首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The GTPase activity of purified EF-1 alpha from calf brain has been studied under various experimental conditions and compared with that of EF-Tu. EF-1 alpha displays a much higher GTPase turnover than EF-Tu in the absence of aminoacyl-tRNA (aa-tRNA) and ribosomes (intrinsic GTPase activity); this is due to the higher exchange rate between bound GDP and free GTP. Also the intrinsic GTPase of EF-1 alpha is enhanced by increasing the concentration of monovalent cations, K+ being more effective than NH+4. Differently from EF-Tu, aa-tRNA is much more active than ribosomes in stimulating the EF-1 alpha GTPase activity. However, ribosomes strongly reinforce the aa-tRNA effect. In the absence of aa-tRNA the rate-limiting step of the GTPase turnover appears to be the hydrolysis of GTP, whereas in its presence the GDP/GTP exchange reaction becomes rate-limiting, since addition of EF-1 beta enhances turnover GTPase activity. Kirromycin moderately inhibits the intrinsic GTPase of EF-1 alpha; this effect turns into stimulation when aa-tRNA is present. Addition of ribosomes abolishes any kirromycin effect. The inability of kirromycin to affect the EF-1 alpha/guanine-nucleotide interaction in the presence of ribosomes shows that, differently from EF-Tu, the EF-1 alpha X GDP/GTP exchange reaction takes place on the ribosome.  相似文献   

2.
Eukaryotic elongation factor 1 alpha (EF-1 alpha) binds all the aminoacyl-tRNAs except the initiator tRNA in a GTP-dependent manner. While the GTP binding site is delineated by the three GTP binding consensus elements, less is known about the aminoacyl-tRNA binding sites. In order to better understand this site, we have initiated cross-linking and protease mapping studies of the EF-1 alpha-GTP-aminoacyl-tRNA complex. Two different chemical cross-linking reagents, trans-diaminedichloroplatinum(II) and diepoxybutane, were used to cross-link four different aminoacyl-tRNA species to EF-1 alpha. A series of peptides were obtained, located predominantly in domains II and III. The ability of aminoacyl-tRNA to protect protease digestion sites was also monitored, and domain II was found to be protected from digestion by aminoacyl-tRNA. Last, an aminoacyl-tRNA analog with a reactive group on the aminoacyl side chain, N epsilon-bromoacetyl-Lys-tRNA, was cross-linked to EF-1 alpha. This reagent cross-liked to histidine 296 in a GTP-dependent manner and thus localizes the aminoacyl group adjacent to domain II. A model is developed for aminoacyl-tRNA binding to EF-1 alpha based on its similarity to the prokaryotic factor EF-Tu, for which an x-ray crystal structure is available.  相似文献   

3.
Silk gland elongation factor 1 (EF-1) consists of four subunits: alpha, beta, beta', and gamma. EF-1 beta beta' gamma catalyzes the exchange of GDP for GTP on EF-1 alpha and stimulates the binding of EF-1 alpha-dependent aminoacyl-tRNA to ribosomes. The carboxy-terminal regions of the EF-1 beta subunits from various species are highly conserved. We examined the region of EF-1 beta' that binds to EF-1 alpha by in vitro binding assays, and examined the GDP/GTP exchange activity using deletion mutants of a GST-EF1 beta' fusion protein. We thereby suggested a pivotal amino acid region, residues 189-222, of EF-1 beta' for binding to EF-1 alpha.  相似文献   

