首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Pisum arvense plants were subjected to 5 days of nitrogen deprivation. Then, in the conditions that increased or decreased the root glutamine and asparagine pools, the uptake rates of 0.5 mM NH4 + and 0.5 mM K+ were examined. The plants supplied with 1 mM glutamine or asparagine took up ammonium and potassium at rates lower than those for the control plants. The uptake rates of NH4 + and K+ were not affected by 1 mM glutamate. When the plants were pre-treated with 100 μM methionine sulphoximine, an inhibitor of glutamine synthesis, the efflux of NH4 + from roots to ambient solution was enhanced. On the other hand, exposure of plants to methionine sulphoximine led to an increase in potassium uptake rate. The addition of asparagine, glutamine or glutamate into the incubation medium caused a decline in the rate of NH4 + uptake by plasma membrane vesicles isolated from roots of Pisum arvense, whereas on addition of methionine sulphoximine increased ammonium uptake. The results indicate that both NH4 + and K+ uptake appear to be similarly affected by glutamine and asparagine status in root cells. The research was supported by grant of KBN No. 6PO4C 068 08  相似文献   

2.
The influence of carbohydrates on ammonium uptake and ammonium transporter (AMT1) expression was investigated in roots of field pea (Pisum arvense) and rutabaga (Brassica napus var. rapifera). Ammonium transport into field pea seedlings diminished markedly following cotyledon removal, which indicated that uptake of ammonium was under control of reserves stored in the cotyledons. Excision of cotyledons decreased also the level of some amino acids, glucose and total reducing sugars in field pea roots. To investigate the importance of the sugar supply for the regulation of ammonium uptake at low external NH 4 + level, 1 mM glucose or sucrose was supplied for several hours to the field pea seedlings deprived cotyledons or to intact rutabaga plants. Supply of both sugars resulted in a substantial increase in ammonium uptake by both plant species and enhanced markedly the expression of AMT1 in rutabaga roots. The results indicate that sugars may regulate ammonium transport at the genetic level.  相似文献   

3.
Wheat plants grown during 10 days in the absence of N were pretreated with 1.0 eq m-3 of methionine, asparagine or glutamine and/or 1.0 eq m-3 MSX4 or 0.17 eq m-3 DON. Net NH4 + uptake was measured both in the presence or in the absence of the amino acid or enzyme inhibitor used in the pretreatment. The effect of met, asn and gln on net K+ uptake was also studied using K+-depleted plants. Changes in the contents of root free NH4 +, asn, gln and the activities of GS, PEP-carboxylase, NAD+-GDH and NADH-GDH were determined. Net NH4 + uptake in gln and asn pretreated plants was markedly, and sometimes completely suppressed provided uptake was measured in the presence of the amides. On the other hand, the met pretreated plants absorbed only 35% less NH4 + than the control. When NH4 + uptake was measured in the absence of the amino acids, only those plants pretreated with asn showed a marked suppression of net uptake during the first 120 min. None of the 3 amino acids tested significantly inhibited K+ uptake. Free NH4 + concentration in roots of N-starved plants increased after 4 h incubation with gln, asn or MSX in the absence of external NH4 +. Nevertheless, no correlation was observed between root NH4 + concentration and the extent of net NH4 + uptake suppression. The inhibitory effect exerted by asn decreased when it was supplied together with MSX or DON. Pretreatments with gln or asn in the absence of external NH4 + significantly increased the level of asn in the roots, while that of gln remained unchanged. It is concluded that asn and gln specifically suppress net NH4 + uptake in wheat, although it is not clear wether they act only from the root exterior, or through an endogenous pool exhibiting fast turn-over.Abbreviations AUR ammonium uptake rate - DON 6-diazo-5-oxo-L-norleucine - GDH glutamic dehydrogenase - GOGAT oxoglutarate- glutamine aminotransferase - GS glutamine synthetase - MSX L-methionine sulfoximine - PEP phosphoenolpyruvate - PVPP polyvinylpolypyrrolidone  相似文献   

