首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 297 毫秒
1.
Phospholamban (PLB), a 52-amino acid integral membrane protein, regulates the Ca-ATPase (calcium pump) in cardiac sarcoplasmic reticulum through PLB phosphorylation mediated by beta-adrenergic stimulation. Based on site-directed mutagenesis and coexpression with Ca-ATPase (SERCA2a) in Sf21 insect cells or in HEK 293 cells, and on spin label detection of PLB oligomeric state in lipid bilayers, it has been proposed that the monomeric form of PLB is the inhibitory species, and depolymerization of PLB is essential for its regulatory function. Here we have studied the relationship between PLB oligomeric state and function by in vitro co-reconstitution of PLB and its mutants with purified Ca-ATPase. We compared wild type-PLB (wt-PLB), which is primarily a pentamer on SDS-polyacrylamide gel electrophoresis (PAGE) at 25 degrees C, with two of its mutants, C41L-PLB and L37A-PLB, that are primarily tetramer and monomer, respectively. We found that the monomeric mutant L37A-PLB is a more potent inhibitor than wt-PLB, supporting the previous proposal that PLB monomer is the inhibitory species. On the other hand, C41L-PLB, which has a monomeric fraction comparable to that of wt-PLB on SDS-PAGE at 25 degrees C, has no inhibitory activity when assayed at 25 degrees C. However, at 37 degrees C, a 3-fold increase in the monomeric fraction of C41L-PLB on SDS-PAGE resulted in inhibitory activity comparable to that of wt-PLB. Upon increasing the temperature from 25 to 37 degrees C, no change in fraction monomer or inhibitory activity for wt-PLB and L37A-PLB was observed. Based on these results, the extent of inhibition of Ca-ATPase by PLB or its mutants appears to depend not only on the propensity of PLB to dissociate into monomers but also on the relative potency of the particular PLB monomer when interacting with the Ca-ATPase.  相似文献   

2.
Li J  Bigelow DJ  Squier TC 《Biochemistry》2003,42(36):10674-10682
We have used frequency-domain fluorescence spectroscopy to investigate the structural linkage between the transmembrane and cytosolic domains of the regulatory protein phospholamban (PLB). Using an engineered PLB having a single cysteine (Cys(24)) derivatized with the fluorophore N-(1-pyrenyl)maleimide (PMal), we have used fluorescence resonance energy transfer (FRET) to measure the average spatial separation and conformational heterogeneity between PMal bound to Cys(24) in the transmembrane domain and Tyr(6) in the cytosolic domain near the amino terminus of PLB. In these measurements, PMal serves as a FRET donor, and Tyr(6) serves as a FRET acceptor following its nitration by tetranitromethane. The native structure of PLB is retained following site-directed mutagenesis and chemical modification, as indicated by the ability of the derivatized PLB to fully regulate the Ca-ATPase following their co-reconstitution. To assess how phosphorylation modulates the structure of PLB itself, FRET measurements were made following reconstitution of PLB in membrane vesicles made from extracted sarcoplasmic reticulum membrane lipids. We find that the cytosolic domain of PLB assumes a wide range of conformations relative to the transmembrane sequence, consistent with other structural data indicating the presence of a flexible hinge region between the transmembrane and cytosolic domains of PLB. Phosphorylation of Ser(16) by PKA results in a 3 A decrease in the spatial separation between PMal at Cys(24) and nitroTyr(6) and an almost 2-fold decrease in conformational heterogeneity, suggesting a stabilization of the hinge region of PLB possibly through an electrostatic linkage between phosphoSer(16) and Arg(13) that promotes a coil-to-helix transition. This structural transition has the potential to function as a conformational switch, since inhibition of the Ca-ATPase requires disruption of the secondary structure of PLB in the vicinity of the hinge element to permit association with the nucleotide binding domain at a site located approximately 50 A above the membrane surface. Following phosphorylation, the stabilization of the helical content in the hinge domain will disrupt this inhibitory interaction by reducing the maximal dimension of the cytosolic domain of PLB. Thus, stabilization of the structure of PLB following phosphorylation of Ser(16) is part of a switching mechanism, which functions to alter binding interactions between PLB and the nucleotide binding domain of the Ca-ATPase that modulates enzyme inhibition.  相似文献   