4.
The elongation factor 1 alpha (aEF-1 alpha) was purified to homogeneity from the thermoacidophilic archaebacterium Sulfolobus solfataricus by chromatographic procedures utilising DEAE-Sepharose, hydroxyapatite and FPLC on Mono S. The purified protein binds [3H]GDP at a 1:1 molar ratio and it is essential for poly(Phe) synthesis in vitro; it also binds GTP but not ATP. These findings indicate that aEF-1 alpha is the counterpart of the eubacterial elongation factor Tu (EF-Tu). Purified aEF-1 alpha is a monomeric protein with a relative molecular mass of 49,000 as determined by SDS/PAGE and by gel filtration on Sephadex G-100; its isoelectric point is 9.1. The overall amino acid composition did not reveal significant differences when compared with the amino acid composition of eubacterial EF-Tu from either Escherichia coli or Thermus thermophilus, of eukaryotic EF-1 alpha from Artemia salina or of archaebacterial EF-1 alpha from Methanococcus vannielii. The close similarities between the average hydrophobicity and the numbers of hydrogen-bond-forming or non-helix-forming residues suggest that common structural features exist among the factors compared. aEF-1 alpha shows remarkable thermophilic properties, as demonstrated by the rate of [3H]GDP binding which increases with temperature, reaching a maximum at 95 degrees C; it is also quite heat-resistant, since after a 6-h exposure at 60 degrees C and 87 degrees C the residual [3H]GDP-binding ability was still 90% and 54% of the control, respectively. The affinity of aEF-1 alpha for GDP and GTP was also evaluated. At 80 degrees C Ka' for GDP was about 30-fold higher than Ka' for GTP; at the same temperature Kd' for GDP was 1.7 microM and Kd' for GTP was 50 microM; these values were 300-fold and 100-fold higher, respectively, than those reported for E. coli EF-Tu at 30 degrees C; compared to the values at 0 degree C of EF-Tu from E. coli and T. thermophilus or EF-1 alpha from A. salina, pig liver and calf brain, smaller differences were observed with eukaryotic factors.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

5.
A low molecular weight form of the eukaryotic polypeptide chain elongation factor 1 (EF-1α) has been extensively purified from pig liver to give an apparently homogeneous preparation, which seemed to be analogous to the bacterial elongation factor, EF-Tu (Iwasaki, K., Nagata, S., Mizumoto, K., and Kaziro, Y. (1974) J. Biol. Chem. 249, 5008). Thus, the interaction of the purified EF-1α with guanine nucleotides as well as aminoacyl-tRNA has been investigated and the following results have been obtained. (1) EF-1α when kept in the absence of glycerol lost its activity to promote the binding of aminoacylt-RNA to ribosomes though it retained the ability to bind guanine nucleotides. However, the former activity could be stabilized by the addition of 25% (vv) glycerol to the solution. (2) EF-1α formed a binary complex with guanine nucleotides such as GTP, GDP, 5′-guanylyl methylenediphosphonate or 5′-guanylyl imidodiphosphate. The molar ratio of EF-1α to GTP or GDP in the binary complex was shown to be 1. (3) The presence of a ternary complex containing EF-1α, GTP and aminoacyl-tRNA was demonstrated by several methods, i.e., (i) an increased heat stability of EF-1α in the presence of GTP and Phe-tRNA, (ii) a decrease in the amount of the EF-1α·GTP complex in the presence of aminoacyl-tRNA, (iii) a protection of the ester linkage of Phe-tRNA from hydrolysis at alkaline pH by the presence of both EF-1α and GTP, and (iv) the isolation of the complex by gel filtration.  相似文献   