4.
Ammonium sulphate is a major component of the air pollutants deposited on forests in the Netherlands. Different amounts of NH4 + were added to Douglas-fir seedlings grown in tall containers of sand, to study the influence of high concentrations of NH4 + in the soil on the development of fine roots and the effects of nitrogen uptake on rhizosphere pH. At the end of this eight-month experiment part of the ammonium appeared to have nitrified into nitrate. High doses of ammonium negatively affected root length and root length per unit of dry matter (specific root length). Although Douglas fir shows a preferential ammonium uptake in nutrient solutions the increases in the pH of the rhizosphere in this experiment indicate that nitrogen was mostly taken up as nitrate. When the ammonium concentration in the soil is low, it cannot be taken up readily because of its low mobility in soil. Shoot growth was stimulated by high availability of nitrogen. The possible effects of high doses of ammonium on long-term forest vitality are discussed.  相似文献   

5.
An understanding of the mechanisms underlying ammonium (NH4+) toxicity in plants requires prior knowledge of the metabolic uses for nitrogen (N) and carbon (C). We have recently shown that pea plants grown at high NH4+ concentrations suffer an energy deficiency associated with a disruption of ionic homeostasis. Furthermore, these plants are unable to adequately regulate internal NH4+ levels and the cell‐charge balance associated with cation uptake. Herein we show a role for an extra‐C application in the regulation of C–N metabolism in NH4+‐fed plants. Thus, pea plants (Pisum sativum) were grown at a range of NH4+ concentrations as sole N source, and two light intensities were applied to vary the C supply to the plants. Control plants grown at high NH4+ concentration triggered a toxicity response with the characteristic pattern of C‐starvation conditions. This toxicity response resulted in the redistribution of N from amino acids, mostly asparagine, and lower C/N ratios. The C/N imbalance at high NH4+ concentration under control conditions induced a strong activation of root C metabolism and the upregulation of anaplerotic enzymes to provide C intermediates for the tricarboxylic acid cycle. A high light intensity partially reverted these C‐starvation symptoms by providing higher C availability to the plants. The extra‐C contributed to a lower C4/C5 amino acid ratio while maintaining the relative contents of some minor amino acids involved in key pathways regulating the C/N status of the plants unchanged. C availability can therefore be considered to be a determinant factor in the tolerance/sensitivity mechanisms to NH4+ nutrition in plants.  相似文献   

6.
Ammonium uptake rates and the mechanism for ammonium transport into the cells have been analysed in Zostera marina L. In the cells of this species, a proton pump is present in the plasmalemma, which maintains the membrane potential. However, this seagrass shows a high-affinity transport mechanism both for nitrate and phosphate which is dependent on sodium and is unique among angiosperms. We have then analysed if the transport of another N form, ammonium, is also dependent of sodium. First, we have studied ammonium transport at the cellular level by measurements of membrane potentials, both in epidermal root cells and mesophyll cells. And second, we have monitored uptake rates in whole leaves and roots by depletion experiments. The results showed that ammonium is taken up by a high-affinity transport system both in root and leaf cells, although two different of kinetics could be discerned in mesophyll cells (with affinity constants of 2.2 ± 1.1 μM NH4+, in the range 0.01-10 μM NH4+, and 23.2 ± 7.1 μM NH4+, at concentrations between 10 and 500 μM NH4+). However, only one kinetic could be observed in epidermal root cells, which showed a Km = 11.2 ± 1.0 μM NH4+, considering the whole ammonium concentration range assayed (0.01-500 μM NH4+). The higher affinity of leaf cells for ammonium was consistent with the higher uptake rates observed in leaves, with respect to roots, in depletion experiments at 10 μM NH4+ initial concentration. However, when an initial concentration of 100 μM was assayed, the difference between uptake rates was reduced, but still being higher in leaves. Variations in proton or sodium-electrochemical gradient did not affect ammonium uptake, suggesting that the transport of this nutrient is not driven by these ions and that the ammonium transport mechanism could be different to the transport of nitrate and phosphate in this species.  相似文献   

7.
Clostridiumpasteurianum is able to take up NH4+ and CH3NH3+ against concentration gradients. Uptake of CH3NH3+ is abolished by NH4+ and partially inhibited by dinitrophenol. C.pasteurianum membranes are permeabilized for NH4+ by valinomycin. These results are regarded as evidence for an ammonium translocase in membranes otherwise only slightly permeable for NH3.  相似文献   

