首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Granzyme B is critical to the ability of natural killer cells and cytotoxic T lymphocytes to induce efficient cell death of virally infected or tumor cell targets. Although granzyme B can cleave and activate caspases to induce apoptosis, granzyme B can also cause caspase-independent cell death. Thirteen prospective granzyme B substrates were identified from a cDNA expression-cleavage screen, including Hsp70, Notch1, fibroblast growth factor receptor-1 (FGFR1), poly-A-binding protein, cAbl, heterogeneous nuclear ribonucleoprotein H', Br140, and intersectin-1. Validation revealed that Notch1 is a substrate of both granzyme B and caspases, whereas FGFR1 is a caspase-independent substrate of granzyme B. Proteolysis of FGFR1 in prostate cancer cells has functionally relevant consequences that indicate its cleavage may be advantageous for granzyme B to kill prostate cancer cells. Therefore, granzyme B not only activates pro-death functions within a target, but also has a previously unidentified role in inactivating pro-growth signals to cause cell death.  相似文献   

2.
Granzyme B is a serine protease of the chymotrypsin fold that mediates cell death by cytotoxic lymphocytes. It is a processing enzyme, requiring extended peptide substrates containing an Asp residue. The determinants that allow for this substrate specificity are revealed in the three-dimensional structure of granzyme B in complex with a macromolecular inhibitor. The primary specificity for Asp occurs through a side-on interaction with Arg 226, a buried Arg side chain of granzyme B. An additional nine amino acids make contact with the substrate and define the granzyme B extended substrate specificity profile. The substrate determinants found in this structure are shared by other members of this protein class and help to reveal the properties that define substrate specificity.  相似文献   

3.
The major mechanism of cytotoxic lymphocyte killing involves the directed release of granules containing perforin and a number of proteases onto the target cell membrane. One of these proteases, granzyme B, has an unusual substrate site preference for Asp residues, a property that it shares with members of the emerging interleukin-1beta-converting enzyme (ICE)/CED-3 family of proteases. Here we show that granzyme B is sufficient to reproduce rapidly all of the key features of apoptosis, including the degradation of several protein substrates, when introduced into Jurkat cell-free extracts. Granzyme B-induced apoptosis was neutralized by a tetrapeptide inhibitor of the ICE/CED-3 family protease, CPP32, whereas a similar inhibitor of ICE had no effect. Granzyme B was found to convert CPP32, but not ICE, to its active form by cleaving between the large and small subunits of the CPP32 proenzyme, resulting in removal of the prodomain via an autocatalytic step. The cowpox virus protein CrmA, a known inhibitor of ICE family proteases as well as granzyme B, inhibited granzyme B-mediated CPP32 processing and apoptosis. These data demonstrate that CPP32 activation is a key event during apoptosis initiated by granzyme B.  相似文献   

4.
A central role for Bid in granzyme B-induced apoptosis   总被引:7,自引:0,他引:7  
Granzyme B, a protease released from cytotoxic lymphocytes, has been proposed to induce target cell death by cleaving and activating the pro-apoptotic Bcl-2 family member Bid. It has also been proposed that granzyme B can induce target cell death by activating caspases directly, by cleaving caspase substrates, and/or by cleaving several non-caspase substrates. The relative importance of Bid in granzyme B-induced cell death has therefore remained unclear. Here we report that cells isolated from various tissues of Bid-deficient mice were resistant to granzyme B-induced cell death. Consistent with the proposed role of Bid in regulating mitochondrial outer membrane permeabilization, cytochrome c remained in the mitochondria of Bid-deficient cells treated with granzyme B. Unlike wild type cells, Bid-deficient cells survived and were then able to proliferate normally, demonstrating the critical role for Bid in mediating granzyme B-induced apoptosis.  相似文献   

5.
Cytotoxic T lymphocytes kill virus-infected and tumor cell targets through the concerted action of proteins contained in cytolytic granules, primarily granzyme B and perforin. Granzyme B, a serine proteinase with substrate specificity similar to the caspase family of apoptotic cysteine proteinases, is capable of cleaving and activating a number of death proteins in target cells. Despite the ability to engage the death pathway at multiple entry points, the preferred mechanism for rapid induction of apoptosis by granzyme B has yet to be clearly established. Here we use time lapse confocal microscopy to demonstrate that mitochondrial cytochrome c release is the primary mode of granzyme B-induced apoptosis and that Bcl-2 is a potent inhibitor of this pivotal event. Caspase activation is not required for cytochrome c release, an activity that correlates with cleavage and activation of Bid, which we have found to be cleaved more readily by granzyme B than either caspase-3 or caspase-8. Bcl-2 blocks the rapid destruction of targets by granzyme B by blocking mitochondrial involvement in the process.  相似文献   

