首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 16 毫秒
1.
Budding yeast (Saccharomyces cerevisiae) origin recognition complex (ORC) requires ATP to bind specific DNA sequences, whereas fission yeast (Schizosaccharomyces pombe) ORC binds to specific, asymmetric A:T-rich sites within replication origins, independently of ATP, and frog (Xenopus laevis) ORC seems to bind DNA non-specifically. Here we show that despite these differences, ORCs are functionally conserved. Firstly, SpOrc1, SpOrc4 and SpOrc5, like those from other eukaryotes, bound ATP and exhibited ATPase activity, suggesting that ATP is required for pre-replication complex (pre-RC) assembly rather than origin specificity. Secondly, SpOrc4, which is solely responsible for binding SpORC to DNA, inhibited up to 70% of XlORC-dependent DNA replication in Xenopus egg extract by preventing XlORC from binding to chromatin and assembling pre-RCs. Chromatin-bound SpOrc4 was located at AT-rich sequences. XlORC in egg extract bound preferentially to asymmetric A:T-sequences in either bare DNA or in sperm chromatin, and it recruited XlCdc6 and XlMcm proteins to these sequences. These results reveal that XlORC initiates DNA replication preferentially at the same or similar sites to those targeted in S.pombe.  相似文献   

2.
Previous investigations have shown that the fission yeast, Schizosaccharomyces pombe, has DNA replication origins (500 to 1500 bp) that are larger than those in the budding yeast, Saccharomyces cerevisiae (100 to 150 bp). Deletion and linker substitution analyses of two fission yeast origins revealed that they contain multiple important regions with AT-rich asymmetric (abundant A residues in one strand and T residues in the complementary strand) sequence motifs. In this work we present the characterization of a third fission yeast replication origin, ars3001, which is relatively small (~570 bp) and responsible for replication of ribosomal DNA. Like previously studied fission yeast origins, ars3001 contains multiple important regions. The three most important of these regions resemble each other in several ways: each region is essential for origin function and is at least partially orientation dependent, each region contains similar clusters of A+T-rich asymmetric sequences, and the regions can partially substitute for each other. These observations suggest that ars3001 function requires synergistic interactions between domains binding similar proteins. It is likely that this requirement extends to other fission yeast origins, explaining why such origins are larger than those of budding yeast.  相似文献   

3.
Repeated sequences are commonly present in the sites for DNA replication initiation in bacterial, archaeal, and eukaryotic replicons. Those motifs are usually the binding places for replication initiation proteins or replication regulatory factors. In prokaryotic replication origins, the most abundant repeated sequences are DnaA boxes which are the binding sites for chromosomal replication initiation protein DnaA, iterons which bind plasmid or phage DNA replication initiators, defined motifs for site-specific DNA methylation, and 13-nucleotide-long motifs of a not too well-characterized function, which are present within a specific region of replication origin containing higher than average content of adenine and thymine residues. In this review, we specify methods allowing identification of a replication origin, basing on the localization of an AT-rich region and the arrangement of the origin's structural elements. We describe the regularity of the position and structure of the AT-rich regions in bacterial chromosomes and plasmids. The importance of 13-nucleotide-long repeats present at the AT-rich region, as well as other motifs overlapping them, was pointed out to be essential for DNA replication initiation including origin opening, helicase loading and replication complex assembly. We also summarize the role of AT-rich region repeated sequences for DNA replication regulation.  相似文献   

4.
5.
6.
M Méchali  S Kearsey 《Cell》1984,38(1):55-64
We examined the controversial question concerning DNA sequences required for replication in Xenopus eggs. First we used yeast to isolate ARS elements from the Xenopus genome. They show a striking sequence homology with the yeast ARS consensus sequence. The cloning vector and the ARS-containing plasmids replicate equally after injection into Xenopus eggs. Second, we compared a wide range of DNA templates from procaryotes and eucaryotes. All DNA molecules tested replicate as monomeric molecules, and the efficiency is proportional to their size for templates between 4 and 12 kb. Third, we re-examined two reports of replication origins from the Xenopus genome. In both cases, the vector and the recombinant molecules replicate equally under all conditions tested. The apparent lack of sequence specificity for replication in Xenopus eggs does not prevent the injected molecule from being under cellular temporal control of replication. These results are compared with those from yeast.  相似文献   

7.
8.
9.
Papillomavirus DNA replication requires the viral trans-acting factors E1 and E2 in addition to the host cell's general replication machinery. The origins of DNA replication in bovine and human papillomavirus genomes have been localized to a specific part of the upstream regulatory region (URR) which includes recognition sites for E1 and E2 proteins. To fine map cis-acting elements influencing human papillomavirus type 11 (HPV-11) DNA replication and to determine the relative contributions of such sites, we engineered consecutive linker substitution mutations across a region of 158 bp in the HPV-11 origin and tested mutant origins for replication function in a cell-based transient replication assay. Our results both confirm and extend the findings of others. E2 binding sites are the major cis components of HPV-11 DNA replication, and there is evidence for synergy between these sites. Differential capacity of the three E2 binding sites within the origin to affect replication may be attributed, at least in part, to context. At least one E2 binding site is essential for replication. The imperfect AT-rich palindrome of the E1 helicase binding site is not essential since replication occurs even in the absence of this sequence. However, replication is enhanced by the presence of the palindromic sequence in the HPV-11 origin. Sequence components adjacent to the E1 and E2 binding sites, comprising AT-rich and purine-rich elements and the consensus TATA box sequence, probably contribute to the overall efficiency of replication, though they are nonessential. None of the other cis elements of the HPV-11 origin region analyzed seems to influence replication significantly in the system described. The HPV-11 origin of DNA replication therefore differs from those of the other papovaviruses, simian virus 40 and polyomavirus, inasmuch as an intact helicase binding site and adjacent AT-rich components, while influential, are not absolutely essential.  相似文献   

