首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
CD39-like ectoapyrases are involved in protein and lipid glycosylation in the Golgi lumen of Saccharomyces cerevisiae. By using a two-hybrid screen, we found that an activator subunit (Vma13p) of yeast vacuolar H(+)-ATPase (V-ATPase) binds to the cytoplasmic domain of Ynd1p, a yeast ectoapyrase. Interaction of Ynd1p with Vma13p was demonstrated by direct binding and co-immunoprecipitation. Surprisingly, the membrane-bound ADPase activity of Ynd1p in a vma13Delta mutant was drastically increased compared with that of Ynd1p in VMA13 cells. A similar increase in the apyrase activity of Ynd1p was found in a vma1Delta mutant, in which the catalytic subunit A of V-ATPase is missing, and the membrane peripheral subunits including Vma13p are dissociated from the membranes. However, the E286Q mutant of VMA1, which assembles inactive V-ATPase complex including Vma13p in the membrane, retained wild type levels of Ynd1p activity, demonstrating that the presence of Vma13p rather than the function of V-ATPase in the membrane represses Ynd1p activity. These results suggest that association of Vma13p with the cytoplasmic domain of Ynd1p regulates its apyrase activity in the Golgi lumen.  相似文献   

2.
We investigated the role of the stop transfer sequence of human UGT1A6 in ER assembly and enzyme activity. We found that this sequence was able to address and translocate the upstream lumenal domain into microsomal membranes in vitro co- and posttranslationally. The signal activity of this sequence was further demonstrated in HeLa cells by its ability to target and maintain the CD4 protein deleted from both the N-terminal signal peptide and C-terminal transmembrane domain into the ER. We showed that total or partial deletion of the stop transfer sequence of UGT1A6 severely impaired enzyme activity highlighting its importance in both membrane assembly and function.  相似文献   

3.
Abstract

A number of studies using chimeric constructs made by fusing endoplasmic/sarcoplasmic reticulum calcium pump (SERCA) sequences with those of the plasma membrane located calcium pump (PMCA) have suggested that the retention/retrieval signal responsible for maintaining SERCA in the endoplasmic reticulum (ER) is located within the N-terminus of these pumps. Because of the difficulties in identifying the presence of constructs at the plasma membrane we have used a trans-Golgi network (TGN) marker to evaluate whether chimeric proteins are retained by the ER or have lost their retention/retrieval sequences and are able to enter the wider endomembrane system and reach the TGN. In this study, attempts to locate this retention/retrieval sequence demonstrate that the retention sequences are located not in the N-terminus, as previously suggested, but in the largely transmembranous C-terminal domain of SERCA. Further attempts to identify the precise retention/retrieval motif using SERCA1/PMCA3 chimeras were unsuccessful. This may be due to the fact that introducing SERCA1 sequences into the C-terminal PMCA3 sequence and vice versa disrupts the organization of the closely packed transmembrane helices leading to retention of such constructs by the quality control mechanisms of the ER. An alternative explanation is that SERCAs have targeting motifs that are non-linear, being made up of several segments of sequence to form a patch that interacts with the retrieval machinery.  相似文献   

4.
A chimeric gene, preZad, was constructed encoding a zein signal sequence fused precisely to the amino terminus of maize alcohol dehydrogenase 1. Translocation and processing of this chimeric preZad protein were assayed in vitro using a rabbit reticulocyte lysate translation system supplemented with canine pancreatic microsomes. PreZad was cotranslationally translocated across the vesicular membranes. Unexpectedly, the signal sequence was not removed although a suitable cleavage site was preserved and presented within the vesicle lumen. Failure to cleave the signal sequence was apparently not due to the lack of a beta-turn near the processing site. When a beta-turn was introduced near the cleavage site through site-directed mutagenesis, no processing was observed. PreZad was not solubilized by alkaline treatment of the microsomes, indicating an integral membrane association. Resistance to proteolysis, in the absence of detergent, indicates that preZad is associated with the membranes in a type II orientation (C-terminus in and N-terminus outside the vesicles). Analysis of truncated versions of preZad showed that it is the uncleaved signal sequence that functions as a signal-anchor. Changing the ratio of net charge flanking the signal sequence to less than 1 (N-terminal:C-terminal) did not alter the type II membrane orientation, as would have been predicted by the 'positive-in rule'. Our results provide additional insight into the role of the passenger protein and signal sequence-flanking regions in recognition of a signal peptidase processing site, and the orientation of insertion of a signal-anchor sequence into the endoplasmic reticulum membrane.  相似文献   