6.
Granzyme B is an important mediator of cytotoxic lymphocyte granule-induced death of target cells, accomplishing this through cleavage of Bid and cleavage and activation of caspases as well as direct cleavage of downstream substrates. Significant controversy exists regarding the primary pathways used by granzyme B to induce cell death, perhaps arising from the use of different protease/substrate combinations in different studies. The primary sequence of human, rat, and mouse granzymes B is well conserved, and the substrate specificity and crystal structure of the human and rat proteases are extremely similar. Although little is known about the substrate specificity of mouse granzyme B, recent studies suggest that it may differ significantly from the human protease. In these studies we show that the specificities of human and mouse granzymes B differ significantly. Human and mouse granzyme B cleave species-specific procaspase-3 more efficiently than the unmatched substrates. The distinct specificities of human and mouse granzyme B highlight a previously unappreciated requirement for Asp(192) in the acquisition of catalytic activity upon cleavage of procaspase-3 at Asp(175). Although human granzyme B efficiently cleaves human or mouse Bid, these substrates are highly resistant to cleavage by the mouse protease, strongly indicating that the Bid pathway is not a major primary mediator of the effects of mouse granzyme B. These studies provide important insights into the substrate specificity and function of the granzyme B pathway in different species and highlight that caution is essential when designing and interpreting experiments with different forms of granzyme B.  相似文献   

7.
Granzyme M is a trypsin-fold serine protease that is specifically found in the granules of natural killer cells. This enzyme has been implicated recently in the induction of target cell death by cytotoxic lymphocytes, but unlike granzymes A and B, the molecular mechanism of action of granzyme M is unknown. We have characterized the extended substrate specificity of human granzyme M by using purified recombinant enzyme, several positional scanning libraries of coumarin substrates, and a panel of individual p-nitroanilide and coumarin substrates. In contrast to previous studies conducted using thiobenzyl ester substrates (Smyth, M. J., O'Connor, M. D., Trapani, J. A., Kershaw, M. H., and Brinkworth, R. I. (1996) J. Immunol. 156, 4174-4181), a strong preference for leucine at P1 over methionine was demonstrated. The extended substrate specificity was determined to be lysine = norleucine at P4, broad at P3, proline > alanine at P2, and leucine > norleucine > methionine at P1. The enzyme activity was found to be highly dependent on the length and sequence of substrates, indicative of a regulatory function for human granzyme M. Finally, the interaction between granzyme M and the serpins alpha(1)-antichymotrypsin, alpha(1)-proteinase inhibitor, and proteinase inhibitor 9 was characterized by using a candidate-based approach to identify potential endogenous inhibitors. Proteinase inhibitor 9 was effectively hydrolyzed and inactivated by human granzyme M, raising the possibility that this orphan granzyme bypasses proteinase inhibitor 9 inhibition of granzyme B.  相似文献   

8.
Granzymes comprise a group of proteases involved in the killing of infected or cancerous cells by the immune system. Although best studied in T cells and natural killer (NK) cells, they are also expressed in some innate immune cells. Granzymes B and C are encoded in the mouse chymase locus that also encodes a number of mast cell-specific proteases. In line with this, mast cells can express granzyme B, although how this is regulated and their ability to express other granzymes is less well studied. We therefore examined how IL-33, a cytokine able to activate mast cells but not induce degranulation, regulated granzyme B and C levels in mast cells. Granzyme C, but not B, mRNA was strongly up-regulated in bone marrow-derived mast cells following IL-33 stimulation and there was a corresponding increase in granzyme C protein. These increases in both granzyme C mRNA and protein were blocked by a combination of the p38α/β MAPK inhibitor VX745 and the MEK1/2 inhibitor PD184352, which blocks the activation of ERK1/2. ERK1/2 and p38α activate the downstream kinases, mitogen and stress-activated kinases (MSK) 1 and 2, and IL-33 stimulated the phosphorylation of MSK1 and its substrate CREB in an ERK1/2 and p38-dependent manner. The promoter for granzyme C contains a potential CREB-binding site. Bone marrow-derived mast cells from either MSK1/2 double knockout or CREB Ser133Ala knockin mice were unable to up-regulate granzyme C. Together these results indicate that IL-33-induced granzyme C expression in mast cells is regulated by an MSK1/2-CREB-dependent pathway.  相似文献   

