses and type A and B retroviruses.

Sequence motif of the C5 region of HIV-1 gp120 is present in the SU of all lentiviruses.

As the sequences of three of the five β-strands of the gp120 inner proximal domain β-sandwich are conserved in gp135, we first tried to determine whether the gp120-gp135 sequence similarity extends to the other two β-strands which are part of this structure. One of these strands is β1, located in the C1 region of gp120 (13). Although the sequence of β1 is relatively well conserved among the primate lentiviruses, it is only 3 amino acids long, and a reliable assignation of similar sequences in gp135 could not be done. The other strand of this β-sandwich structure is the 7-amino-acid long β25. This strand is antiparallel to β5, which is the most conserved sequence between gp120 and gp135 (10, 13). Strand β25 is located about 20 amino acid residues upstream from the carboxy terminus of HIV-1 gp120 in the C5 region, and its sequence is highly conserved among strains of primate lentiviruses (sequence KYKVVKI in HIV-1HXB2; residues conserved between HIV-1 strains are underlined) (12, 24). The last residue of this motif has been shown to be important for anchoring of gp120 on gp41 (9), suggesting that β25 is a functionally important structure of the inner proximal domain of gp120 likely to be conserved in other lentiviral glycoproteins. Sequences similar to the HIV-1 gp120 β25 motif (C5 motif) were visually sought in the gp135 carboxy-terminal region. A similar sequence was found in the caprine arthritis-encephalitis virus (CAEV) and visna virus gp135 between 33 and 34 amino acid residues upstream from the carboxy terminus of gp135 (Fig. (Fig.1B).1B). Similar to the C5 motif sequence of primate lentiviruses, the gp135 C5 motif is highly conserved in the gp135 of small ruminant lentiviruses (4, 27, 31, 35, 36). The sequence similarity also included the strictly conserved residue L483 of HIV-1 gp120 in the preceding α-helix 5, which is part of the two-helix, two-strand bundle of the inner domain. Flanking regions of gp120 and gp135 did not show any sequence similarity (not shown). Due to its short length, the significance of the conservation of the C5 motif in gp120 and gp135 was unclear. If this motif is indeed part of a structurally or functionally important domain of SU and not due only to chance, it should also be conserved in the SU of other lentiviruses. Therefore, to establish the relevance of this sequence similarity, we determined whether the C5 motif was also present in the carboxy terminus of the SU of other lentiviruses. Open in a separate windowFIG. 1Alignment of the C2 (A) and C5 (B) motifs of the SU from lentiviruses and type A and B retroviruses. Numbers at the right of the alignments indicate the position of the last residue of the motif from the initiation codon. Letters above the alignment indicate residue positions within each motif. Black backgrounds represent identical amino acids or conservative variations between the lentiviruses and type A and B retroviruses for each position of the motifs. Gray backgrounds represent identical amino acids or conservative variations between the lentiviruses and type A and B retroviruses (but which are nonconservative with the residues in black background) for each position. Numbers in parentheses indicate the number of amino acids between the last position of the C5 motif and the carboxy terminus of SU for each lentivirus. Thick lines indicate sequences which are part of HIV-1 gp120 strands β4, β5, and β25 and helix α5 (13). HIV-1 and HIV-2, human immunodeficiency virus types 1 (strain HXB2, GenBank accession number K03455) and 2 (strain ROD, X05291); CAEV, caprine arthritis-encephalitis virus (M33677); Visna, visna virus (M10608); JSRV, jaagsiekte sheep retrovirus (M80216); EIAV, equine infectious anemia virus (AF033820); FIV, feline immunodeficiency virus (M73965); BIV, bovine immunodeficiency virus (M32690); JDV, jembrana disease lentivirus (U21603); HERV-K, human endogenous retrovirus K, type 2 genome (X82272); MMTV, mouse mammary tumor virus (X01811); MIAE, mouse intracisternal A-type element (M73818).Sequences conforming to the C5 motif consensus were also found in the SU of the equine infectious anemia virus (EIAV), feline immunodeficiency virus (FIV), bovine immunodeficiency virus (BIV), and the bovine jembrana disease lentivirus (JDV), 19 to 23 amino acid residues from the carboxy terminus of SU, the same relative position as the C5 motif from the carboxy terminus of gp120 in primate lentiviruses (Fig. (Fig.1B).1B). This