10.
11.
12.
13.
P J Hines  R M Benbow 《Cell》1982,30(2):459-468
Initiation of DNA replication at specific origins was observed by electron microscopy after microinjection of pXlr11, pXlr14 or Col E1 plasmid DNA molecules into unfertilized eggs of the frog, Xenopus laevis. These results are in apparent contradiction with published reports (Harland and Laskey, Cell 21, 761-771, 1980; Laskey and Harland, Cell 24, 283-284, 1981) that specific origin sites were not used in Xenopus laevis eggs. We suggest that eucaryotic origins exist that both increase the probability of replication of contiguous sequences and determine the site at which replication is most likely to begin.  相似文献   

14.
15.
When Xenopus eggs and egg extracts replicate DNA, replication origins are positioned randomly with respect to DNA sequence. However, a completely random distribution of origins would generate some unacceptably large interorigin distances. We have investigated the distribution of replication origins in Xenopus sperm nuclei replicating in Xenopus egg extract. Replicating DNA was labeled with [(3)H]thymidine or bromodeoxyuridine and the geometry of labeled sites on spread DNA was examined. Most origins were spaced 5-15 kb apart. This regular distribution provides an explanation for how complete chromosome replication can be ensured although origins are positioned randomly with respect to DNA sequence. Origins were grouped into small clusters (typically containing 5-10 replicons) that fired at approximately the same time, with different clusters being activated at different times in S phase. This suggests that a temporal program of origin firing similar to that seen in somatic cells also exists in the Xenopus embryo. When the quantity of origin recognition complexes (ORCs) on the chromatin was restricted, the average interorigin distance increased, and the number of origins in each cluster decreased. This suggests that the binding of ORCs to chromatin determines the regular spacing of origins in this system.  相似文献   

16.
In Xenopus early embryos, replication origins neither require specific DNA sequences nor is there an efficient S/M checkpoint, even though the whole genome (3 billion bases) is completely duplicated within 10-20 minutes. This leads to the “random-completion problem” of DNA replication in embryos, where one needs to find a mechanism that ensures complete, faithful, timely reproduction of the genome without any sequence dependence of replication origins. We analyze recent DNA replication data in Xenopus laevis egg extracts and find discrepancies with models where replication origins are distributed independently of chromatin structure. Motivated by these discrepancies, we have investigated the role that chromatin looping may play in DNA replication. We find that the loop-size distribution predicted from a wormlike-chain model of chromatin can account for the spatial distribution of replication origins in this system quantitatively. Together with earlier findings of increasing frequency of origin firings, our results can explain the random-completion problem. The agreement between experimental data (molecular combing) and theoretical predictions suggests that the intrinsic stiffness of chromatin loops plays a fundamental biological role in DNA replication in early-embryo Xenopus in regulating the origin spacing.  相似文献   

17.
In Xenopus early embryos, replication origins neither require specific DNA sequences nor is there an efficient S/M checkpoint, even though the whole genome (3 billion bases) is completely duplicated within 10-20 minutes. This leads to the "random-completion problem" of DNA replication in embryos, where one needs to find a mechanism that ensures complete, faithful, timely reproduction of the genome without any sequence dependence of replication origins. We analyze recent DNA replication data in Xenopus laevis egg extracts and find discrepancies with models where replication origins are distributed independently of chromatin structure. Motivated by these discrepancies, we have investigated the role that chromatin looping may play in DNA replication. We find that the loop-size distribution predicted from a wormlike-chain model of chromatin can account for the spatial distribution of replication origins in this system quantitatively. Together with earlier findings of increasing frequency of origin firings, our results can explain the random-completion problem. The agreement between experimental data (molecular combing) and theoretical predictions suggests that the intrinsic stiffness of chromatin loops plays a fundamental biological role in DNA replication in early-embryo Xenopus in regulating the origin spacing.  相似文献   

18.
19.
20.
DNA replication of eukaryotic chromosomes initiates at a number of discrete loci, called replication origins. Distribution and regulation of origins are important for complete duplication of the genome. Here, we determined locations of Orc1 and Mcm6, components of pre-replicative complex (pre-RC), on the whole genome of Schizosaccharomyces pombe using a high-resolution tiling array. Pre-RC sites were identified in 460 intergenic regions, where Orc1 and Mcm6 colocalized. By mapping of 5-bromo-2'-deoxyuridine (BrdU)-incorporated DNA in the presence of hydroxyurea (HU), 307 pre-RC sites were identified as early-firing origins. In contrast, 153 pre-RC sites without BrdU incorporation were considered to be late and/or inefficient origins. Inactivation of replication checkpoint by Cds1 deletion resulted in BrdU incorporation with HU specifically at the late origins. Early and late origins tend to distribute separately in large chromosome regions. Interestingly, pericentromeric heterochromatin and the silent mating-type locus replicated in the presence of HU, whereas the inner centromere or subtelomeric heterochromatin did not. Notably, MCM did not bind to inner centromeres where origin recognition complex was located. Thus, replication is differentially regulated in chromosome domains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号