9.
Nuclear translocation of granzyme B in target cell apoptosis   总被引:4,自引:0,他引:4  
Granzyme B is the prototypic member of a family of serine proteases localized to the cytolytic granules of cytotoxic lymphocytes. Together with another granule protein, perforin, granzyme B is capable of inducing all aspects of apoptotic death in target cells. A number of granzyme B substrates have been identified and it has been demonstrated that granzyme B is responsible, directly or indirectly, for the morphological nuclear changes observed in target cell apoptosis, including DNA fragmentation. In an earlier study, we showed that granzyme B binds to a nuclear protein in a manner dependent on its enzymatic activity. Here, we demonstrate that granzyme B is translocated rapidly to the nucleus in cells that have been induced to undergo apoptosis by a granzyme-dependent process, and that translocation is dependent on caspase activity. Appearance of granzyme B in the nucleus of target cells precedes the detection of DNA fragmentation. Although not directly responsible for DNA fragmentation, these data suggest a nuclear role for granzyme B in target cell apoptosis. c-Abl nuclear functions.  相似文献   

10.
Granzyme B is a cytotoxic lymphocyte-derived protease that plays a central role in promoting apoptosis of virus-infected target cells, through direct proteolysis and activation of constituents of the cell death machinery. However, previous studies have also implicated granzymes A and B in the production of proinflammatory cytokines, via a mechanism that remains undefined. Here we show that IL-1α is?a substrate for granzyme B and that proteolysis potently enhanced the biological activity of this cytokine in?vitro as well as in?vivo. Consistent with this, compared with full-length IL-1α, granzyme B-processed IL-1α exhibited more potent activity as an immunoadjuvant in?vivo. Furthermore, proteolysis of IL-1α within the same region, by proteases such as calpain and elastase, was also found to enhance its biological potency. Thus, IL-1α processing by multiple immune-related proteases, including granzyme B, acts as a switch to enhance the proinflammatory properties of this cytokine.  相似文献   

11.
Host defense to the apicomplexan parasite Toxoplasma gondii is critically dependent on CD8+ T cells, whose effector functions include the induction of apoptosis in target cells following the secretion of granzyme proteases. Here we demonstrate that T. gondii induces resistance of host cells to apoptosis induced by recombinant granzyme B. Granzyme B induction of caspase-independent cytochrome c release was blocked in T. gondii-infected cells. Prevention of apoptosis could not be attributed to altered expression of the Bcl-2 family of apoptotic regulatory proteins, but was instead associated with reduced granzyme B-mediated, caspase-independent cleavage of procaspase 3 to the p20 form in T. gondii-infected cells, as well as reduced granzyme B-mediated cleavage of the artificial granzyme B substrate, GranToxiLux. The reduction in granzyme B proteolytic function in T. gondii-infected cells could not be attributed to altered granzyme B uptake or reduced trafficking of granzyme B to the cytosol, implying a T. gondii-mediated inhibition of granzyme B activity. Apoptosis and GranToxiLux cleavage were similarly inhibited in T. gondii-infected cells exposed to the natural killer-like cell line YT-1. The endogenous granzyme B inhibitor PI-9 was not up-regulated in infected cells. We believe these findings represent the first demonstration of granzyme B inhibition by a cellular pathogen and indicate a new modality for host cell protection by T. gondii that may contribute to parasite immune evasion.  相似文献   