6.
The elongation factor Tu binds aminoacyl-tRNA in the presence of GDP   总被引:7,自引:0,他引:7  
Escherichia coli elongation factor (EF-Tu) binds aminoacyl-tRNAs (aa-tRNA) not only in the presence of GTP but also in the presence of GDP. Complex formation leads to a protection of the aa-tRNA against nonenzymatic deacylation and digestion by pancreatic ribonuclease, as well as to a protection of EF-Tu against proteolysis by trypsin. The equilibrium constant for the binding of Phe-tRNAPheyeast for example to EF-Tu.GDP has been determined to be 0.7 X 10(5) M-1 which is 2 orders of magnitude lower than the equilibrium constant for Phe-tRNAPheyeast binding to EF-Tu.GTP. In the presence of kirromycin, aminoacyl-tRNA binding to EF-Tu.GDP is not affected as much: Phe-tRNAPheyeast is bound with an equilibrium constant of 3 X 10(5) M-1. While there is also a measurable interaction between EF-Tu.GTP and tRNA, such an interaction cannot be detected with EF-Tu.GDP and tRNA, not even at millimolar concentrations. A so far undetected complex formation between aminoacyl-tRNA and EF-Tu.GTP in the presence of pulvomycin, however, could be detected. The results are discussed in terms of the structural requirements of ternary complex formation and in the light of proofreading schemes involving A-site binding on the E. coli ribosome.  相似文献   

7.
The low-molecular-weight form of elongation factor 1 (EF-1L) of the cysts of the brine shrimp Artemia salina and [3H]phenylalanyl-tRNA are able to form a stable complex which can be isolated on a Sephacryl S200 column. The formation of this complex is inhibited by increasing concentrations of magnesium acetate and KCl. Furthermore, the formation of this complex is independent of the presence of guanine nucleotides. Complex formation between EF-1L and phenylalanyl-tRNA appears to be specific, since acylation of the tRNA is a necessity for this interaction. Although EF-1L alone binds GDP somewhat more strongly than GTP, the complex between EF-1L and phenylalanyl-tRNA binds GTP exclusively. Our results support the idea that complex formation between EF-1L and aminoacyl-tRNA precedes the enzymatic binding of aminoacyl-tRNA to the 80-S ribosome. Subsequently to this binding, release of EF-1L from the ribosome occurs.  相似文献   

8.
The purified heavy form of elongation factor 1 (EF-1) from cysts of Artemia salina was found to catalyze the exchange of free GTP with a complex of EF-1L (EF-1α) and GDP. Furthermore, after heat treatment of EF-1H in the presence of GTP, the factor, while inactive by itself, stimulated aminoacyl-tRNA binding to ribosomes as well as polyphenylalanine synthesis when combined with EF-1α. These functional properties are similar to those reported recently for purified EF-1β from pig liver [ Nagata,S., Motoyoshi,K., and Iwasaki,K. (1976) Biochem. Biophys. Res. Comm. 71, 933–938 ]. We suggest that Artemia EF-1H consists of a EF-1α. EF-1β complex which is functionally analogous to bacterial EF-Tu · EF-Ts.  相似文献   

9.
Translation termination in eukaryotes requires a stop codon-responsive (class-I) release factor, eRF1, and a guanine nucleotide-responsive (class-II) release factor, eRF3. Schizosaccharomyces pombe eRF3 has an N-terminal polypeptide similar in size to the prion-like domain of Saccharomyces cerevisiae eRF3 in addition to the EF-1alpha-like catalytic domain. By in vivo two-hybrid assay as well as by an in vitro pull-down analysis using purified proteins of S. pombe as well as of S. cerevisiae, eRF1 bound to the C-terminal one-third domain of eRF3, named eRF3C, but not to the N-terminal two-thirds, which was inconsistent with the previous report by Paushkin et al. (1997, Mol Cell Biol 17:2798-2805). The activity of S. pombe eRF3 in eRF1 binding was affected by Ala substitutions for the C-terminal residues conserved not only in eRF3s but also in elongation factors EF-Tu and EF-1alpha. These single mutational defects in the eRF1-eRF3 interaction became evident when either truncated protein eRF3C or C-terminally altered eRF1 proteins were used for the authentic protein, providing further support for the presence of a C-terminal interaction. Given that eRF3 is an EF-Tu/EF-1alpha homolog required for translation termination, the apparent dispensability of the N-terminal domain of eRF3 for binding to eRF1 is in contrast to importance, direct or indirect, in EF-Tu/EF-1alpha for binding to aminoacyl-tRNA, although both eRF3 and EF-Tu/EF-1alpha share some common amino acids for binding to eRF1 and aminoacyl-tRNA, respectively. These differences probably reflect the independence of eRF1 binding in relation to the G-domain function of eRF3 (i.e., probably uncoupled with GTP hydrolysis), whereas aminoacyl-tRNA binding depends on that of EF-Tu/EF-1alpha(i.e., coupled with GTP hydrolysis), which sheds some light on the mechanism of eRF3 function.  相似文献   