3.
Using a chemically defined reconstitution system, we performed a systematic study of key factors in the regulation of the Ca-ATPase by phospholamban (PLB). We varied both the lipid/protein and PLB/Ca-ATPase ratios, determined the effects of PLB phosphorylation, and compared the regulatory effects of several PLB mutants, as a function of Ca concentration. The reconstitution system allowed us to determine accurately not only the PLB effects on K(Ca) (Ca concentration at half-maximal activity) of the Ca-ATPase, but also the effects on V(max) (maximal activity). Wild-type PLB (WT-PLB) and two gain-of-function mutants, N27A-PLB and I40A-PLB, showed not only the previously reported increase in K(Ca), but also an increase in V(max). Specifically, V(max) increases linearly with the intramembrane PLB concentration, and is approximately doubled when the sample composition approaches that of cardiac SR. Upon phosphorylation of PLB at Ser-16, the K(Ca) effects were almost completely reversed for WT- and N27A-PLB but were only partially reversed for I40A-PLB. Phosphorylation induced a V(max) increase for WT-PLB, and a V(max) decrease for N27A- and I40A-PLB. We conclude that PLB and PLB phosphorylation affect V(max) as well as K(Ca), and that the magnitude of both effects is sensitive to the PLB concentration in the membrane.  相似文献   

4.
Li J  Bigelow DJ  Squier TC 《Biochemistry》2004,43(13):3870-3879
Phospholamban (PLB) is a major target of the beta-adrenergic cascade in the heart, functioning to modulate contractile force by altering the rate of calcium re-sequestration by the Ca-ATPase. Functionally, inhibition by PLB binding is manifested by shifts in the calcium dependence of Ca-ATPase activation toward higher calcium levels; phosphorylation of PLB by PKA reverses the inhibitory action of PLB. To investigate structural changes in the cytoplasmic portion of PLB that result from either the phosphorylation of PLB by cAMP-dependent protein kinase (PKA) or calcium binding to the Ca-ATPase, we have used frequency-domain fluorescence spectroscopy to measure the spatial separation and conformational heterogeneity between N-(1-pyrenyl)maleimide, covalently bound to a single cysteine (Cys(24)) engineered near the membrane surface of the transmembrane domain of PLB, and Tyr(6) in the cytosolic domain. Irrespective of calcium activation of the Ca-ATPase or phosphorylation of Ser(16) in PLB by PKA, we find that PLB remains tightly associated with the Ca-ATPase in a well-defined conformation. However, calcium activation of the Ca-ATPase induces an increase in the overall dimensions of the cytoplasmic portion of bound PLB, whereas PLB phosphorylation results in a more compact structure, consistent with increased helical content induced by a salt link between phospho-Ser(16) and Arg(13). Thus, enzyme activation of the Ca-ATPase may occur through different mechanisms: calcium binding to high-affinity sites within the Ca-ATPase functions to overcome conformational constraints imposed by PLB on the N-domain of the Ca-ATPase; alternatively, phosphorylation stabilizes the backbone fold of PLB to release inhibitory interactions with the Ca-ATPase.  相似文献   

5.
We have used attenuated total reflection Fourier transform infrared (ATR-FTIR) and circular dichroism (CD) spectroscopies to identify secondary and dynamic structural changes within the Ca-ATPase that result from the functional inhibition of transport activity by phospholamban (PLB). Isotopically labeled [(13)C]PLB was expressed and purified from Escherichia coli and was functionally reconstituted with unlabeled Ca-ATPase, permitting the resolution of the amide I and II absorbance bands of the Ca-ATPase from those of [(13)C]PLB. Upon co-reconstitution of the Ca-ATPase with PLB, spectral shifts are observed in both the CD spectra and the amide I and II bands associated with the Ca-ATPase, which are indicative of increased alpha-helical stability. Corresponding changes in the kinetics of H/D exchange occur upon association with PLB, indicating that 100 +/- 20 residues in the Ca-ATPase that normally undergo rapid amide H/D exchange become exchange resistant. There are no corresponding large changes in the secondary structure of PLB. The affinity of the structural interaction between PLB and the Ca-ATPase is virtually identical to that associated with functional inhibition (K(d) = 140 +/- 30 microM), confirming that the inhibitory regulation of the Ca-ATPase by PLB involves the stabilization of alpha-helices within the Ca-ATPase.  相似文献   