12.
Human peripheral blood mononuclear cells, activated for 14 to 20 days with 1000 U/ml rIL-2, develop strong cytotoxicity for NK sensitive and resistant targets. This process is accompanied by the acquisition of cytoplasmic granules in approximately 60% of the cells and by the expression of esterase activity cleaving the synthetic substrate BLT. The esterase activity, localized in the cytoplasmic granules, was purified and characterized. Three proteins with 3H-DFP binding activity were isolated and had the following properties. Following the proposed nomenclature by Masson et al., the esterases were named human granzymes 1, 2, and 3. Human granzyme 1 on SDS-PAGE has an unreduced relative m.w. of 43,000 and can form disulfide-linked oligomers of relative higher m.w. All forms of granzyme 1 bind 3H-DFP. Upon reduction, granzyme 1 migrates with Mr 30,000 on SDS-PAGE. Additional proteolytic fragments of Mr 24,000 and Mr 28,000 are observed in some reduced preparations. Granzyme 1 cleaves the substrate BLT and appears homologous with murine granzyme A. Human granzyme 2 has an unreduced relative m.w. of 30,000; after reduction, it migrates at Mr 32,000. Even though granzyme 2 binds 3H-DFT, it does not cleave BLT. Human granzyme 2 has properties similar to those of murine granzymes B-H. Human granzyme 3 has unreduced and reduced relative m.w. of 25,000 and 28,000, respectively. It is active in cleaving the substrate BLT. A murine analog for human granzyme 3 has not been described previously. N-terminal sequencing of the purified human granzymes revealed that human granzyme 1 is the gene product of human Hanuka factor cDNA clone and that it represents the human homolog to murine granzyme A. Similarly, human granzyme 2 revealed absolute identity with cDNA-derived N-terminal sequence of a putative human lymphocyte protease cDNA clone.  相似文献   

13.
Granzyme B, a serine protease derived from cytotoxic T lymphocyte (CTL) and Natural Killer (NK) cell granules, plays an important role in coordinating apoptosis of CTL and NK target cells. Here, we report that granzyme B targets the cytoskeleton by cleaving and removing the acidic C-terminal tail of alpha-tubulin. Consistent with this, Granzyme B markedly enhanced rates of microtubule polymerization in vitro, most likely by removal of an autoinhibitory domain within the tubulin C terminus. Moreover, delivery of Granzyme B into HeLa target cells promoted dramatic reorganization of the microtubule network in a caspase-independent manner. These data reveal that granzyme B directly attacks a major component of the cell cytoskeleton, which may contribute to the incapacitation of target cells during CTL/NK-mediated killing.  相似文献   

14.
The 280-kD cation-independent mannose-6-phosphate receptor (MPR) has been shown to play a role in endocytic uptake of granzyme B, since target cells overexpressing MPR have an increased sensitivity to granzyme B-mediated apoptosis. On this basis, it has been proposed that cells lacking MPR are poor targets for cytotoxic lymphocytes that mediate allograft rejection or tumor immune surveillance. In the present study, we report that the uptake of granzyme B into target cells is independent of MPR. We used HeLa cells overexpressing a dominant-negative mutated (K44A) form of dynamin and mouse fibroblasts overexpressing or lacking MPR to show that the MPR/clathrin/dynamin pathway is not required for granzyme B uptake. Consistent with this observation, cells lacking the MPR/clathrin pathway remained sensitive to granzyme B. Exposure of K44A-dynamin-overexpressing and wild-type HeLa cells to granzyme B with sublytic perforin resulted in similar apoptosis in the two cell populations, both in short and long term assays. Granzyme B uptake into MPR-overexpressing L cells was more rapid than into MPR-null L cells, but the receptor-deficient cells took up granzyme B through fluid phase micropinocytosis and remained sensitive to it. Contrary to previous findings, we also demonstrated that mouse tumor allografts that lack MPR expression were rejected as rapidly as tumors that overexpress MPR. Entry of granzyme B into target cells and its intracellular trafficking to induce target cell death in the presence of perforin are therefore not critically dependent on MPR or clathrin/dynamin-dependent endocytosis.  相似文献   

15.
16.
Pancreatic beta cell destruction in type 1 diabetes is mediated by cytotoxic CD8(+) T lymphoctyes (CTL). Granzyme B is an effector molecule used by CTL to kill target cells. We previously showed that granzyme B-deficient allogeneic CTL inefficiently killed pancreatic islets in vitro. We generated granzyme B-deficient non-obese diabetic (NOD) mice to test whether granzyme B is an important effector molecule in spontaneous type 1 diabetes. Granzyme B-deficient islet antigen-specific CD8(+) T cells had impaired homing into islets of young mice. Insulitis was reduced in granzyme B-deficient mice at 70 days of age (insulitis score 0.043±0.019 in granzyme B-deficient versus 0.139±0.034 in wild-type NOD mice p<0.05), but was similar to wild-type at 100 and 150 days of age. We observed a reduced frequency of CD3(+)CD8(+) T cells in the islets and peripheral lymphoid tissues of granzyme B-deficient mice (p<0.005 and p<0.0001 respectively), but there was no difference in cell proportions in the thymus. Antigen-specific CTL developed normally in granzyme B-deficient mice, and were able to kill NOD islet target cells as efficiently as wild-type CTL in vitro. The incidence of spontaneous diabetes in granzyme B-deficient mice was the same as wild-type NOD mice. We observed a delayed onset of diabetes in granzyme B-deficient CD8-dependent NOD8.3 mice (median onset 102.5 days in granzyme B-deficient versus 57.50 days in wild-type NOD8.3 mice), which may be due to the delayed onset of insulitis or inefficient priming at an earlier age in this accelerated model of diabetes. Our data indicate that granzyme B is dispensable for beta cell destruction in type 1 diabetes, but is required for efficient early activation of CTL.  相似文献   