10.
The stimulatory effect of peptide elongation factor 3 (EF-3), which is uniquely required for the yeast elongation cycle, on the step of binding of aminoacyl-tRNA (AA-tRNA) to ribosomes has been investigated in detail. Yeast EF-1 alpha apparently functions in a stoichiometric manner in the binding reaction of AA-tRNA to the ribosomes. The addition of EF-3 and ATP to this binding system strikingly stimulated the binding reaction, and the stimulated reaction proceeded catalytically with respect to both EF-1 alpha and EF-3, accompanied by ATP hydrolysis, indicating that EF-3 stimulated the AA-tRNA binding reaction by releasing EF-1 alpha from the ribosomal complex, thus recycling it. This binding stimulation by EF-3 was in many respects distinct from that by EF-1 beta gamma. The idea that EF-3 may participate in the regeneration of GTP from ATP and the formed GDP, as indicated by the findings that the addition of EF-3 along with ATP allowed the AA-tRNA binding and Phe polymerization reactions to proceed even in the presence of GDP in place of GTP, was not verified by the results of direct measurement of [32P]GTP formation from [gamma-32P]ATP and GDP under various conditions. Examination of the stability of the bound AA-tRNA disclosed the different binding states of AA-tRNA on ribosomes between in the cases of the complexes formed with EF-1 alpha alone, or factor-independently, and with EF-1 alpha and EF-3.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
In Xenopus laevis oocytes two distinct systems catalyze the mRNA-dependent binding of aminoacyl tRNA to the A site of ribosomes. These systems are elongation factor 1 alpha (EF-1 alpha) and the 42S nucleoprotein particle. This particle is also implicated in the long-term storage of 5S RNA and aminoacyl tRNA during early oogenesis. We report here that the ribosomes and the storage particles are distributed uniformly in the cytoplasm of previtellogenic (stage I) oocytes. In contrast, EF-1 alpha is concentrated in a small region of the cytoplasm, known as the mitochondrial mass or Balbiani body. When the Balbiani body disperses in early vitellogenic oocytes (stage II), EF-1 alpha becomes evenly distributed in the cytoplasm. The main phase of EF-1 alpha accumulation follows the disappearance of the 42S particles (stage II), but coincides with the main phase of ribosome accumulation (stages III and IV).  相似文献   

12.
Eukaryotic polypeptide elongation factor EF-1 is not only a major translational factor, but also one of the most important multifunctional (moonlighting) proteins. EF-1 consists of four different subunits collectively termed EF-1alphabeta beta'gamma and EF-1alphabeta gammadelta in plants and animals, respectively. EF-1alpha x GTP catalyzes the binding of aminoacyl-tRNA to the A-site of the ribosome. EF-1beta beta'gamma (EF-1beta and EF-1beta'), catalyzes GDP/GTP exchange on EF-1alpha x GDP to regenerate EF-1alpha x GTP. EF-1gamma has recently been shown to have glutathione S-transferase activity. EF-2 catalyzes the translocation of peptidyl-tRNA from the A-site to the P-site on the ribosome. Recently, molecular mimicry among tRNA, elongation factors, releasing factor (RF), and ribosome recycling factor (RRF) has been demonstrated and greatly improved our understanding of the mechanism of translation. Moreover, eukaryotic elongation factors have been shown to be concerned or likely to be concerned in various important cellular processes or serious diseases, including translational control, signal transduction, cytoskeletal organization, apoptosis, adult atopic dermatitis, oncogenic transformation, nutrition, and nuclear processes such as RNA synthesis and mitosis. This article aims to overview the recent advances in protein biosynthesis, concentrating on the moonlighting functions of EF-1.  相似文献   