6.
Li J  Xiong Y  Bigelow DJ  Squier TC 《Biochemistry》2004,43(2):455-463
Mutagenesis and cross-linking measurements have identified specific contact interactions between the cytosolic and the transmembrane sequences of phospholamban (PLB) and the Ca-ATPase, and in conjunction with the high-resolution structures of PLB and the Ca-ATPase, have been used to construct models of the PLB-ATPase complex, which suggest that PLB adopts a more extended structure within this complex. To directly test these predictions, we have used fluorescence resonance energy transfer to measure the average conformation and heterogeneity between chromophores covalently bound to the transmembrane and cytosolic domains of PLB reconstituted in proteoliposomes. In the absence of the Ca-ATPase, the cytosolic domain of PLB assumes a wide range of structures relative to the transmembrane sequence, which can be described using a model involving a Gaussian distribution of distances with an average distance (Rav) of less than 21 A and a half-width (HW) of 36 A. This conformational heterogeneity of PLB is consistent with the 10 structures resolved by NMR for the C41F mutant of PLB in organic cosolvents. In contrast, PLB bound to the Ca-ATPase assumes a unique and highly ordered conformation, where Rav = 14.0 +/- 0.3 A and HW = 3.7 +/- 0.6 A. The small spatial separation between the bound chromophores on PLB is inconsistent with an extended conformation of bound PLB in current models. Thus, to satisfy known interaction sites of PLB and the Ca-ATPase, these findings suggest a reorientation of the nucleotide binding domain of the Ca-ATPase toward the bilayer surface to bring known PLB binding sites into close juxtaposition with residues near the amino-terminus of PLB. Induction of an altered conformation of the nucleotide binding domain of the Ca-ATPase by PLB binding is suggested to underlie the reduced calcium sensitivity associated with PLB inhibition of the pump.  相似文献   

7.
We used fluorescence resonance energy transfer (FRET) to detect and quantitate the interaction of the sarcoplasmic reticulum Ca-ATPase (SERCA) with phospholamban (PLB) in membranes. PLB inhibits SERCA only at submicromolar Ca. It has been proposed that relief of inhibition at micromolar Ca is due to dissociation of the inhibitory complex. To test this hypothesis, we co-reconstituted donor-labeled SERCA and acceptor-labeled I40A-PLB (superinhibitory, monomeric PLB mutant) in membranes of defined lipid and protein composition, with full retention of Ca-dependent ATPase activity and inhibitory regulation by PLB. FRET from SERCA to PLB was measured as a function of membrane concentrations of PLB and SERCA, and functional activity was measured on the same samples. The data revealed clearly that the stoichiometry of binding is one PLB per SERCA, and that binding is a strict function of the ratio of total PLB to SERCA in the membrane. We conclude that the dissociation constant of PLB binding to SERCA is far less than physiological PLB membrane concentrations. Binding at low Ca (pCa 6.5), where I40A-PLB inhibits SERCA, was virtually identical to that at high Ca (pCa 5.0), where no inhibition was observed. However, the limiting energy transfer at saturating PLB was less at high Ca, indicating a greater donor-acceptor distance. We conclude that (a) the affinity of PLB for SERCA is so great that PLB is essentially a SERCA subunit under physiological conditions and (b) relief of inhibition at micromolar Ca is due to a structural rearrangement within the SERCA-PLB complex, rather than dissociation.  相似文献   

8.
To determine the structural and regulatory role of the C-terminal residues of phospholamban (PLB) in the membranes of living cells, we fused fluorescent protein tags to PLB and sarco/endoplasmic reticulum calcium ATPase (SERCA). Alanine substitution of PLB C-terminal residues significantly altered fluorescence resonance energy transfer (FRET) from PLB to PLB and SERCA to PLB, suggesting a change in quaternary conformation of PLB pentamer and SERCA-PLB regulatory complex. Val to Ala substitution at position 49 (V49A) had particularly large effects on PLB pentamer structure and PLB-SERCA regulatory complex conformation, increasing and decreasing probe separation distance, respectively. We also quantified a decrease in oligomerization affinity, an increase in binding affinity of V49A-PLB for SERCA, and a gain of inhibitory function as quantified by calcium-dependent ATPase activity. Notably, deletion of only a few C-terminal residues resulted in significant loss of PLB membrane anchoring and mislocalization to the cytoplasm and nucleus. C-terminal truncations also resulted in progressive loss of PLB-PLB FRET due to a decrease in the apparent affinity of PLB oligomerization. We quantified a similar decrease in the binding affinity of truncated PLB for SERCA and loss of inhibitory potency. However, despite decreased SERCA-PLB binding, intermolecular FRET for Val49-stop (V49X) truncation mutant was paradoxically increased as a result of an 11.3-Å decrease in the distance between donor and acceptor fluorophores. We conclude that PLB C-terminal residues are critical for localization, oligomerization, and regulatory function. In particular, the PLB C terminus is an important determinant of the quaternary structure of the SERCA regulatory complex.  相似文献   