8.
Effects of sodium on mineral nutrition in rose plants   总被引:2,自引:0,他引:2  
The effects of sodium (Na+) ion concentration on shoot elongation, uptake of ammonium (NH4+) and nitrate (NO3?) and the activities of nitrate reductase (NR) and glutamine synthetase (GS) were studied in rose plants (Rosa hybrida cv. “Lambada”). The results showed that shoot elongation was negatively correlated with sodium concentration, although no external symptoms of toxicity were observed. Nitrate uptake decreased at high sodium levels, specifically at 30 meq litre4 of sodium. As flower development was normal under high saline conditions, this could suggest that nitrogen was being mobilised from shoot and leaf reserves. Ammonium uptake was not affected by any of the salt treatments applied probably because it diffuses through the cell membrane at low concentrations. Nitrate reductase activity was reduced by 50% at 30 meq litre 1 compared with control treatment, probably due to a decrease in the free nitrate related to nitrate uptake pattern. None of the salt treatments used affected total leaf GS activity (both chloroplastic and cytosolic isoforms) or leaf NPK mineral contents. Nitrate reductase activity in leaves increased at 10 meq litre?1 of sodium and GS activity in roots (cytosolic isoform only) followed the same pattern as NR. It is suggested that the activation of both enzymes at low salt level could be attributed to the beneficial effect of increased sulphur in the nutrient solutions.  相似文献   

9.
Many plants develop toxicity symptoms and have reduced growth rates when supplied with ammonium (NH4+) as the only source of inorganic nitrogen. In the present study, the growth, morphology, NH4+ uptake kinetics and mineral concentrations in the tissues of the free-floating aquatic plant Salvinia natans (water fern) supplied exclusively with NH4+–N at concentrations of 0.25–15 mM were investigated. S. natans grew well, with relative growth rates of c. 0.25 g g?1 d?1 at external NH4+ concentrations up to 5 mM, but at higher levels growth was suppressed and the plants had small leaves and short roots with stunted growth. The high-affinity transport system (HATS) that mediate NH4+ uptake at dilute NH4+ levels was downregulated at high NH4+ concentrations with lower velocities of maximum uptake (Vmax) and higher half-saturation constants (K1/2). High NH4+ levels also barely affected the concentrations of mineral cations and anions in the plant tissue. It is concluded that S. natans can be characterized as NH4+-tolerant in line with a number of other species of wetland plants as growth was unaffected at NH4+ concentrations as high as 5 mM and as symptoms of toxicity at higher concentrations were relatively mild. Depolarization of the plasma membrane to the equilibrium potential for NH4+ at high external concentrations may be a mechanism used by the plant to avoid excessive futile transmembrane cycling. S. natans is tolerant to the high NH4+ levels that prevail in domestic and agricultural wastewaters, and the inherent high growth rate and the ease of biomass harvesting make S. natans a primary candidate for use in constructed wetland systems for the treatment of various types of nitrogen-rich wastewaters.  相似文献   

10.
The ammonium analogue, methylamine, is taken up rapidly from dilute solution by Macrocystis pyrifera (L.) C. A. Agardh. 14C-methylamine was used to characterize the transport system, with respect to dependence on external concentration, temperature, pH and substrate specificity. The results suggest that methylamine enters the algal tissue via a specific mediated transport system. Uptake of methylamine showed no consistent relation to the N content of the plant tissue, but was highly dependent on the portion of plant sampled and severely affected by cutting the tissue. The strong inhibition of methylamine uptake by ammonium and lesser inhibition by other alkylamines suggests that the uptake system functions as an “ammonium permease”. Uptake of 14C-methylamine can be used as a highly sensitive measure of NH4+ uptake activity and should be a useful tool for studying NH4+ uptake in the laboratory and field.  相似文献   