13.
Cytoplasmic elongation factor 1 alpha (EF-1 alpha) [corrected] was purified to homogeneity in high yield from the two different yeasts Saccharomyces carlsbergensis (S. carls.) and Schizosaccharomyces pombe (S. pombe). The purification was easily achieved by CM-Sephadex column chromatography of the breakthrough fractions from DEAE-Sephadex chromatography of cell-free extracts. The basic proteins have a molecular weight of 47,000 for the S. carls. factor and of 49,000 for the S. pombe factor. While the purified yeast EF-1 alpha s function analogously to other eukaryotic factors and the E. coli EF-Tu in Phe-tRNA binding and polyphenylalanine synthesis, the yeast factor unusually hydrolyzed GTP on yeast ribosomes upon addition of Phe-tRNA in the absence of poly(U) as mRNA. This novelty is probably owing to the yeast ribosomes, which are assumed to lack elongation factor 3-equivalent component(s). Trypsin and chymotrypsin selectively cleaved the two yeast factors to generate resistant fragments with the same molecular weight of 43,000 (by trypsin) and of 44,000 (by chymotrypsin), respectively. Those cleavage sites were characteristically protected by the presence of several ligands bound to EF-1 alpha such as GDP, GTP, and aminoacyl-tRNA. Based on the sequence analysis of the fragments generated by the two proteases, the partial amino acid sequence of the S. carls. EF-1 alpha was deduced to be in accordance with the N-terminal region covering positions (1) to 94 and two Lys residues at the C-terminal end of the predicted total sequence of the Saccharomyces cerevisiae (S. cerev.) factor derived from DNA analysis, except for a few N-terminal residues, confirming the predicted S. cerev. sequence at the protein level. EF-1 beta and EF-1 beta gamma were isolated and highly purified as biologically active entities from the two yeasts. EF-1 beta s from the two yeasts have the same molecular weight of 27,000, whereas component gamma of the S. carls. EF-1 beta gamma showed a higher molecular weight (47,000) than that of the S. pombe factor (40,000). It was also shown that a stoichiometric complex was formed between EF-1 alpha and EF-1 beta gamma from S. pombe. Furthermore, a considerable amount of Phe-tRNA binding activity was distributed in the EF-1H (probably EF-1 alpha beta gamma) fraction from freshly prepared cell-free extracts of yeast.  相似文献   

14.
The present study has examined the requirements for the binding of rabbit reticulocyte elongation factor 1 (EF-1) to ribosomes under different assay conditions. When a centrifugation procedure was used to separate the ribosome EF-1 complex, the binding of EF-1 to ribosomes required GTP and Phe-tRNA, but not poly(U). The results suggested that undr these conditions a ternary complex, EF-1 . GTP . aminoacyl-tRNA, is necessary for the formation of a ribosome . EF-1 complex. However, when gel filtration was used to isolate the ribosome . EF-1 complex, only template and tRNA were required. These studie emphasize the fact that the procedure used to isolate the ribosome . EF-1 complex determines the requirements for stable complex formation. EF-1 can also interact with nucleic acids such as 28 S and 18 S rRNA, messenger RNA and DNA. In contrast to the binding to ribosomes, EF-1 binding to nucleic acids requires only Mg2+.  相似文献   