9.
Chen B  Bigelow DJ 《Biochemistry》2002,41(47):13965-13972
We have measured conformational changes of phospholamban (PLB) induced both by its interaction with the SR Ca-ATPase and by phosphorylation of Ser-16 by cAMP-dependent protein kinase (PKA) using an engineered PLB having a single cysteine (Cys-24) derivatized with the fluorophore 2-(4'-maleimidylanilino)naphthalene-6-sulfonic acid (ANSmal). This modified mutant PLB is fully functional when co-reconstituted with the affinity-purified Ca-ATPase in liposomes. ANSmal emission properties and its solvent accessibility indicate that Cys-24 is in an aqueous environment outside the membrane. Fluorescence quenching and time-resolved anisotropy measurements of ANSmal-PLB demonstrate distinct structures for PLB in the free and Ca-ATPase-bound state. Both solvent exposure and probe motions of ANSmal are enhanced upon interaction of PLB with the Ca-ATPase. This conformational transition entails conversion of free PLB in a conformation which is insensitive to one which is sensitive to the phosphorylation state of PLB. Upon phosphorylation of Ca-ATPase-bound PLB, a decreased level of solvent exposure of ANSmal is observed, suggesting that the amino acid sequence of PLB near the lipid-water interface acts as a conformational switch in response to the phosphorylation of PLB. A longer correlation time, resolved by anisotropy measurements, corresponding to polypeptide chain fluctuations, is substantially restricted by interaction of PLB with the Ca-ATPase. This restriction is not reversed by phosphorylation of PLB, indicating that the region around Cys-24 near the lipid-water interface does not undergo dissociation from the Ca-ATPase. These results suggest that the phosphorylation by PKA induces a redistribution of PLB-Ca-ATPase protein contacts to relieve the inhibitory effect of PLB for the activation of calcium transport.  相似文献   

10.
Phospholamban (PLB) is an integral membrane protein regulating Ca2+ transport through inhibitory interaction with sarco(endo)plasmic reticulum calcium ATPase (SERCA). The Asn27 to Ala (N27A) mutation of PLB has been shown to function as a superinhibitor of the affinity of SERCA for Ca2+ and of cardiac contractility in vivo. The effects of this N27A mutation on the side-chain and backbone dynamics of PLB were investigated with 2H and 15N solid-state NMR spectroscopy in phospholipid multilamellar vesicles (MLVs). 2H and 15N NMR spectra indicate that the N27A mutation does not significantly change the side-chain or backbone dynamics of the transmembrane and cytoplasmic domains when compared to wild-type PLB. However, dynamic changes are observed for the hinge region, in which greater mobility is observed for the CD3-labeled Ala24 N27A-PLB. The increased dynamics in the hinge region of PLB upon N27A mutation may allow the cytoplasmic helix to more easily interact with the Ca2+-ATPase; thus, showing increased inhibition of Ca2+-ATPase.  相似文献   