11.
The involvement of potassium (K+)-selective, Shaker-type channels, particularly AKT1, in primary K+ acquisition in roots of higher plants has long been of interest, particularly in the context of low-affinity K+ uptake, at high K+ concentrations, as well as uptake from low-K+ media under ammonium (NH4+) stress. We recently demonstrated that K+ channels cannot mediate K+ acquisition in roots of intact barley (Hordeum vulgare L.) seedlings at low (22.5 µM) external K+ concentrations ([K+]ext) and in the presence of high (10 mM) external NH4+, while the model species Arabidopsis thaliana L. utilizes channels under comparable conditions. However, when external NH4+ was suddenly withdrawn, a thermodynamic shift to passive (channel-mediated) K+ influx was observed in barley and both species demonstrated immediate and dramatic stimulations in K+ influx, illustrating a hitherto unexplored magnitude and rapidity of K+-uptake capacity and plasticity. Here, we expand on our previous work by offering further characterization of channel-mediated K+ fluxes in intact barley, with particular focus on anion effects, root respiration and pharmacological sensitivity and highlight key additions to the current model of K+ acquisition.  相似文献   

12.
The effect of some ammonium salts on nitrate reductase (NR) level, onin vivo nitrate reduction and on nitrate content was followed in the presence of nitrate in the medium, under changing experimental conditions, in excisedPisum sativum roots, and their effect was compared with that of KNO3, Ca(NO3)2 and NaNO3 at 15 mM NO3 - concentration, i.e. at a concentration which considerably exceeded the level of saturation with nitrate with respect to nitrate reductase. The effect of ammonium salts on NR level is indirect and changes from a positive one to a strongly negative one which is dependent on the time of action of the salt, on the presence of other cations, on pH of the solution of the ammonium salt and on the nature of the anion of the ammonium salt. A positive effect on the enzyme level can be observed in the presence of other cations than NH4 + at suitable concentrations of those ammonium salts, the solutions of which have their pH values in the acid region (i.e. NH4H2PO4, (NH4)2SO4 and NH4NO3). However their positive effect is independent of the presence of NH4 + ions, and it is obviously the result of an increased concentration of H+ ions. A clear-cut negative effect on NR level can be observed after 24 h in one-salt NH4NO3 solution where NH4 + is not balanced with other cations and thus certainly can adversely influence many metabolic processes, and in the solutions containing neutral (pH 6.2) and dibasic ammonium phosphates in which dissolved undissociated ammonia [(NH3). (H2O) which can also affect many metabolic processes incl. proteosynthesis] probably has a toxic influence. Thein vivo nitrate reduction is always depressed in excised pea roots in the presence of ammonium salts in the medium, regardless of the level of nitrate reductase. Under the described conditions, no relationship could be established between the enzyme level and the so-called metabolic NO3 - pool (i.e. NO2 - production under anaerobic conditions), nor between NR level and the total nitrate content in the roots. One-salt solutions of NaNO3, Ca(NO3)2 and KNO3 exert different effects on the level of nitrate reductase and on the content of NO3 - in the roots, but the in vivo NO3 - reduction shows the same trend as NR level in the roots influenced by these salts. Cl- ions, supplied in NH4C1, depress both NR level and NO3 - content in the roots at higher concentrations, but they do not significantly affect the in vivo nitrate reduction in comparison with other ammonium salts. These results indicate that NR level,in vivo nitrate reduction, and nitrate uptake can be regulated in pea roots independently of each other.  相似文献   

13.
Although many studies support the importance of the external mycelium for nutrient acquisition of ectomycorrhizal plants, direct evidence for a significant contribution to host nitrogen nutrition is still scarce. We grew nonmycorrhizal seedlings and seedlings mycorrhizal with Paxillus involutus (Batsch) Fr. in a sand culture system with two compartments separated by a 45-m Nylon mesh. Hyphae, but not roots, can penetrate this net. Nutrient solutions were designed to limit seedling growth by nitrogen. Hyphal density in the hyphal compartment, host N status and shoot growth of mycorrhizal seedlings significantly increased in response to NH4 + addition to the hyphal compartment. Labeling the compartment only accessible to hyphae with 15NH4 + showed that the increase in N uptake in the mycorrhizal seedlings was a result of hyphal N acquisition from the hyphal compartment. These results indicate that hyphae of P. involutus may actively forage into N-rich patches and improve host N status and growth. In the mycorrhizal seedlings, which received additional NH4 + via their external mycelium, the increase in NH4 + supply less negatively affected Ca and Mg uptake than in nonmycorrhizal seedlings, where the additional NH4 + was directly supplied to the roots. This was most likely due to the close link of NH4 + uptake and H+ extrusion, which, in the nonmycorrhizal seedlings, lead to a strong acidification in the root compartment, and subsequently reduced Ca and Mg uptake, whereas in the mycorrhizal seedlings the site of intensive NH4 + uptake and acidification was in the hyphal and not in the root compartment. Our data support the idea that the ectomycorrhizal mycelium connected to an N-deficient host may actively forage for N. The mycelium may also be important as a biological buffer system ameliorating negative influence of high NH4 + supply on cation uptake.  相似文献   