sequence similarity was clear when considering the chemical similarities of amino acid side chains (Gln/Glu, Tyr/Trp, Lys/Arg/Gln, Val/Leu, or Val/Ile). A survey of lentiviral SU sequences present in GenBank revealed that the C5 motif was also highly conserved between EIAV, FIV, and BIV strains. For example, the C5 motif was found to be strictly conserved in 64 of 69 EIAV gp90 sequences in GenBank and is also stable during in vivo persistent infection (16, 39). However, the little variation that is observed between strains of a given lentivirus follows the same pattern as variation between different lentiviruses, suggesting a common constraint on sequence variation in different lentiviruses. For example, position h of the C5 motif of HIV-1 gp120 can be either of the conservative variations Lys/Arg or Gln/Glu, the same amino acids present at position h in other lentiviruses. Similarly, position h of the C5 motif of CAEV in different strains is either Lys or Arg (35), two of the residues allowed at position h in HIV-1 gp120. In addition, position b in the C5 motif of most FIV gp100 sequences in GenBank is the conservative variation Gln or Glu, the same amino acids present at position b of the C5 motif in EIAV and the small ruminant lentiviruses, respectively. Although the C5 motif is present in all lentiviruses, the flanking sequences were not consistently conserved except for a few amino acids in some pairwise alignments (not shown). Therefore, although conservation of the C5 motif may not be statistically significant in some SU pairwise alignments, the presence of this motif in the same position relative to the carboxy terminus of SU in all lentiviruses indicates that strand β25 of gp120 is an important structural or functional domain conserved in all lentiviruses.

Sequences similar to an HIV-1 gp120 C2 motif are present in the SU of most lentiviruses.

Using computer-assisted searches, we were previously unable to find in EIAV, BIV, or FIV the same extensive region of similarity that is observed between the C2 region of gp120 and gp135 (10). However, the presence of the C5 (β25) motif in all lentiviruses suggests that sequences similar to gp120 β5, which is antiparallel to β25 and conserved between gp120 and gp135, are also present in degenerate form in other lentiviruses. Visual examination of SU sequences from different lentiviruses revealed the presence of a similar motif (C2 motif) in EIAV, BIV, and JDV although not in FIV (Fig. (Fig.1A).1A). This 12-amino-acid C2 motif encompasses most of gp120 β-strands 4 and 5 and includes a strictly conserved cysteine residue in the β4 region. The C2 motif is highly conserved between strains of EIAV and BIV. In EIAV, the C2 motif is stable during persistent infection, with few conservative changes observed (16, 39). In addition, the C2 motif was found to be strictly conserved in 176 of 179 EIAV gp90 sequences present in GenBank, despite considerable sequence variation in other regions.Although some positions of the C2 motif were not absolutely conserved, we found a common pattern of variation between distantly related lentiviruses. For example, position f of the C2 motif is either Pro in EIAV, HIV-2, and simian immunodeficiency virus or aromatic (Tyr or Trp) in the small ruminant lentiviruses BIV and JDV. Also, position h can be either Phe or Tyr even in closely related lentiviruses (HIV-1/HIV-2, visna virus/CAEV, or BIV/JDV), and position l can be either Arg or Lys in the primate and small ruminant lentiviruses or Gln, which is a common conservative substitution for Arg and Lys, in EIAV, BIV, and JDV. Therefore, the C2 motifs of different lentiviruses appear to have a common constraint on sequence variation, suggesting a structural or functional similarity between the HIV-1 gp120 C2 domain and the SU of EIAV, BIV, and JDV.The other previously described gp120-gp135 conserved motifs outside the β4/β5 region could not be identified in the SU of other lentiviruses, including the sequence of gp120 β8, which has a cysteine forming a disulfide bond with the conserved β4 cysteine. Although the C2 motif was not present in FIV gp100, a similar motif was identified in a location upstream from the FIV gp100 V3 region (sequence SYCTDPLQIPLI, amino acids 318 to 329; conserved residues are underlined), in a similar relative position from gp100 V3 as the C2 motif from the V3 region of HIV-1 gp120. However, some of the highly conserved positions of the motif (positions g, h, and j) were not conserved in FIV gp100, and the significance of this FIV gp100 motif is unclear.

