首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Allosteric binding pockets in peptide-binding G protein-coupled receptors create opportunities for the development of small molecule drugs with substantial benefits over orthosteric ligands. To gain insights into molecular determinants for this pocket within type 1 and 2 cholecystokinin receptors (CCK1R and CCK2R), we prepared a series of receptor constructs in which six distinct residues in TM2, -3, -6, and -7 were reversed. Two novel iodinated CCK1R- and CCK2R-selective 1,4-benzodiazepine antagonists, differing only in stereochemistry at C3, were used. When all six residues within CCK1R were mutated to corresponding CCK2R residues, benzodiazepine selectivity was reversed, yet peptide binding selectivity was unaffected. Detailed analysis, including observations of gain of function, demonstrated that residues 6.51, 6.52, and 7.39 were most important for binding the CCK1R-selective ligand, whereas residues 2.61 and 7.39 were most important for binding CCK2R-selective ligand, although the effect of substitution of residue 2.61 was likely indirect. Ligand-guided homology modeling was applied to wild type receptors and those reversing benzodiazepine binding selectivity. The models had high predictive power in enriching known receptor-selective ligands from related decoys, indicating a high degree of precision in pocket definition. The benzodiazepines docked in similar poses in both receptors, with C3 urea substituents pointing upward, whereas different stereochemistry at C3 directed the C5 phenyl rings and N1 methyl groups into opposite orientations. The geometry of the binding pockets and specific interactions predicted for ligand docking in these models provide a molecular framework for understanding ligand selectivity at these receptor subtypes. Furthermore, the strong predictive power of these models suggests their usefulness in the discovery of lead compounds and in drug development programs.  相似文献   

2.
Lysophosphatidic acid is a bioactive lipid mediator with neuronal activities. We previously reported a crucial role for lysophosphatidic acid 1 receptor-mediated signaling in neuropathic pain mechanisms. Intrathecal administration of lysophosphatidic acid (1 nmol) induced abnormal pain behaviors, such as thermal hyperalgesia, mechanical allodynia, A-fiber hypersensitization, and C-fiber hyposensitization, all of which were also observed in partial sciatic nerve injury-induced neuropathic pain. Ki-16425 (30 mg/kg, i.p.), a lysophosphatidic acid 1 receptor antagonist, completely blocked lysophosphatidic acid-induced neuropathic pain-like behaviors, when administered 30 min but not 90 min before lysophosphatidic acid injection, suggesting that Ki-16425 is a short-lived inhibitor. The blockade of nerve injury-induced neuropathic pain by Ki-16425 was maximum as late as 3 h after the injury but not after this critical period. The administration of Ki-16425 at 3 h but not at 6 h after injury also blocked neurochemical changes, including up-regulation of voltage-gated calcium channel α2δ-1 subunit expression in dorsal root ganglion and reduction of substance P expression in the spinal dorsal horn. All of these results using Ki-16425 suggest that lysophosphatidic acid 1 receptor-mediated signaling which underlies the development of neuropathic pain works at an early stage of the critical period after nerve injury.  相似文献   