11.
We have studied the effects of C28R2, a basic peptide derived from the autoinhibitory domain of the plasma membrane Ca-ATPase, on enzyme activity, oligomeric state, and E1-E2 conformational equilibrium of the Ca-ATPase from skeletal and cardiac sarcoplasmic reticulum (SR). Time-resolved phosphorescence anisotropy (TPA) was used to determine changes in the distribution of Ca-ATPase among its different oligomeric species in SR. C28R2, at a concentration of 1-10 microM, inhibits the Ca-ATPase activity of both skeletal and cardiac SR (CSR). In skeletal SR, this inhibition by C28R2 is much greater at low (0.15 microM) than at high (10 microM) Ca2+, whereas in CSR the inhibition is the same at low and high Ca2+. The effects of the peptide on the rotational mobility of the Ca-ATPase correlated well with function, indicating that C28R2-induced protein aggregation and Ca-ATPase inhibition are much more Ca-dependent in skeletal than in CSR. In CSR at low Ca2+, phospholamban (PLB) antibody (functionally equivalent to PLB phosphorylation) increased the inhibitory effect of C28R2 slightly. Fluorescence of fluorescein 5-isothiocyanate-labeled SR suggests that C28R2 stabilizes the E1 conformation of the Ca-ATPase in skeletal SR, whereas in CSR it stabilizes E2. After the addition of PLB antibody, C28R2 still stabilizes the E2 conformational state of CSR. Therefore, we conclude that C28R2 affects Ca-ATPase activity, conformation, and self-association differently in cardiac and skeletal SR and that PLB is probably not responsible for the differences.  相似文献   

12.
Reddy LG  Jones LR  Thomas DD 《Biochemistry》1999,38(13):3954-3962
Phospholamban (PLB), a 52-amino acid protein, regulates the Ca-ATPase (calcium pump) in cardiac sarcoplasmic reticulum (SR) through PLB phosphorylation mediated by beta-adrenergic stimulation. The mobility of PLB on SDS-PAGE indicates a homopentamer, and it has been proposed that the pentameric structure of PLB is important for its regulatory function. However, the oligomeric structure of PLB must be determined in its native milieu, a lipid bilayer containing the Ca-ATPase. Here we have used fluorescence energy transfer (FET) to study the oligomeric structure of PLB in SDS and dioleoylphosphatidylcholine (DOPC) lipid bilayers reconstituted in the absence and presence of Ca-ATPase. PLB was labeled, specifically at Lys 3 in the cytoplasmic domain, with amine-reactive fluorescent donor/acceptor pairs. FET between donor- and acceptor-labeled subunits of PLB in SDS solution and DOPC lipid bilayers indicated the presence of PLB oligomers. The dependence of FET efficiency on the fraction of acceptor-labeled PLB in DOPC bilayers indicated that it is predominantly an oligomer having 9-11 subunits, with approximately 10% of the PLB as monomer, and the distance between dyes on adjacent PLB subunits is 0.9 +/- 0.1 nm. When labeled PLB was reconstituted with purified Ca-ATPase, FET indicated the depolymerization of PLB into smaller oligomers having an average of 5 subunits, with a concomitant increase in the fraction of monomer to 30-40% and a doubling of the intersubunit distance. We conclude that PLB exists primarily as an oligomer in membranes, and the Ca-ATPase affects the structure of this oligomer, but the Ca-ATPase binds preferentially to the monomer and/or small oligomers. These results suggest that the active inhibitory species of PLB is a monomer or an oligomer having fewer than 5 subunits.  相似文献   

13.
We have determined directly the effects of the inhibitory peptide phospholamban (PLB) on the rotational dynamics of the calcium pump (Ca-ATPase) of cardiac sarcoplasmic reticulum (SR). This was accomplished by comparing mouse ventricular SR, which has PLB levels similar to those found in other mammals, with mouse atrial SR, which is effectively devoid of PLB and thus has much higher (unregulated) calcium pump activity. To obtain sufficient quantities of atrial SR, we isolated the membranes from atrial tumor cells. We used time-resolved phosphorescence anisotropy of an erythrosin isothiocyanate label attached selectively and rigidly to the Ca-ATPase, to detect the microsecond rotational motion of the Ca-ATPase in the two preparations. The time-resolved phosphorescence anisotropy decays of both preparations at 25 degrees C were multi-exponential, because of the presence of different oligomeric species. The rotational correlation times for the different oligomers were similar for the two preparations, but the total decay amplitude was substantially greater for atrial tumor SR, indicating that a smaller fraction of the Ca-ATPase molecules exists as large aggregates. Phosphorylation of PLB in ventricular SR decreased the population of large-scale Ca-ATPase aggregates to a level similar to that of atrial tumor SR. Lipid chain mobility (fluidity), detected by electron paramagnetic resonance of stearic acid spin labels, was very similar in the two preparations, indicating that the higher protein mobility in atrial tumor SR is not due to higher lipid fluidity. We conclude that PLB inhibits by inducing Ca-ATPase lateral aggregation, which can be relieved either by phosphorylating or removing PLB.  相似文献   