14.
Influx, efflux and net uptake of NO 3 was studied in Pisum sativum L. cv. Marma in short-term experiments where 13NO 3 was used to trace influx. The influx rate in N-limited plants was similar both during net uptake at external concentrations of around 50 M, and at low external NO 3 concentrations (4–6 M) when net uptake was practically zero. Efflux could be inferred from discrepancies between influx and net uptake but was never very high in the N-limited plants during net uptake. Close to the threshold concentration for not NO 3 uptake, efflux was high and equalled influx. Thus, the threshold concentration can be regarded as a NO 3 compensation point. The inclusion of NH 4 + in the outer medium decreased influx by about 40% but did not significantly affect efflux. The roles of NO 3 fluxes and nitrate-reductase activity in regulating/limiting NO 3 utilization are discussed.Abbreviations DW dry weight - FW fresh weight - RN relative nitrogen addition rate  相似文献   

15.
The effect of a variety of ions and other solutes on the accumulation of the β-amino acid, taurine, was examined in rat renal brush-border membrane vesicles. Initial taurine uptake (15 and 30 s) is sodium-dependent with a typical overshoot. This Na+ effect was confirmed by exchange diffusion and gramicidin inhibition of taurine uptake. External K+ or Li+ do not increase taurine accumulation more than Na+-free mannitol, except that the combination of external K+ and Na1 in the presence of nigericin enhances uptake. Of all anions tested, including more permeant (SCN and NO3) or less permeant (SO42−), chloride supported taurine accumulation to a significantly greater degree. Preloading vesicles with choline chloride reduced taurine uptake, suggesting that external Cl stimulates uptake. Since this choline effect could be related to volume change, due to the slow diffusion of choline into vesicles, brush-border membrane vesicles were pre-incubated with LiCl, LiNO3 and LiSO4. Internal LiCl, regardless of the final Na+ anion mixture, reduced initial rate (15 and 60 s) and peak (360 s) taurine uptake. Internal LiNO3 or LiSO4 with external NaCl resulted in similar or higher values of uptake at 15, 60 and 360 s, indicating a role for external Cl in taurine uptake in addition to Na+ effect. Although uptake by vesicles is greatest at pH 8.0 and inhibited at acidic pH values (pH less than 7.0), an externally directed H+ gradient does not influence uptake. Similarly, amiloride, an inhibitor of the Na+/H+ antiporter, had no influence on taurine accumulation over a wide variety of concentrations or at low Na+ concentrations. Taurine uptake is blocked only by other β-amino acids and in a competitive fashion. d-glucose and p-aminohippurate at high concentrations (> 10−3 M) reduce taurine uptake, possibly by competing for sodium ions, although gramicidin added in the presence of d-glucose inhibits taurine uptake even further. These studies more clearly define the nature of the renal β-amino acid transport system in brush-border vesicles and indicate a role for external Cl in this uptake system.  相似文献   

16.
The uptake of 15NO3 - and 15NH4 + has been examined in 5-,10- and 28-day-old micropropagated strawberry (Fragaria x ananassa Duch. cv. Kent) shoots rooted in one-half strength Murashige and Skoog (MS) liquid medium on cellulose plugs (Sorbarods). The results indicated that the plantlets absorbed both NO3 - and NH4 + during the culture with a greater uptake of NH4 + at 5 days of culture. Furthermore, a pronounced reduction in NO3 - and NH4 + uptake at 10 and 28 days of culture was observed within 6 h of the short-term uptake study. This reduction could be explained by the low CO2 concentration in test tubes during the photoperiod, since no reduction in nitrogen uptake occurred in the CO2 enriched condition. The results are interpreted as an indication of the important role for photosynthetic CO2 fixation in the process of nitrogen uptake by the plantlets during the rooting stage.Contribution No. CRH 82, Centre de Recherche en Horticulture, F.S.A.A., Université Laval, Québec.  相似文献   