3.
4.
Few gastrointestinal hormones/neurotransmitters have high affinity peptide receptor antagonists, and little is known about the molecular basis of their selectivity or affinity. The receptor mediating the action of the mammalian bombesin (Bn) peptide, gastrin-releasing peptide receptor (GRPR), is an exception, because numerous classes of peptide antagonists are described. To investigate the molecular basis for their high affinity for the GRPR, two classes of peptide antagonists, a statine analogue, JMV594 ([d-Phe(6),Stat(13)]Bn(6-14)), and a pseudopeptide analogue, JMV641 (d-Phe-Gln-Trp-Ala-Val-Gly-His-Leupsi(CHOH-CH(2))-(CH(2))(2)-CH(3)), were studied. Each had high affinity for the GRPR and >3,000-fold selectivity for GRPR over the closely related neuromedin B receptor (NMBR). To investigate the basis for this, we used a chimeric receptor approach to make both GRPR loss of affinity and NMBR gain of affinity chimeras and a site-directed mutagenesis approach. Chimeric or mutated receptors were transiently expressed in Balb/c 3T3. Only substitution of the fourth extracellular (EC) domain of the GRPR by the comparable NMBR domain markedly decreased the affinity for both antagonists. Substituting the fourth EC domain of NMBR into the GRPR resulted in a 300-fold gain in affinity for JMV594 and an 11-fold gain for JMV641. Each of the 11 amino acid differences between the GRPR and NMBR in this domain were exchanged. The substitutions of Thr(297) in GRPR by Pro from the comparable position in NMBR, Phe(302) by Met, and Ser(305) by Thr decreased the affinity of each antagonist. Simultaneous replacement of Thr(297), Phe(302), and Ser(305) in GRPR by the three comparable NMBR amino acids caused a 500-fold decrease in affinity for both antagonists. Replacing the comparable three amino acids in NMBR by those from GRPR caused a gain in affinity for each antagonist. Receptor modeling showed that each of these three amino acids faced inward and was within 5 A of the putative binding pocket. These results demonstrate that differences in the fourth EC domain of the mammalian Bn receptors are responsible for the selectivity of these two peptide antagonists. They demonstrate that Thr(297), Phe(302), and Ser(305) of the fourth EC domain of GRPR are the critical residues for determining GRPR selectivity and suggest that both receptor-ligand cation-pi interactions and hydrogen bonding are important for their high affinity interaction.  相似文献   

5.
《Cellular signalling》2014,26(11):2406-2411
The lysophosphatidic acid receptor 1 (LPA1), a G-protein coupled receptor, regulates cell proliferation, migration, and cytokine release. Here, we investigate the molecular signature of LPA1 trafficking to the cell surface. The overexpressed LPA1 with a C-terminal V5 tag (LPA1-V5) is majorly expressed on the cell surface, while two deletion mutants (C320 and ∆84–87) failed to be trafficked to the cell surface. Further, site-directed mutagenesis analysis of the LPA1 revealed that Ile325, Tyr85, and Leu87 within these two fragments regulate LPA1 maturation and trafficking to the cell surface. Over-expression of Sar1, a component of coat protein complex II (COPII), enhances glycosylation of LPA1 wild type, but not these mutants. The mutants of LPA1 are majorly localized in the endoplasmic reticulum (ER) and exhibit a higher binding affinity to heat shock protein 70 (Hsp70), when compared to the LPA1 wild type. Further, we found that all these mutants failed to increase phosphorylation of Erk, and the cytokine release in response to LPA treatment. These results suggest that Ile325, Tyr85, and Leu87 within LPA1 are essential for LPA1 protein properly folding in the ER.  相似文献   

6.
Molecular mechanisms of lysophosphatidic acid action   总被引:6,自引:0,他引:6  
  相似文献   

7.
Linoleic acid (18:2) is found in a large variety of plant oils but to date there is limited knowledge about the substrate selectivity of acyltransferases required for its incorporation into storage triacylglycerols. We have compared the incorporation of oleoyl (18:1) and linoleoyl (18:2) acyl-CoAs onto lysophosphatidic acid acceptors by sub-cellular fractions prepared from a variety of plant and microbial species. Our assays demonstrated: (1). All lysophosphatidic acid acyltransferase (LPA-AT) enzymes tested incorporated 18:2 acyl groups when presented with an equimolar mix of 18:1 and 18:2 acyl-CoA substrates. The ratio of 18:1 to 18:2 incorporation into phosphatidic acid varied between 0.4 and 1.4, indicating low selectivity between these substrates. (2). The presence of either stearoyl (18:0) or oleoyl (18:1) groups at the sn-1 position of lysophosphatidic acid did not affect the selectivity of incorporation of 18:1 or 18:2 into the sn-2 position of phosphatidic acid. (3). All LPA-AT enzymes tested incorporated the saturated palmitoyl (16:0) acyl group from equimolar mixtures of 16:0- and 18:1-CoA. The ratios of 18:1 to 16:0 incorporation are generally much higher than those of 18:1 to 18:2 incorporation, varying between 2.1 and 8.6. (4). The LPA-AT from oil palm kernel is an exception as 18:1 and 16:0 are utilised at comparable rates. These results show that, in the majority of species examined, there is no correlation between the final sn-2 composition of oil or membrane lipids and the ability of an LPA-AT to use 18:2 as a substrate in in vitro assays.  相似文献   