14.
Yao Q  Chen LT  Li J  Brungardt K  Squier TC  Bigelow DJ 《Biochemistry》2001,40(21):6406-6413
Phospholamban (PLB) is a major target of the beta-adrenergic cascade in the heart, and functions as an endogenous inhibitor of Ca-ATPase transport activity. To identify whether oligomeric interactions between PLB molecules are involved in regulating Ca-ATPase transport activity, we have investigated functional interactions between PLB and the Ca-ATPase in proteoliposomes of purified PLB functionally co-reconstituted with the SERCA2a isoform of the Ca-ATPase isolated from cardiac sarcoplasmic reticulum (SR). The calcium sensitivity of this reconstituted preparation and functional stimulation by cAMP-dependent protein kinase (PKA) are virtually identical to those of the Ca-ATPase in cardiac SR microsomes, ensuring the functional relevance of this reconstituted preparation. Interactions between PLB molecules were measured following covalent modification of the single lysine (i.e., Lys(3)) in PLB isolated from cardiac SR membranes with fluorescein isothiocyanate (FITC) prior to co-reconstitution with the Ca-ATPase. FITC modification of PLB does not interfere with the ability of PLB to inhibit the Ca-ATPase, since FITC-PLB co-reconstituted with the Ca-ATPase exhibits a similar calcium dependence of Ca-ATPase activation to that observed in native SR membranes. Thus, the functional arrangement of PLB with the Ca-ATPase is not modified by FITC modification. Using changes in the anisotropy of FITC-PLB resulting from fluorescence resonance energy transfer (FRET) between proximal PLB molecules to measure the average size and spatial arrangement of FITC chromophores, we find that PLB self-associates to form oligomers whose spatial arrangement with respect to one another is in agreement with earlier suggestions that PLB exists predominantly as a homopentamer. The inability of PKA to activate PLB following covalent modification with FITC permits functional interactions between PLB molecules associated with the Ca-ATPase activation to be identified. A second-order loss of Ca-ATPase activation by PKA is observed as a function of the fractional contribution of FITC-PLB, indicating that PKA-dependent activation of two PLB molecules within a quaternary complex containing the Ca-ATPase is necessary for activation of the Ca-ATPase. We suggest that the requirement for activation of two PLB molecules by PKA represents a physiological mechanism to ensure that activation of the Ca-ATPase following beta-adrenergic stimulation in the heart only occurs above a threshold level of PKA activation.  相似文献   

15.
S Negash  S Huang  T C Squier 《Biochemistry》1999,38(25):8150-8158
Phospholamban (PLB) is a major target of the beta-adrenergic cascade in the heart, and functions to modulate rate-limiting conformational transitions involving the transport activity of the Ca-ATPase. To investigate structural changes within the Ca-ATPase that result from the phosphorylation of PLB by cAMP-dependent protein kinase (PKA), we have covalently bound the long-lived phosphorescent probe erythrosin isothiocyanate (Er-ITC) to cytoplasmic sequences within the Ca-ATPase. Under these labeling conditions, the Ca-ATPase remains catalytically active, indicating that observed changes in rotational dynamics reflect normal conformational transitions. Two major Er-ITC labeling sites were identified using electrospray ionization mass spectrometry (ESI-MS), corresponding to Lys464 and Lys650, which are respectively located within the phosphorylation and nucleotide binding domains of the Ca-ATPase. Frequency-domain phosphorescence measurements of the rotational dynamics of Er-ITC bound to these cytoplasmic sequences within the Ca-ATPase permit the resolution of the dynamic structure of individual domain elements relative to the overall rotational motion of the entire Ca-ATPase polypeptide chain. We observe a significant decrease in the rotational dynamics of Er-ITC bound to the Ca-ATPase upon phosphorylation of PLB by PKA, as evidenced by an increase in the residual anisotropy. These results suggest that phosphorylation of PLB results in a structural reorientation of the phosphorylation or nucleotide binding domains with respect to the membrane normal. In contrast, calcium activation of the Ca-ATPase in the presence of dephosphorylated PLB results in no detectable change in the rotational dynamics of Er-ITC, suggesting that calcium binding and PLB phosphorylation have distinct effects on the conformation of the Ca-ATPase. We suggest that PLB functions to alter the efficiency of phosphoenyzme formation following calcium activation of the Ca-ATPase by modulating the spatial arrangement between ATP bound in the nucleotide binding domain and Asp351 in the phosphorylation domain.  相似文献   