15.
Yeast mitochondrial elongation factor Tu (EF-Tu) was purified 200-fold from a mitochondrial extract of Saccharomyces cerevisiae to yield a single polypeptide of Mr = approximately 47,000. The factor was detected by complementation with Escherichia coli elongation factor G and ribosomes in an in vitro phenylalanine polymerization reaction. Mitochondrial EF-Tu, like E. coli EF-Tu, catalyzes the binding of aminoacyl-tRNA to ribosomes and possesses an intrinsic GTP hydrolyzing activity which can be activated either by kirromycin or by ribosomes. Kinetic and binding analyses of the interactions of mitochondrial EF-Tu with guanine nucleotides yielded affinity constants for GTP and GDP of approximately 5 and 25 microM, respectively. The corresponding affinity constants for the E. coli factor are approximately 0.3 and 0.003 microM, respectively. In keeping with these observations, we found that purified mitochondrial EF-Tu, unlike E. coli EF-Tu, does not contain endogenously bound nucleotide and is not stabilized by GDP. In addition, we have been unable to detect a functional counterpart to E. coli EF-Ts in extracts of yeast mitochondria and E. coli EF-Ts did not detectably stimulate amino acid polymerization with mitochondrial EF-Tu or enhance the binding of guanine nucleotides to the factor. We conclude that while yeast mitochondrial EF-Tu is functionally analogous to and interchangeable with E. coli EF-Tu, its affinity for guanine nucleotides and interaction with EF-Ts are quite different from those of E. coli EF-Tu.  相似文献   

16.
Translation on the ribosome is controlled by external factors. During polypeptide lengthening, elongation factors EF-Tu and EF-G consecutively interact with the bacterial ribosome. EF-Tu binds and delivers an aminoacyl-tRNA to the ribosomal A site and EF-G helps translocate the tRNAs between their binding sites after the peptide bond is formed. These processes occur at the expense of GTP. EF-Tu:tRNA and EF-G are of similar shape, share a common binding site, and undergo large conformational changes on interaction with the ribosome. To characterize the internal motion of these two elongation factors, we used 25 ns long all-atom molecular dynamics simulations. We observed enhanced mobility of EF-G domains III, IV, and V and of tRNA in the EF-Tu:tRNA complex. EF-Tu:GDP complex acquired a configuration different from that found in the crystal structure of EF-Tu with a GTP analogue, showing conformational changes in the switch I and II regions. The calculated electrostatic properties of elongation factors showed no global similarity even though matching electrostatic surface patches were found around the domain I that contacts the ribosome, and in the GDP/GTP binding region.  相似文献   

17.
The interaction of the polypeptide chain elongation factor Tu (EF-Tu) with the antibiotic kirromycin and tRNA has been studied by measuring the extent of protein modification with N-tosyl-L-phenylalanine chloromethylketone (TPCK) and N-ethylmaleimide (NEM). Kirromycin protects both EF-Tu.GDP and EF-Tu.GTP against modification with TPCK. Binding of aminoacyl-tRNA added at increasing concentrations to a solution of 40 microM EF-Tu.GDP.kirromycin complex re-exposes the TPCK target site on the protein. However, when the aminoacyl-tRNA concentration is raised beyond 20 microM, TPCK labeling drops again and is blocked completely at approximately 300 microM aminoacyl-tRNA. By contrast, addition of uncharged tRNA or N- acetylaminoacyl -tRNA enhances TPCK labeling of the protein over the entire tRNA concentration range studied. These data strongly suggest that kirromycin induces in EF-Tu.GDP an additional tRNA binding site that can bind uncharged tRNA, aminoacyl-tRNA, and N- acetylaminoacyl -tRNA. Support for this assumption is provided by measuring the modification of EF-Tu.GDP with the sulfhydryl reagent NEM. Moreover, NEM modification also indicates an additional tRNA binding site on EF-Tu.GTP.kirromycin, which could not be detected with TPCK. Mapping of the tryptic peptides of EF-Tu.GDP labeled with [14C]TPCK revealed only one target site for this agent, i.e., cysteine-81. Modification occurred at the same site in the presence and in the absence of kirromycin and uncharged tRNA.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Elongation factor EF-1 from Guerin epithelioma was separated into two subunit forms EF-1A and EF-1B by chromatography in the presence of 25% glycerol, successively on CM-Sephadex and DEAE-Sephadex. It was shown that EF-1A is a thermolabile, single polypeptide which catalyses the binding of aminoacyl-tRNA to ribosomes, similarly as eukaryotic EF-1 alpha or prokaryotic EF-Tu. EF-1B was characterized as a complex composed of at least two polypeptides. One of them is EF-1A, the other EF-1C, which stimulates EF-1A activity and protects this elongation factor from thermal inactivation.  相似文献   