8.
溶血磷脂酸受体2(lysophosphatidic acid receptor 2,LPA2),也称内皮分化基因受体4(endothelial differentiation gene receptor 4,EDG4),是溶血磷脂酸G蛋白偶联受体类的一种,对溶血磷脂酸有较高亲和力,可介导多种细胞活动。近年研究发现,LPA2/EDG4在卵巢癌细胞中过表达,同时与乳腺癌、结直肠癌、动脉粥样硬化、呼吸道疾病、妊娠性高血压等有着密切关系。  相似文献   

9.
A recently reported dual LPA1/LPA3 receptor antagonist (VPC12249, 1) has been modified herein so as to optimize potency and selectivity at LPA receptors. Compounds containing variation in the acyl lipid chain and linker region have been synthesized and screened for activity at individual LPA receptors. LPA1-selective (14b) and LPA3-selective (10g,m) compounds of modest potency have been discovered. Additionally, 2-pyridyl derivative 10t exhibits a Ki value of 18 nM at the LPA1 receptor and is significantly more potent than 1 at the LPA3 receptor. This paper describes the synthetic methods, biological evaluation, and structure-activity relationships (SARs) of LPA receptor antagonists.  相似文献   

10.
GPR35 is a rhodopsin-like G protein-coupled receptor identified in 1998. It has been reported that kynurenic acid, a tryptophan metabolite, may act as an endogenous ligand for GPR35. However, the concentrations of kynurenic acid required to elicit the cellular responses are usually high, raising the possibility that another endogenous ligand may exist. In this study, we searched for another endogenous ligand for GPR35. Finally, we found that the magnitude of the Ca2+ response induced by 2-acyl lysophosphatidic acid in the GPR35-expressing HEK293 cells was markedly greater than that in the vector-transfected control cells. Such a difference was not apparent in the case of 1-acyl lysophosphatidic acid. 2-Acyl lysophosphatidic acid also caused the sustained activation of RhoA and the phosphorylation of extracellular signal-regulated kinase, and triggered the internalization of the GPR35 molecule. These results strongly suggest that 2-acyl lysophosphatidic acid is an endogenous ligand for GPR35.  相似文献   

11.
Lysophosphatidic acid (LPA), together with sphingosine 1-phosphate, is a bioactive lipid mediator that acts on G-protein-coupled receptors to evoke multiple cellular responses, including Ca(2+) mobilization, modulation of adenylyl cyclase, and mitogen-activated protein (MAP) kinase activation. In this study, we isolated a human cDNA encoding a novel G-protein-coupled receptor, designated EDG7, and characterized it as a cellular receptor for LPA. The amino acid sequence of the EDG7 protein is 53.7 and 48.8% identical to those of the human functional LPA receptors EDG2 and EDG4, respectively, previously identified. LPA (oleoyl) but not other lysophospholipids induced an increase in the [Ca(2+)](i) of EDG7-overexpressing Sf9 cells. Other LPA receptors, EDG4 but not EDG2, transduced the Ca(2+) response by LPA when expressed in Sf9 cells. LPAs with an unsaturated fatty acid but not with a saturated fatty acid induced an increase in the [Ca(2+)](i) of EDG7-expressing Sf9 cells, whereas LPAs with both saturated and unsaturated fatty acids elicited a Ca(2+) response in Sf9 cells expressing EDG4. In EDG7- or EDG4-expressing Sf9 cells, LPA stimulated forskolin-induced increase in intracellular cAMP levels, which was not observed in EDG2-expressing cells. In PC12 cells, EDG4 but not EDG2 or EDG7 mediated the activation of MAP kinase by LPA. Neither the EDG7- nor EDG4-transduced Ca(2+) response or cAMP accumulation was inhibited by pertussis toxin. In conclusion, the present study demonstrates that EDG7, a new member of the EDG family of G-protein-coupled receptors, is a specific LPA receptor that shows distinct properties from known cloned LPA receptors in ligand specificities, Ca(2+) response, modulation of adenylyl cyclase, and MAP kinase activation.  相似文献   