17.
Cytotoxic lymphocytes (CL) induce death of their targets by granule exocytosis. During this process, enzymes contained within cytotoxic granules (granzymes) are delivered to the target cell where the enzymes trigger the cell death by cleaving specific substrates. Granzyme B is the only granzyme that has been shown to induce cell death by apoptosis, but the exact pathway by which this is achieved has been the subject of hot debate. Furthermore, several other death-inducing granzymes have been identified; therefore, the exact contribution of granzyme B to CL-induced death is unclear. In this study, we discuss our recent findings on granzyme B-induced cell death and discuss the potential relevance of this pathway to CL-induced death of viral-infected and transformed cells.  相似文献   

18.
19.
Dysregulated angiogenesis contributes to the pathogenesis of chronic inflammatory diseases. Modulation of the extracellular matrix by immune-derived proteases can alter endothelial cell–matrix interactions as well as endothelial cell sprouting, migration and capillary formation. Granzyme B is a serine protease that is expressed by a variety of immune cells, and accumulates in the extracellular milieu in many chronic inflammatory disorders that are associated with dysregulated angiogenesis. Although granzyme B is known to cleave fibronectin, an essential glycoprotein in vascular morphogenesis, the role of granzyme B in modulating angiogenesis is unknown. In the present study, granzyme B cleaved both plasma fibronectin and cell-derived fibronectin, resulting in the release of multiple fibronectin fragments. Granzyme B cleavage of fibronectin resulted in a dose-dependent reduction in endothelial cell adhesion to fibronectin as well as reduced endothelial cell migration and tubular formation. These events were prevented when granzyme B activity was inhibited by a small molecule inhibitor. In summary, granzyme B-mediated cleavage of fibronectin contributes to attenuated angiogenesis through the disruption of endothelial cell — fibronectin interaction resulting in impaired endothelial cell migration and tubular formation.  相似文献   

20.
Granzyme B has been purified to homogeneity from the granules of a human cytolytic lymphocyte line, Q31, in an enzymatically active form by a three-step procedure. Q31 granzyme B hydrolyzed Na-t-butyloxycarbonyl-L-alanyl-L-alanyl-L-aspartyl (Boc-Ala-Ala-Asp) thiobenzyl ester with a kcat of 11 +/- 5 mol/s/mol enzyme and catalytic efficiency kcat/Km of 76,000 +/- 44,000 M-1 s-1. The hydrolysis of Boc-Ala-Ala-Asp thiobenzyl ester by crude Q31 Percoll fractions paralleled the tryptase activity for granule-containing fractions, which showed that granzyme B was associated with granules. When chromatographed on Sephacryl S-300, Q31 granzyme B eluted in two broad bands corresponding to dimer and monomer, both of which electrophoresed at 35 kDa in reducing NaDodSo4 polyacrylamide, and both of which showed a lag phase in assays. The lag phase in assays could be extended with 0.03 mM pepstatin. Upon elution from ion-exchange chromatography Q31 granzyme B electrophoresed at 32 kDa in reducing NaDodSO4 polyacrylamide and did not have a lag phase in assays. The amino-terminal sequence of the 32-kDa Q31 granzyme B was identical to four other human cytotoxic T-lymphocyte granzymes B in 18 of 18 positions sequenced. Purified Q31 granzyme B had a preference for substrates with Glu or Asp as the residue amino-terminal to the scissile bond; little or no activity was noted with oligopeptide substrates for trypsin-like, chymotrypsin-like, and elastase-like proteases. Human plasma alpha 1-protease inhibitor, human plasma alpha 2-protease macroglobulin, soybean and lima-bean trypsin inhibitors, bovine aprotinin, phosphoramidon, and chymostatin inhibited Q31 granzyme B. The inhibition by alpha 1-protease inhibitor was rapid enough to be of physiological significance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号