5.
The adenovirus E4 open reading frame 4 (E4orf4) protein contributes to regulation of the progression of virus infection. When expressed individually, E4orf4 was shown to induce non-classical transformed cell-specific apoptosis in mammalian cells. At least some of the mechanisms underlying E4orf4-induced toxicity are conserved from yeast to mammals, including the requirement for an interaction of E4orf4 with protein phosphatase 2A (PP2A). A genetic screen in yeast revealed that the Golgi apyrase Ynd1 associates with E4orf4 and contributes to E4orf4-induced toxicity, independently of Ynd1 apyrase activity. Ynd1 and PP2A were shown to contribute additively to E4orf4-induced toxicity in yeast, and to interact genetically and physically. A mammalian orthologue of Ynd1 was shown to bind E4orf4 in mammalian cells, confirming the evolutionary conservation of this interaction. Here, we use mutation analysis to identify the cytosolic tail of Ynd1 as the protein domain required for mediation of the E4orf4 toxic signal and for the interaction with E4orf4. We also show that E4orf4 associates with cellular membranes in yeast and is localized at their cytoplasmic face. However, E4orf4 is membrane-associated even in the absence of Ynd1, suggesting that additional membrane proteins may mediate E4orf4 localization. Based on our results and on a previous report describing a collection of Ynd1 protein partners, we propose that the Ynd1 cytoplasmic tail acts as a scaffold, interacting with a multi-protein complex, whose targeting by E4orf4 leads to cell death.  相似文献   

6.
The glycosomes of trypanosomes are related to eukaryoticperoxisomes. For many glycosomal and peroxisomal proteins, a C-terminal SKL-like tripeptide known as PTS-1 serves as the targeting signal. For peroxisomes, a second N-terminal signal (PTS-2) was demonstrated on rat 3-ketoacyl-CoA thiolase. Several glycosomal proteins do not bear a PTS-1. One such protein, fructose bisphosphate aldolase, has a PTS-2 homology at its N-terminus. To find out whether the PTS-2 pathway exists in trypanosomes, we expressed chloramphenicol acetyltransferase fusion proteins bearing N-terminal segments of either rat thiolase or trypanosome aldolase. The mammalian PTS-2 clearly mediated glycosomal import. The aldolase N-terminus mediated import with variable efficiency depending on the length of the appended sequence. These results provide evidence for the existence of the PTS-2 pathway in trypanosomes.  相似文献   

7.
We have cloned PEX15 which is required for peroxisome biogenesis in Saccharomyces cerevisiae. pex15Delta cells are characterized by the cytosolic accumulation of peroxisomal matrix proteins containing a PTS1 or PTS2 import signal, whereas peroxisomal membrane proteins are present in peroxisomal remnants. PEX15 encodes a phosphorylated, integral peroxisomal membrane protein (Pex15p). Using multiple in vivo methods to determine the topology, Pex15p was found to be a tail-anchored type II (Ncyt-Clumen) peroxisomal membrane protein with a single transmembrane domain near its carboxy-terminus. Overexpression of Pex15p resulted in impaired peroxisome assembly, and caused profound proliferation of the endoplasmic reticulum (ER) membrane. The lumenal carboxy-terminal tail of Pex15p protrudes into the lumen of these ER membranes, as demonstrated by its O-glycosylation. Accumulation in the ER was also observed at an endogenous expression level when Pex15p was fused to the N-terminus of mature invertase. This resulted in core N-glycosylation of the hybrid protein. The lumenal C-terminal tail of Pex15p is essential for targeting to the peroxisomal membrane. Furthermore, the peroxisomal membrane targeting signal of Pex15p overlaps with an ER targeting signal on this protein. These results indicate that Pex15p may be targeted to peroxisomes via the ER, or to both organelles.  相似文献   