C2 motif is present in type A and B retroviral envelope surface glycoproteins.

The conservation of two short motifs in distant regions of SU that are located close to each other in the tertiary structure of HIV-1 gp120 suggests that this region represents a domain of SU that is of structural or functional importance. The TM ectodomains from lentiviruses and type B retroviruses have been shown to have some sequence similarity (19, 34, 38). Therefore, we asked whether sequence similarity between the Env of lentiviruses and type B retroviruses extends to the C2 and C5 motifs of SU.The type A and B retroviruses have some sequence homology in SU, and most of the sequence homology is located in the carboxy-terminal region of SU (18, 38). Visual examination of SU sequences from the human endogenous retrovirus K (18), mouse intracisternal A-type element (26), the exogenous/endogenous mouse mammary tumor virus (25), and the exogenous/endogenous type B/D jaagsiekte sheep retrovirus (JSRV) and the closely related ovine enzootic nasal tumor virus (which encode type B retroviral envelopes) (6, 38) revealed a sequence closely related to the C2 motif in their conserved carboxy-terminal region (Fig. (Fig.1A).1A). This sequence represents one of the most conserved sequences in the SU of this group of retroviruses and is also conserved among different strains or members of endogenous families (not shown). Some positions of the C2 motif, such as positions c, d, and g, are strictly or almost completely conserved between the lentiviruses and type A and B retroviruses. However, more informative than the sequence similarity between lentiviruses and type A and B retroviruses is the lack of distinction between the patterns of sequence variation for each position of the motif within and between retrovirus groups, even between closely related viruses. For example, position e of the C2 motif within both the lentiviruses and type A and B retroviruses can be either Pro or basic/Gln; the “dimorphic” position f encodes only Tyr/Trp or Pro (except in HIV-1); position h encodes either Phe or Tyr in all sequences; position i encodes either Ala or a hydrophobic residue in most sequences; position j encodes either Ile, Leu, or Phe in all sequences; position k encodes either Leu, Ile, or Val in all sequences; and position l is preferentially Lys, Arg, or Gln in the lentiviruses and JSRV. Most of these degenerate positions represent very conservative variations (positions a and h through l) or a restricted number of nonconservative variations (positions e and f, in the turn between β4 and β5). The sequence conservation and common pattern of variation between the C2 motifs of lentiviruses and type A and B retroviruses indicate a similar structural or functional constraint on sequence variation in the SU of these two groups of viruses.In contrast to the type A and B retroviruses, sequences similar to the C2 or C5 motifs could not be found in the SU of the Moloney murine leukemia virus, bovine leukemia virus, human T-cell leukemia virus types 1 and 2 (HTLV-1 and HTLV-2), Rous sarcoma virus, feline RD114 endogenous retrovirus, baboon endogenous retrovirus, feline leukemia virus type A, the Mason-Pfizer monkey retrovirus, or any spumaretrovirus even when using the Findpatterns program of the GCG package (7).Here we show that two short SU motifs are highly conserved in the lentiviruses and that one of these motifs is also conserved in the type A and B retroviruses. Many of the pairwise alignments were not statistically significant when tested by the Monte Carlo simulation of the Bestfit program of the GCG package and could therefore be attributed to chance. However, when all lentiviral sequences are included in the analysis and the multiple alignment is interpreted in the context of the X-ray structure of HIV-1 gp120, the conserved C2 and C5 motifs have a clear structural significance. The conservation of these motifs indicates that the region of the HIV-1 gp120 inner proximal domain centered on the antiparallel β-strands 5 and 25 forms a highly conserved lentiviral SU surface and suggests a possible structural similarity between the SU of lentiviruses and type A and B retroviruses in that domain. Although the C2 motif is too short to rule out convergent evolution between the SU of lentiviruses and type A and B retroviruses, their sequence