17.
 In a pot trial growth and transpiration of 3-year-old Douglas-fir seedlings on an acid, sandy soil was examined at a deficient (30 kg N ha –  1 year –  1) and an excessive level (120 kg N ha –  1 year –  1) of NH4 application. Dissolved ammonium sulphate was applied to the pots weekly for two growing seasons. In half of the pots a complete set of other nutrients was applied in optimal proportions to the applied nitrogen. Water supply was optimal and transpiration was recorded. At the end of the second treatment season irrigation was stopped for 2 weeks during dry and sunny weather. Both high application of NH4 and additional nutrients increased shoot growth and transpiration demand in the first treatment year. The root system was smaller at higher N level and this reduced water uptake accordingly. In the second year the combination of high NH4 + and additional nutrients affected root functioning predominantly due to salinity effects and this seriously decreased water uptake capacity and shoot water potentials, finally resulting in tree death. Without addition of other nutrients the high NH4 + application resulted in a high degree of soil acidification, which damaged the roots, that showed a decrease in water uptake capacity. At the low NH4 supply level soil acidification was lower, and root functioning was not affected, and the trees recovered quickly from the imposed drought. Higher needle K and P status depressed transpiration rates at the low NH4 application rate. Received: 9 January 1995 / Accepted: 18 September 1995  相似文献   

18.
Ammonia often has been reported to inhibit cell growth. The aqueous ammonia equilibrium between the un-ionized form (NH3) and the ammonium ion (NH4 +) depends on the pH of the solution. Extensive studies in batch and continuous cultivation by varying pH and total ammonia concentration were carried out to investigate whether a kinetic model describing growth inhibition by ammonia has to be based on the total ammonia concentration, or the concentration of NH3. A significant relationship between the specific growth rate and death rate, respectively, and the NH3 concentration but not the total ammonia concentration, was detected. An adaptation of the cells to high ammonia levels was not observed. Based on these results a new kinetic model for ammonia mediated growth inhibition is suggested. For high density cultivation it is recommended to control the pH at the lower limit of the growth optimum to keep the NH3 level low.  相似文献   

19.
The effect of external inorganic nitrogen and K+ content on K+ uptake from low-K+ solutions and plasma membrane (PM) H+-ATPase activity of sorghum roots was studied. Plants were grown for 15 days in full-nutrient solutions containing 0.2 or 1.4 mM K+ and inorganic nitrogen as NO3-, NO3-/NH4+ or NH4+ and then starved of K+ for 24, 48 and 72 h. NH4+ in full nutrient solution significantly affected the uptake efficiency and accumulation of K+, and this effect was less pronounced at the high K+ concentration. In contrast, the translocation rate of K+ to the shoot was not altered. Depletion assays showed that plants grown with NH4+ more efficiently depleted the external K+ and reached higher initial rates of low-K+ uptake than plants grown with NO3-. One possible influence of K+ content of shoot, but not of roots, on K+ uptake was evidenced. Enhanced K+-uptake capacity was correlated with the induction of H+ extrusion by PM H+-ATPase. In plants grown in high K+ solutions, the increase in the active H+ gradient was associated with an increase of the PM H+-ATPase protein concentration. In contrast, in plants grown in solutions containing 0.2 mM K+, only the initial rate of H+-pumping and ATP hydrolysis were affected. Under these conditions, two specific isoforms of PM H+-ATPase were detected, independent of the nitrogen source and deficiency period. No change in enzyme activity was observed in NO3--grown plants. The results suggest that K+ homeostasis in NH4+-grown sorghum plants may be regulated by a high capacity for K+ uptake, which is dependent upon the H+-pumping activity of PM H+-ATPase.  相似文献   

20.
Summary Representative arable soils from Hesse were investigated for their contents of fixed NH4 + and EUF-extractable potassium in the rooting zone. Alluvial soils were found to be rich in fixed ammonium and low in EUF-extractable potassium, while soils of basaltic origin were low in fixed ammonium and rich in EUF-extractable potassium. A negative correlation (r=0.79*) was found between fixed NH4 + and EUF-extractable soil K+. The content of fixed NH4 + in the soil profile showed considerable and significant changes during the growing season, which finding is supposed to be due to NH4 + uptake by the crop.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号