首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The purple bacterial reaction centre uses the energy of sunlight to power energy-requiring reactions such as the synthesis of ATP. During the last 20 years, a combination of X-ray crystallography, spectroscopy and mutagenesis has provided a detailed insight into the mechanism of light energy transduction in the bacterial reaction centre. In recent years, structural techniques including X-ray crystallography and neutron scattering have also been used to examine the environment of the reaction centre. This mini-review focuses on recent studies of the surface of the reaction centre, and briefly discusses the importance of the specific protein-lipid interactions that have been resolved for integral membrane proteins.  相似文献   

2.
The purple bacterial reaction centre uses the energy of sunlight to power energy-requiring reactions such as the synthesis of ATP. During the last 20 years, a combination of X-ray crystallography, spectroscopy and mutagenesis has provided a detailed insight into the mechanism of light energy transduction in the bacterial reaction centre. In recent years, structural techniques including X-ray crystallography and neutron scattering have also been used to examine the environment of the reaction centre. This mini-review focuses on recent studies of the surface of the reaction centre, and briefly discusses the importance of the specific protein-lipid interactions that have been resolved for integral membrane proteins.  相似文献   

3.
All of the membrane-embedded cofactors of the purple bacterial reaction centre have well-defined functional or structural roles, with the exception of the bacteriopheophytin (HB) located approximately half-way across the membrane on the so-called inactive- or B-branch of cofactors. Sequence alignments indicate that this bacteriochlorin cofactor is a conserved feature of purple bacterial reaction centres, and a pheophytin is also found at this position in the Photosystem-II reaction centre. Possible structural or functional consequences of replacing the HB bacteriopheophytin by bacteriochlorophyll were investigated in the Rhodobacter sphaeroides reaction centre through mutagenesis of residue Leu L185 to His (LL185H). Results from absorbance spectroscopy indicated that the LL185H mutant assembled with a bacteriochlorophyll at the HB position, but this did not affect the capacity of the reaction centre to support photosynthetic growth, or change the kinetics of charge separation along the A-branch of cofactors. It was also found that mutation of residue Ala M149 to Trp (AM149W) caused the reaction centre to assemble without an HB bacteriochlorin, demonstrating that this cofactor is not required for correct assembly of the reaction centre. The absence of a cofactor at this position did not affect the capacity of the reaction centre to support photosynthetic growth, or the kinetics of A-branch electron transfer. A combination of X-ray crystallography and FTIR difference spectroscopy confirmed that the HB cofactor was absent in the AM149W mutant, and that this had not produced any significant disturbance of the adjacent ubiquinol reductase (QB) site. The data are discussed with respect to possible functional roles of the HB bacteriopheophytin, and we conclude that the reason(s) for conservation of a bacteriopheophytin cofactor at this position in purple bacterial reaction centres are likely to be different from those underlying conservation of a pheophytin at the analogous position in Photosystem-II.  相似文献   

4.
The effect of mutagenesis on the detailed conformation of the carotenoid cofactor of the bacterial reaction centre has been examined using resonance Raman spectroscopy. Four single site mutations were made, removing polar residues that line the binding pocket for spheroidenone in the reaction centre from Rhodobacter sphaeroides. All of the mutations caused changes in the relative intensity of bands in the 2 frequency region of the carotenoid resonance Raman spectrum, suggesting a change in the geometry of the central 15,15-cis bond of the spheroidenone. In addition, increased splitting of the 1 vibrational modes in two of the mutant RCs indicated a reduction of the effective conjugation length of the spheroidenone, possibly due to an increased distortion from a planar geometry along the C=C backbone of the spheroidenone. These changes in the detailed conformation of the reaction centre carotenoid do not affect the optical properties o f the cofactor, and are beyond the limits of detection of X-ray crystallography as currently applied to the bacterial reaction centre.  相似文献   

5.
Aspects of intramolecular light energy and electron transfer will be discussed for three protein cofactor complexes, whose three-dimensional structures have been elucidated by X-ray crystallography: components of light-harvesting cyanobacterial phycobilisomes, the purple bacterial reaction centre and the blue multi-copper oxidases. A wealth of functional data is available for these systems which allow specific correlations between structure and function, and general conclusions about light energy and electron transfer in biological materials to be made.  相似文献   