16.
We have studied the differential effects of phospholamban (PLB) phosphorylation states on the activity of the sarcoplasmic reticulum Ca-ATPase (SERCA). It has been shown that unphosphorylated PLB (U-PLB) inhibits SERCA and that phosphorylation of PLB at Ser-16 or Thr-17 relieves this inhibition in cardiac sarcoplasmic reticulum. However, the levels of the four phosphorylation states of PLB (U-PLB, P16-PLB, P17-PLB, and doubly phosphorylated 2P-PLB) have not been measured quantitatively in cardiac tissue, and their functional effects on SERCA have not been determined directly. We have solved both problems through the chemical synthesis of all four PLB species. We first used the synthetic PLB as standards for a quantitative immunoblot assay, to determine the concentrations of all four PLB phosphorylation states in pig cardiac tissue, with and without left ventricular hypertrophy (LVH) induced by aortic banding. In both LVH and sham hearts, all phosphorylation states were significantly populated, but LVH hearts showed a significant decrease in U-PLB, with a corresponding increase in the ratio of total phosphorylated PLB to U-PLB. To determine directly the functional effects of each PLB species, we co-reconstituted each of the synthetic peptides in phospholipid membranes with SERCA and measured calcium-dependent ATPase activity. SERCA inhibition was maximally relieved by P16-PLB (the most highly populated PLB state in cardiac tissue homogenates), followed by 2P-PLB, then P17-PLB. These results show that each PLB phosphorylation state uniquely alters Ca2+ homeostasis, with important implications for cardiac health, disease, and therapy.  相似文献   

17.
Calcium transport across the sarcoplasmic reticulum of cardiac myocytes is regulated by a reversible inhibitory interaction between the Ca2+-ATPase and the small transmembrane protein phospholamban (PLB). A nullcysteine analogue of PLB, containing isotope labels in the transmembrane domain or cytoplasmic domain, was reconstituted into membranes in the absence and presence of the SERCA1 isoform of Ca2+-ATPase for structural investigation by cross-polarization magic-angle spinning (CP-MAS) NMR. PLB lowered the maximal hydrolytic activity of SERCA1 and its affinity for calcium in membrane preparations suitable for structural analysis by NMR. Novel backbone amide proton-deuterium exchange CP-MAS NMR experiments on the two PLB analogues co-reconstituted with SERCA1 indicated that labeled residues Leu42 and Leu44 were situated well within the membrane interior, whereas Pro21 and Ala24 lie exposed outside the membrane. Internuclear distance measurements on PLB using rotational resonance NMR indicated that the sequences Pro21-Ala24 and Leu42-Leu44 adopt an alpha-helical structure in pure lipid bilayers, which is unchanged in the presence of Ca2+-ATPase. By contrast, rotational echo double resonance (REDOR) NMR experiments revealed that the sequence Ala24-Gln26 switches from an alpha-helix in pure lipid membranes to a more extended structure in the presence of SERCA1, which may reflect local structural distortions which change the orientations of the transmembrane and cytoplasmic domains. These results suggest that Ca2+-ATPase has a long-range effect on the structure of PLB around residue 25, which promotes the functional association of the two proteins.  相似文献   