similarity in TM (19, 34, 38) supports a common origin for most or the entire env genes of these two retroviral groups.The reason for the disagreement between the different degrees of sequence similarity in the SU of lentiviruses and the phylogenetic analyses of the pol gene products is unclear but probably reflects differences in evolutionary rates in different lentiviruses or recombination events (19, 20). Precedents for recombination events between env genes of closely or distantly related retroviruses, deduced from phylogenetic analyses, have been described. An exchange of env sequences probably occurred between HTLV-1 and HTLV-2 (19) and between a type C retrovirus closely related to the avian reticuloendotheliosis virus and a type B retrovirus which originated the type D retroviruses (19, 38).Modeling of the trimeric SU complex on the virion surface indicates that strands β5 and β25 form part of the most virion-proximal surface of the gp120 core (14, 37). While none of the residues of the C2 motif was directly tested for interactions with TM, at least one of the residues of β25 in the C5 region of HIV-1 gp120, I491, is important for stable SU-TM interactions (9). Therefore, the conserved lentiviral SU surface may represent a common structure among lentiviruses and possibly type A and B retroviruses for anchoring SU on TM in the envelope glycoprotein complex. It is interesting that the C5 motif region, which forms a β-strand in the CD4-bound gp120 core, is included in a computer-modeled pocket structure postulated to be important in SU-TM interactions (28), suggesting a structural basis for SU shedding upon receptor-induced conformational change.The sequence of the HIV-1 gp120 outer domain, shown as a cross-hatched box in Fig. Fig.2,2, is included entirely between the C2 and C5 motifs (13). Our previous sequence analysis indicates that the gp135s of small ruminant lentiviruses have a similar inner/outer domain organization: most strands of the inner domain β-sandwich as well as β12, located in the outer domain immediately upstream from the gp120 V3 loop, are conserved between gp135 and the gp120 of primate lentiviruses (10). The identification of a homologue of gp120 β25 in gp135 about 290 amino acid residues downstream from the C2 motif provides further support for a similar domain organization in the SU of primate and small ruminant lentiviruses. Consistent with this interpretation, the putative outer domain of gp135, located between the C2 and C5 motifs, is highly glycosylated and contains more than 80% of the potential N-linked glycosylation sites of gp135 (11), similar to the heavy glycosylation of the gp120 outer domain (37). In this gp135 domain model, the distance between the C2 and C5 motifs in the primary structure of SU would indicate a larger relative size of the putative outer domain of gp135 than gp120 outer domain. The presence of the C2 and C5 motifs in EIAV, BIV, and JDV would also suggest an analogous inner/outer domain organization for the SU of these lentiviruses. However, the shorter sequence between the C2 and C5 motifs in EIAV, BIV, and JDV may indicate either a much smaller or absent outer domain in the SU of these viruses (Fig. (Fig.2).2). The conserved C2 motif of EIAV gp90 was shown to be part of a minor neutralization epitope recognized by a murine monoclonal antibody (1), suggesting that the EIAV C2 motif is better exposed on the virion surface than the C2 motif of gp120, compatible with a smaller or absent outer domain in gp90. Interestingly, the C2 motif of type A and B retroviruses is located in the carboxy terminus of SU (Fig. (Fig.2)2) and C5 appears to be absent, indicating that the surface glycoproteins of type A and B retroviruses, although possibly structurally related to the SU of lentiviruses, probably lack an outer domain homologue and have a different domain organization than the SU of lentiviruses. Open in a separate windowFIG. 