6.
R Huber 《The EMBO journal》1989,8(8):2125-2147
Aspects of intramolecular light energy and electron transfer will be discussed for three protein--cofactor complexes, whose three-dimensional structures have been elucidated by X-ray crystallography: components of light-harvesting cyanobacterial phycobilisomes; the purple bacterial reaction centre; and the blue multi-copper oxidases. A wealth of functional data is available for these systems which allows specific correlations between structure and function and general conclusions about light energy and electron transfer in biological materials to be made.  相似文献   

7.
Photosynthetic proteins power the biosphere. Reaction centres, light harvesting antenna proteins and cytochrome b(6)f (or bc(1)) complexes are expressed at high levels, have been subjected to an intensive spectroscopic, biochemical and mutagenic analysis, and several have been characterised to an informatively high resolution by X-ray crystallography. In addition to revealing the structural basis for the transduction of light energy, X-ray crystallography has brought molecular insights into the relationships between these multicomponent membrane proteins and their lipid environment. Lipids resolved in the X-ray crystal structures of photosynthetic proteins bind light harvesting cofactors, fill intra-protein cavities through which quinones can diffuse, form an important part of the monomer-monomer interface in multimeric structures and may facilitate structural flexibility in complexes that undergo partial disassembly and repair. It has been proposed that individual lipids influence the biophysical properties of reaction centre cofactors, and so affect the rate of electron transfer through the complex. Lipids have also been shown to be important for successful crystallisation of photosynthetic proteins. Comparison of the three types of reaction centre that have been structurally characterised reveals interesting similarities in the position of bound lipids that may point towards a generic requirement to reinforce the structure of the core electron transfer domain. The crystallographic data are also providing new opportunities to find molecular explanations for observed effects of different types of lipid on the structure, mechanism and organisation of reaction centres and other photosynthetic proteins.  相似文献   

8.
The photosynthetic reaction center (RC) is the first membrane protein whose three-dimensional structure was revealed at the atomic level by X-ray crystallograph more than fifteen years ago. Structural information about RC made a great contribution to the understanding of the reaction mechanism of the complicated membrane protein complex. High-resolution structures of RCs from three photosynthetic bacteria are now available, namely, those from two mesophilic purple non-sulfur bacteria, Blastochloris viridis and Rhodobacter sphaeroides, and that from a thermophilic purple sulfur bacterium, Thermochromatium tepidum. In addition, a variety of structural studies, mainly by X-ray crystallography, are still being performed to give more detailed insight into the reaction mechanism of this membrane protein. This review deals with structural studies of bacterial RC complexes, and a discussion about the electron transfer reaction between RCs and electron donors is the main focus out of several topics addressed by these structural studies. The structural data from three RCs and their electron donors provided reliable models for molecular recognition in the primary step of bacterial photosynthesis.  相似文献   

9.
TMADH (trimethylamine dehydrogenase) is a complex iron-sulphur flavoprotein that forms a soluble electron-transfer complex with ETF (electron-transferring flavoprotein). The mechanism of electron transfer between TMADH and ETF has been studied using stopped-flow kinetic and mutagenesis methods, and more recently by X-ray crystallography. Potentiometric methods have also been used to identify key residues involved in the stabilization of the flavin radical semiquinone species in ETF. These studies have demonstrated a key role for 'conformational sampling' in the electron-transfer complex, facilitated by two-site contact of ETF with TMADH. Exploration of three-dimensional space in the complex allows the FAD of ETF to find conformations compatible with enhanced electronic coupling with the 4Fe-4S centre of TMADH. This mechanism of electron transfer provides for a more robust and accessible design principle for interprotein electron transfer compared with simpler models that invoke the collision of redox partners followed by electron transfer. The structure of the TMADH-ETF complex confirms the role of key residues in electron transfer and molecular assembly, originally suggested from detailed kinetic studies in wild-type and mutant complexes, and from molecular modelling.  相似文献   

10.
The structure of photosystem II and the catalytic intermediate states of the Mn4CaO5 cluster involved in water oxidation have been studied intensively over the past several years. An understanding of the sequential chemistry of light absorption and the mechanism of water oxidation, however, requires a new approach beyond the conventional steady-state crystallography and X-ray spectroscopy at cryogenic temperatures. In this report, we present the preliminary progress using an X-ray free-electron laser to determine simultaneously the light-induced protein dynamics via crystallography and the local chemistry that occurs at the catalytic centre using X-ray spectroscopy under functional conditions at room temperature.  相似文献   