12.
Two non-peptide substance P antagonists exhibit opposite rank orders of potency for the human and rat neurokinin-1 receptors. CP-96,345 shows selectivity for the human receptor, whereas RP67580 shows selectivity for the rat receptor. Amino acid sequence comparison of the two receptors reveals 22 divergent residues. To elucidate the molecular basis for the species selectivity of these antagonists, divergent residues in the human neurokinin-1 receptor were substituted by the rat homologs. Analysis of mutant receptors revealed that substitution of 2 residues (V116L and I290S) in the transmembrane domain of the human neurokinin-1 receptor is both necessary and sufficient to reproduce the antagonist binding affinities of the rat receptor. The nature of these substitutions and the magnitude of the changes in binding affinity suggest that residues 116 and 290 do not interact directly with the antagonist molecules. The present results support a model in which phylogenetically conserved residues interact directly with the antagonists, while phylogenetically divergent residues affect the local helical packing of the receptor. Such a change in local structure would lead to increased binding affinity for one class of antagonists and decreased affinity for another.  相似文献   

13.

Background

Multiple protein templates are commonly used in manual protein structure prediction. However, few automated algorithms of selecting and combining multiple templates are available.

Results

Here we develop an effective multi-template combination algorithm for protein comparative modeling. The algorithm selects templates according to the similarity significance of the alignments between template and target proteins. It combines the whole template-target alignments whose similarity significance score is close to that of the top template-target alignment within a threshold, whereas it only takes alignment fragments from a less similar template-target alignment that align with a sizable uncovered region of the target. We compare the algorithm with the traditional method of using a single top template on the 45 comparative modeling targets (i.e. easy template-based modeling targets) used in the seventh edition of Critical Assessment of Techniques for Protein Structure Prediction (CASP7). The multi-template combination algorithm improves the GDT-TS scores of predicted models by 6.8% on average. The statistical analysis shows that the improvement is significant (p-value < 10-4). Compared with the ideal approach that always uses the best template, the multi-template approach yields only slightly better performance. During the CASP7 experiment, the preliminary implementation of the multi-template combination algorithm (FOLDpro) was ranked second among 67 servers in the category of high-accuracy structure prediction in terms of GDT-TS measure.

Conclusion

We have developed a novel multi-template algorithm to improve protein comparative modeling.  相似文献   

14.
Lysophosphatidic acid (LPA) is a bioactive lipid with activity in the nervous system mediated by G-protein-coupled receptors. Here, we examined the role of LPA signaling in the development of neuropathic pain by pharmacological and genetic approaches, including the use of mice lacking the LPA(1) receptor. Wild-type animals with nerve injury develop behavioral allodynia and hyperalgesia paralleled by demyelination in the dorsal root and increased expression of both the protein kinase C gamma-isoform within the spinal cord dorsal horn and the alpha(2)delta(1) calcium channel subunit in dorsal root ganglia. Intrathecal injection of LPA induced behavioral, morphological and biochemical changes similar to those observed after nerve ligation. In contrast, mice lacking a single LPA receptor (LPA(1), also known as EDG2) that activates the Rho-Rho kinase pathway do not develop signs of neuropathic pain after peripheral nerve injury. Inhibitors of Rho and Rho kinase also prevented these signs of neuropathic pain. These results imply that receptor-mediated LPA signaling is crucial in the initiation of neuropathic pain.  相似文献   