2Location of the C2 and C5 motifs in retrovirus envelope glycoproteins. The Env glycoproteins (excluding the amino-terminal leader peptide) are drawn to scale and aligned by the SU-TM cleavage sites conserved in all retroviruses (dotted line). The SU and TM domains of Env are indicated by double arrows. The boundaries of the C2, V3, and C5 regions of HIV-1 gp120 are indicated by thick lines above the alignment, and the location of the HIV-1 gp120 outer domain sequence is shown by a cross-hatched box. The black and gray boxes in the SU domain indicate the positions of the C2 and C5 motifs, respectively. Asterisks represent the described PNDs of EIAV (1), visna virus (29), FIV (17), and T-cell-adapted strains of HIV-1 (33) and HIV-2 (2).The two conserved colinear motifs of lentivirus SU could be useful as structural points of reference for comparative structural studies of SU from different lentiviruses. Variable domains of SU are important in the mechanisms of host cell invasion, tropism determination, and immune evasion. In HIV-1, the third variable loop V3 of gp120 is the main target of neutralizing antibodies in tissue culture-adapted strains and also determines coreceptor usage and tropism (5, 30, 32, 33). Whether sequences in variable regions of SU in other lentiviruses that are functionally equivalent to the gp120 V3 loop are also structurally related to the gp120 V3 loop is not clear. The position of variable domains relative to the C2 and C5 motifs could therefore indicate their structural relationship. For example, the principal neutralization domain (PND) of EIAV gp90, postulated to be functionally equivalent to the gp120 V3 loop (1, 16), is located upstream from the C2 motif instead of downstream, as the V3 loop in gp120 is (Fig. (Fig.2),2), suggesting that the gp90 PND and the gp120 V3 loop, while having similar roles in evasion of humoral immune responses, may not be structurally related to each other. A similar situation also occurs in visna virus, whose PND, located in the carboxy-terminal region of gp135 (29), was previously shown to be structurally unrelated to the HIV-1 gp120 V3 loop (10). This would indicate that different lentiviruses may have evolved different regions of a primordial lentivirus surface glycoprotein to perform similar functions important in virus-host interactions.  相似文献   

19.
A human immunodeficiency virus type 1 (HIV-1) mutant lacking the V1 and V2 variable loops in the gp120 exterior envelope glycoprotein replicated in Jurkat lymphocytes with only modest delays compared with the wild-type virus. Revertants that replicated with wild-type efficiency rapidly emerged and contained only a few amino acid changes in the envelope glycoproteins compared with the parent virus. Both the parent and revertant viruses exhibited increased sensitivity to neutralization by antibodies directed against the V3 loop or a CD4-induced epitope on gp120 but not by soluble CD4 or an antibody against the CD4 binding site. This result demonstrates the role of the gp120 V1 and V2 loops in protecting HIV-1 from some subsets of neutralizing antibodies.  相似文献   

20.
D Long  J F Berson  D G Cook    R W Doms 《Journal of virology》1994,68(9):5890-5898
Human immunodeficiency virus type 1 (HIV-1) infects some cell types which lack CD4, demonstrating that one or more alternative viral receptors exist. One such receptor is galactosylceramide (GalCer), a glycosphingolipid distributed widely in the nervous system and in colonic epithelial cells. Using a liposome flotation assay, we found that the HIV-1 surface glycoprotein, gp120, quantitatively bound to liposomes containing GalCer but not to liposomes containing phospholipids and cholesterol alone. Binding was saturable and was inhibited by preincubating liposomes with anti-GalCer antibodies. We observed less efficient binding of gp120 to liposomes containing lactosylceramide, glucosylceramide, and galactosylsulfate, whereas no binding to liposomes containing mixed gangliosides, psychosine, or sphingomyelin was detected. Binding to GalCer was rapid, largely independent of temperature and pH, and stable to conditions which remove most peripheral membrane proteins. By contrast, gp120 bound to lactosylceramide could be removed by 2 M potassium chloride or 3 M potassium thiocyanate, demonstrating a less stable interaction. Removal of N-linked oligosaccharides on gp120 did not affect binding efficiency. However, as previously observed for CD4 binding, heat denaturation of gp120 prevented binding to GalCer. Finally, binding was critically dependent on the concentration of GalCer in the target membrane, suggesting that binding to glycolipid-rich domains occurs and that GalCer conformation may be important for gp120 recognition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号