19.
The properties and role in peptide elongation of ATPase intrinsic to rat liver ribosomes were investigated. (i) Rat liver 80S ribosomes showed high ATPase and GTPase activities, whereas the GTPase activity of EF-1alpha and EF-2 was very low. mRNA, aminoacyl-tRNA, and elongation factors alone enhanced ribosomal ATPase activity and in combination stimulated it additively or synergistically. The results suggest that these translational components induce positive conformational changes of 80S ribosomes by binding to different regions of ribosomes. Translation inhibitors, tetracyclin and fusidic acid, inhibited ribosomal ATPase with or without elongational components. (ii) Two ATPase inhibitors, AMP-P(NH)P and vanadate, did not inhibit GTPase activities of EF-1alpha and EF-2 assayed as uncoupled GTPase, but they did inhibit poly(U)-dependent polyphe synthesis of 80S ribosomes. (iii) Effects of AMP-P(NH)P and ATP on poly(U)-dependent polyphe synthesis at various concentrations of GTP were examined. ATP enhanced the activity of polyphe synthesis even at high concentrations of GTP, suggesting a specific role of ATP. At low concentrations of GTP, the extent of inhibition by AMP-P(NH)P was very low, probably owing to the prevention of the reduction of the GTP concentration. (iv) Vanadate inhibited the translocation reaction by high KCl-washed polysomes. These findings together indicate that ribosomal ATPase participates in peptide translation by inducing positive conformational changes of mammalian ribosomes, in addition to its role of chasing tRNA from the E site.  相似文献   

20.
BACKGROUND: In eukaryotic protein synthesis, the multi-subunit elongation factor 1 (EF-1) plays an important role in ensuring the fidelity and regulating the rate of translation. EF-1alpha, which transports the aminoacyl tRNA to the ribosome, is a member of the G-protein superfamily. EF-1beta regulates the activity of EF-1alpha by catalyzing the exchange of GDP for GTP and thereby regenerating the active form of EF-1alpha. The structure of the bacterial analog of EF-1alpha, EF-Tu has been solved in complex with its GDP exchange factor, EF-Ts. These structures indicate a mechanism for GDP-GTP exchange in prokaryotes. Although there is good sequence conservation between EF-1alpha and EF-Tu, there is essentially no sequence similarity between EF-1beta and EF-Ts. We wished to explore whether the prokaryotic exchange mechanism could shed any light on the mechanism of eukaryotic translation elongation. RESULTS: Here, we report the structure of the guanine-nucleotide exchange factor (GEF) domain of human EF-1beta (hEF-1beta, residues 135-224); hEF-1beta[135-224], determined by nuclear magnetic resonance spectroscopy. Sequence conservation analysis of the GEF domains of EF-1 subunits beta and delta from widely divergent organisms indicates that the most highly conserved residues are in two loop regions. Intriguingly, hEF-1beta[135-224] shares structural homology with the GEF domain of EF-Ts despite their different primary sequences. CONCLUSIONS: On the basis of both the structural homology between EF-Ts and hEF-1beta[135-224] and the sequence conservation analysis, we propose that the mechanism of guanine-nucleotide exchange in protein synthesis has been conserved in prokaryotes and eukaryotes. In particular, Tyr181 of hEF-1beta[135-224] appears to be analogous to Phe81 of Escherichia coli EF-Ts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号