15.
Zou Y  Li C  Brunzelle JS  Nair SK 《Biochemistry》2007,46(14):4294-4304
Diversity in the polysaccharide component of lipopolysaccharide (LPS) contributes to the persistence and pathogenesis of Gram-negative bacteria. The Nudix hydrolase GDP-mannose mannosyl hydrolase (Gmm) contributes to this diversity by regulating the concentration of mannose in LPS biosynthetic pathways. Here, we present seven high-resolution crystal structures of Gmm from the enteropathogenic E. coli strain O128: the structure of the apo enzyme, the cocrystal structure of Gmm bound to the product Mg2+-GDP, two cocrystal structures of precatalytic and turnover complexes of Gmm-Ca2+-GDP-alpha-d-mannose, and three cocrystal structures of an inactive mutant (His-124 --> Leu) Gmm bound to substrates GDP-alpha-d-mannose, GDP-alpha-d-glucose, and GDP-beta-l-fucose. These crystal structures help explain the molecular basis for substrate specificity and promiscuity and provide a structural framework for reconciling previously determined kinetic parameters. Unexpectedly, these structures reveal concerted changes in the enzyme structure that result in the formation of a catalytically competent active site only in the presence of the substrate/product. These structural views of the enzyme may provide a rationale for the design of inhibitors that target the biosynthesis of LPS by pathogenic bacteria.  相似文献   

16.
Ligand recognition by G protein-coupled receptors (GPCR), as well as substrate recognition by enzymes, almost always shows a preference for a naturally occurring enantiomer over the unnatural one. Recognition of lysophosphatidic acid (LPA) by its receptors is an exception, as both the natural L (R) and unnatural D (S) stereoisomers of LPA are equally active in bioassays. In contrast to the enantiomers of LPA, analogs of N-acyl-serine phosphoric acid (NASPA) and N-acyl-ethanolamine phosphoric acid (NAEPA), which contain a serine and an ethanolamine backbone, respectively, in place of glycerol, are recognized in a stereoselective manner. This stereoselective interaction may lead to the development of receptor subtype-selective antagonists. In the present study, we review the stereochemical aspects of LPA pharmacology and describe the chemical synthesis of pure LPA enantiomers together with their ligand-binding properties toward the LPA1, LPA2, and LPA3 receptors and their metabolism by lipid phosphate phosphatase 1 (LPP1). Finally, we evaluate the concept of stereopharmacology in developing novel ligands for LPA receptors.  相似文献   

17.
Lysophosphatidic acid (LPA) induces actin rearrangement, focal adhesion assembly, and cell migration through the activation of small G protein Rho and its downstream effectors. These diverse cellular responses are mediated by its associated G protein-coupled receptors. However, the mechanisms and specificity by which these LPA receptors mediate LPA actions are still poorly understood. Here we show that LPA stimulation promotes the interaction of the LPA(2) receptor with a focal adhesion molecule, TRIP6 (thyroid receptor interacting protein 6)/ZRP-1 (zyxin-related protein 1). TRIP6 directly binds to the carboxyl-terminal tail of the LPA(2) receptor through its LIM domains. LPA-dependent recruitment of TRIP6 to the plasma membrane promotes its targeting to focal adhesions and co-localization with actin stress fibers. In addition, TRIP6 associates with the components of focal complexes including paxillin, focal adhesion kinase, c-Src, and p130(cas) in an agonist-dependent manner. Overexpression of TRIP6 augments LPA-induced cell migration; in contrast, suppression of endogenous TRIP6 expression by a TRIP6-specific small interfering RNA reduces it in SKOV3 ovarian cancer cells. Strikingly, the association with TRIP6 is specific to the LPA(2) receptor but not LPA(1) or LPA(3) receptor, indicating a specific role for TRIP6 in regulating LPA(2) receptor-mediated signaling. Taken together, our results suggest that TRIP6 functions at a point of convergence between the activated LPA(2) receptor and downstream signals involved in cell adhesion and migration.  相似文献   

18.
G protein‐coupled receptor (GPCR) kinases (GRKs) selectively recognize and are allosterically regulated by activated GPCRs, but the molecular basis for this interaction is not understood. Herein, we report crystal structures of GRK6 in which regions known to be critical for receptor phosphorylation have coalesced to stabilize the kinase domain in a closed state and to form a likely receptor docking site. The crux of this docking site is an extended N‐terminal helix that bridges the large and small lobes of the kinase domain and lies adjacent to a basic surface of the protein proposed to bind anionic phospholipids. Mutation of exposed, hydrophobic residues in the N‐terminal helix selectively inhibits receptor, but not peptide phosphorylation, suggesting that these residues interact directly with GPCRs. Our structural and biochemical results thus provide an explanation for how receptor recognition, phospholipid binding, and kinase activation are intimately coupled in GRKs.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号