18.
Ferrington DA  Yao Q  Squier TC  Bigelow DJ 《Biochemistry》2002,41(44):13289-13296
Alterations in expression levels of phospholamban (PLB) relative to the sarcoplasmic reticulum (SR) Ca-ATPase have been suggested to underlie defects of calcium regulation in the failing heart and other cardiac pathologies. To understand how variation in PLB expression relative to that of the Ca-ATPase can modulate calcium transport, we have investigated the inhibition of the Ca-ATPase by PLB in native SR membranes from slow-twitch skeletal and cardiac muscle and in reconstituted proteoliposomes. Quantitative immunoblotting in combination with affinity-purified protein standards was used to measure protein concentrations of PLB and of the Ca-ATPase. Functional inhibition of the Ca-ATPase was determined from both the calcium concentrations for half-maximal activation (Ca(1/2)) and the shift in the calcium concentrations following release of PLB inhibition (i.e., (Delta)Ca(1/2)) by incubation with monoclonal antibodies against PLB, which are equivalent to phosphorylation of PLB by cAMP-dependent protein kinase. We report that equivalent levels of PLB inhibition and antibody-induced activation ((Delta)Ca(1/2) = 0.25 +/- 0.02 microM) are observed in SR membranes from slow-twitch skeletal and cardiac muscle, where molar stoichiometries of PLB expressed per Ca-ATPase vary, respectively, from 0.9 +/- 0.1 to 4.1 +/- 0.8. Similar levels of inhibition to those observed in isolated SR vesicles were observed using reconstituted proteoliposomes following co-reconstitution of affinity-purified Ca-ATPase with PLB. These results indicate that total expression levels of one PLB per Ca-ATPase result in full inhibition of the Ca-ATPase and, based on the measured K(D) (140 +/- 30 microM), suggests one PLB complexed with two Ca-ATPase molecules is sufficient for full inhibition of activity. Therefore, the excess PLB expressed in the heart over that required for inhibition suggests a capability for graded responses of the Ca-ATPase activity to endogenous kinases and phosphatases that modulate the level of phosphorylation necessary to relieve inhibition of the Ca-ATPase by PLB.  相似文献   

19.
Phospholamban (PLB) and Sarcolipin (SLN) are integral membrane proteins that regulate muscle contractility via direct interaction with the Ca-ATPase in cardiac and skeletal muscle, respectively. The molecular details of these protein-protein interactions are as yet undetermined. Solution and solid-state NMR spectroscopies have proven to be effective tools for deciphering such regulatory mechanisms to a high degree of resolution; however, large quantities of pure recombinant protein are required for these studies. Thus, recombinant PLB and SLN production in Escherichia coli was optimized for use in NMR experiments. Fusions of PLB and SLN to maltose binding protein (MBP) were constructed and optimal conditions for protein expression and purification were screened. This facilitated the large-scale production of highly pure protein. To confirm their functionality, the biological activities of recombinant PLB and SLN were compared to those of their synthetic counterparts. The regulation of Ca-ATPase activity by recombinant PLB and SLN was indistinguishable from the regulation by synthetic proteins, demonstrating the functional integrity of the recombinant constructs and ensuring the biological relevance of our future structural studies. Finally, NMR spectroscopic conditions were established and optimized for use in investigations of the mechanism of Ca-ATPase regulation by PLB and SLN.  相似文献   

20.
We have used steady-state fluorescence spectroscopy in combination with enzyme kinetic assays to test the hypothesis that phospholamban (PLB) stabilizes the Ca-ATPase in the E2 intermediate state. The cardiac muscle Ca-ATPase (SERCA2a) isoform was expressed either alone or coexpressed with PLB in High-Five insect cells and was isolated as insect cell microsomes. Fluorescence studies of the Ca-ATPase covalently labeled with the probe 5-(2-((iodoacetyl)amino)ethyl)aminonaphthalene-1-sulfonic acid showed that PLB decreased the amplitude of the Ca-ATPase E2 --> E1 conformational transition by 45 +/- 3% and shifted the [Ca2+] dependence of the transition to higher Ca2+ levels (DeltaKCa = 230 nM), similar to the effect of PLB on Ca-ATPase activity. Similarly, PLB decreased the amplitude of Ca-ATPase phosphorylation by inorganic phosphate (Pi) by 55 +/- 2% and decreased slightly the affinity for Pi (DeltaK0.5 = 70 microM). However, PLB did not affect the Ca2+-dependent inhibition of Ca-ATPase phosphorylation by Pi. Finally, PLB decreased Ca-ATPase sensitivity to vanadate, increasing the IC50 value by 300 nM. The results suggest that PLB binding to Ca-ATPase stabilizes the enzyme in a conformation distinct from E2, decreasing the number of enzymes in the E2 state capable of undergoing ligand-dependent conformational changes involving the Ca-free E2 intermediate. The inability of conformation-specific ligands to fully convert this E2-like state into E1 or E2 implies that these states are not in a simple equilibrium relationship.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号