11.
Aspects of intramolecular light energy and electron transfer will be discussed for three protein cofactor complexes, whose three-dimensional structures have been elucidated by x-ray crystallography: Components of light harvesting cyanobacterial phycobilisomes, the purple bacterial reaction centre, and the blue multi-copper oxidases. A wealth of functional data is available for these systems which allow specific correlations between structure and function and general conclusions about light energy and electron transfer in biological materials to be made.  相似文献   

12.
The recent development in the structure-function relationship of pancreatic phospholipase A(2) is reviewed. The results of extensive studies by a combination of site-directed mutagenesis, X-ray crystallography, and NMR have provided new insight into several old issues. In particular, we summarize current views on the active site, the interfacial binding site, the mechanism of interfacial activation, the roles of the hydrogen-bonding network and the catalytic dyad, and the conformational stability of the structure.  相似文献   

13.
X-ray structures have been determined for five mutant reaction centres from Rhodobacter sphaeroides, at resolutions varying between 3.4 Å and 2.3 Å. The aim was to examine the effects of mutagenesis of polar residues in the binding pocket of the reaction centre carotenoid. The number of water molecules identified in each structure depended on the resolution and completeness of the data. In a 2.3 Å structure for a WM115F/FM197R mutant reaction centre, two water molecules partially filled the cavity that was created when the tryptophan residue was replaced by a less bulky phenylalanine. Structures obtained for four reaction centres with mutations of polar residues in the carotenoid binding pocket failed to show any significant change in the structure of the reaction centre carotenoid. Low resolution data for a YM210W mutant reaction centre showed that the overall structure of this complex is well conserved. This finding is discussed in light of the intriguing spectroscopic properties of the YM210W mutant reaction centre, and an alternative pathway for transmembrane electron transfer identified in this mutant.  相似文献   

14.
Beta-lactamases and bacterial resistance to antibiotics   总被引:4,自引:2,他引:2  
The efficiency of β-lactam antibiotics, which are among our most useful chemotherapeutic weapons, is continuously challenged by the emergence of resistant bacterial strains. This is most often due to the production of β-lactamases by the resistant cells. These enzymes inactivate the antibiotics by hydrolysing the β-lactam amide bond. The elucidation of the structures of some β-lactamases by X-ray crystallography has provided precious insights into their catalytic mechanisms and revealed unsuspected similarities with the DD-transpeptidases, the bacterial enzymes which constitute the lethal targets of β-lactams. Despite numerous kinetic, structural and site-directed mutagenesis studies, we have not completely succeeded in explaining the diversity of the specificity profiles of β-lactamases and their surprising catalytic power. The solutions to these problems represent the cornerstones on which better antibiotics can be designed, hopefully on a rational basis.  相似文献   

15.
Well-ordered crystals of the bacterial photosynthetic reaction centre from Rhodobacter sphaeroides were grown from a lipidic cubic phase. Here, we report the type I crystal packing that results from this crystallisation medium, for which 3D crystals grow as stacked 2D crystals, and the reaction centre X-ray structure is refined to 2.35A resolution. In this crystal form, the location of the membrane bilayer could be assigned with confidence. A cardiolipin-binding site is found at the protein-protein interface within the membrane-spanning region, shedding light on the formation of crystal contacts within the membrane. A chloride-binding site was identified in the membrane-spanning region, which suggests a putative site for interaction with the light-harvesting complex I, the cytochrome bc(1) complex or PufX. Comparisons with the X-ray structures of this reaction centre deriving from detergent-based crystals are drawn, indicating that a slight compression occurs in this lipid-rich environment.  相似文献   

16.
《BBA》2020,1861(3):148153
Complex I is the largest and most intricate redox-driven proton pump of the respiratory chain. The structure of bacterial and mitochondrial complex I has been determined by X-ray crystallography and cryo-EM at increasing resolution. The recent cryo-EM structures of the complex I-like NDH complex and membrane bound hydrogenase open a new and more comprehensive perspective on the complex I superfamily. Functional studies and molecular modeling approaches have greatly advanced our understanding of the catalytic cycle of complex I. However, the molecular mechanism by which energy is extracted from the redox reaction and utilized to drive proton translocation is unresolved and a matter of ongoing debate. Here, we review progress in structure determination and functional characterization of complex I and discuss current mechanistic models.  相似文献   

17.
Lancaster CR 《FEBS letters》2001,504(3):133-141
The structure of Wolinella succinogenes quinol:fumarate reductase by X-ray crystallography has been determined at 2.2-A resolution [Lancaster et al. (1999), Nature 402, 377-385]. Based on the structure of the three protein subunits A, B, and C and the arrangement of the six prosthetic groups (a covalently bound FAD, three iron-sulphur clusters, and two haem b groups) a pathway of electron transfer from the quinol-oxidising dihaem cytochrome b in the membrane to the site of fumarate reduction in the hydrophilic subunit A has been proposed. By combining the results from site-directed mutagenesis, functional and electrochemical characterisation, and X-ray crystallography, a residue was identified which is essential for menaquinol oxidation. [Lancaster et al. (2000), Proc. Natl. Acad. Sci. USA 97, 13051-13056]. The location of this residue in the structure suggests that the coupling of the oxidation of menaquinol to the reduction of fumarate in dihaem-containing succinate:quinone oxidoreductases could be associated with the generation of a transmembrane electrochemical potential. Based on crystallographic analysis of three different crystal forms of the enzyme and the results from site-directed mutagenesis, we have derived a mechanism of fumarate reduction and succinate oxidation [Lancaster et al. (2001) Eur. J. Biochem. 268, 1820-1827], which should be generally relevant throughout the superfamily of succinate:quinone oxidoreductases.  相似文献   

18.
Protein engineering is becoming increasingly important for pharmaceutical applications where controlling the specificity and affinity of engineered proteins is required to create targeted protein therapeutics. Affinity increases of several thousand-fold are now routine for a variety of protein engineering approaches, and the structural and energetic bases of affinity maturation have been investigated in a number of such cases. Previously, a 3-million-fold affinity maturation process was achieved in a protein-protein interaction composed of a variant T-cell receptor fragment and a bacterial superantigen. Here, we present the molecular basis of this affinity increase. Using X-ray crystallography, shotgun reversion/replacement scanning mutagenesis, and computational analysis, we describe, in molecular detail, a process by which extrainterfacial regions of a protein complex can be rationally manipulated to significantly improve protein engineering outcomes.  相似文献   

19.
In the photosynthetic reaction centre (RC) from the purple bacterium Rhodobacter sphaeroides, the primary quinone, a ubiquinone-10 (Q(A)), has been substituted by anthraquinone. Three-dimensional crystals have been grown from the modified RC and its structure has been determined by X-ray crystallography to 2.4 A resolution. The bindings of the head-group from ubiquinone-10 and of the anthraquinone ring are very similar. In particular, both rings are parallel to each other and the hydrogen bonds connecting the native ubiquinone-10 molecule to AlaM260 and HisM219 are conserved in the anthraquinone containing RC. The space of the phytyl tail missing in the anthraquinone exchanged RC is occupied by the alkyl chain of a detergent molecule. Other structural changes of the Q(A)-binding site are within the limit of resolution. Our structural data bring strong credit to the very large amount of spectroscopic data previously achieved in anthraquinone-replaced RCs and which have participated in the determination of the energetics of the quinone system in bacterial RCs.  相似文献   

20.
RCC1, the regulator of chromosome condensation, is the guanine nucleotide exchange factor (GEF) for the nuclear Ras-like GTP-binding protein Ran. Its structure was solved by X-ray crystallography and revealed a seven-bladed beta-propeller, one side of which was proposed to be the interaction site with Ran. To gain more insight into this interaction, alanine mutagenesis studies were performed on conserved residues on the surface of the structure. Purified mutant proteins were analysed by steady-state kinetic analysis of their GEF activities towards Ran. A number of residues were identified whose mutation affected either the KMor kcatof the overall reaction, or had no effect. Mutants were further analysed by plasmon surface resonance in order to get more information on individual steps of the complex reaction pathway. Ran-GDP was coupled to the sensor chip and reacted with RCC1 mutants to categorise them into different groups, demonstrating the usefulness of plasmon surface resonance in the study of complex multi-step kinetic processes. A docking solution of Ran-RCC1 structures in combination with sequence analysis allows prediction of the site of interaction between RCC1 and Ran and proposes a model for the Ran-RCC1 structure which corresponds to and extends the biochemical data. Three invariant residues which most severely affect the kcatof the reaction, D128, D182 and H304, are located in the centre of the Ran-RCC1 interface and interfere with switch II and the phosphate binding area. The structural model suggests that different guanine nucleotide exchange factors use a similar interaction site on their respective GTP-binding proteins, but that the molecular mechanisms for the release of nucleotides are likely to be different.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号