8.
Sequence analyses of the C-terminal membrane intercalative region of the rat cytochrome b(5) indicated that this domain has, in addition to a signal sequence, a combined element of the classic stop-transfer sequence typically found in a variety of transmembrane proteins. Such bitopic protein arrangements arise by tandem but topogenically displaced activities of cleavable/noncleavable signal and stop-transfer sequences. A fusion precursor comprising an N-terminally linked prokaryotic signal sequence and the full-length of mammalian cytochrome b(5), including its C-terminal membrane insertion sequence, was engineered to investigate the outcome of this combination of signals on the targeting and topology of the cytochrome b(5) in the endoplasmic reticulum membrane. Precytochrome b(5) was cotranslationally translocated across the endoplasmic reticulum membrane. The signal-processed cytochrome b(5) was integrally anchored in the membrane with the globular domain facing the lumen. Thus, the topology of the signal sequence-directed cytochrome b(5) in the microsomal vesicle was reversed with respect to that of the native form. Posttranslational incubation of the precytochrome b(5) with microsomes resulted in a "loose" incorporation of the unprocessed form onto the surface of the vesicle. Our findings suggest that the membrane-insertion sequence of cytochrome b(5) has a functional stop-transfer sequence. We discuss the implications of these findings with respect to selective targeting of cytochrome b(5) to the endoplasmic reticulum membrane in the view that signal and stop-transfer sequences are often interchangeable or combined for topogenic functions.  相似文献   

9.
A 125-kDa glycoprotein exposed on the surface of Saccharomyces cerevisiae cells belongs to a class of eucaryotic membrane proteins anchored to the lipid bilayer by covalent linkage to an inositol-containing glycophospholipid. We have cloned the gene (GAS1) encoding the 125-kDa protein (Gas1p) and found that the function of Gas1p is not essential for cell viability. The nucleotide sequence of GAS1 predicts a 60-kDa polypeptide with a cleavable N-terminal signal sequence, potential sites for N- and O-linked glycosylation, and a C-terminal hydrophobic domain. Determination of the anchor attachment site revealed that the C-terminal hydrophobic domain of Gas1p is removed during anchor addition. However, this domain is essential for addition of the glycophospholipid anchor, since a truncated form of the protein failed to become attached to the membrane. Anchor addition was also abolished by a point mutation affecting the hydrophobic character of the C-terminal sequence. We conclude that glycophospholipid anchoring of Gas1p depends on the integrity of the C-terminal hydrophobic domain that is removed during anchor attachment.  相似文献   

10.
Human Equilibrative Nucleoside Transporter 1 (hENT1) is an integral membrane protein that transports nucleosides and analog drugs across cellular membranes. Very little is known about intracellular processing and localization of hENT1. Here we show that disruption of a highly conserved triplet (PWN) near the N-terminus, or the last eight C-terminal residues (two hydrophobic triplets separated by a positive arginine) result in loss of plasma membrane localization and/or transport function. To understand the role of specific residues within these regions, we studied the localization patterns of N- or C-terminal deletion and/or substitution mutants of GFP-hENT1 using confocal microscopy. Quantification of GFP-hENT1 (mutant and wildtype) protein at the plasma membrane was conducted using nitrobenzylthioinosine (NBTI) binding. Functionality of the GFP-hENT1 mutants was determined by heterologous expression in Xenopus laevis oocytes followed by measurement of uridine uptake. Mutation of the proline within the PWN motif disrupts plasma membrane localization. C-terminal mutations (primarily within the hydrophobic triplets) lead to hENT1 retention within the cell (e.g. in the ER). Some mutants still localize to the plasma membrane but show reduced transport activity. These data suggest that these two regions contribute to the structural integrity and thus correct processing and function of hENT1.  相似文献   

11.
Production of hepatitis C virus (HCV) core protein requires the cleavages of polyprotein by signal peptidase and signal peptide peptidase (SPP). Cleavage of signal peptide at the C-terminus of HCV core protein by SPP was characterized in this study. The spko mutant (mutate a.a. 189–193 from ASAYQ to PPFPF) is more efficient than the A/F mutant (mutate a.a 189 and 191 from A to F) in blocking the cleavage of signal peptide by signal peptidase. The cleavage efficiency of SPP is inversely proportional to the length of C-terminal extension of the signal peptide: the longer the extension, the less efficiency the cleavage is. Thus, reducing the length of C-terminal extension of signal peptide by signal peptidase cleavage could facilitate further cleavage by SPP. The recombinant core protein fused with signal peptide from the C-terminus of p7 protein, but not those from the C-termini of E1 and E2, could be cleaved by SPP. Therefore, the sequence of the signal peptide is important but not the sole determinant for its cleavage by SPP. Replacement of the HCV core protein E.R.-associated domain (a.a. 120–150) with the E.R.-associated domain (a.a.1–50) of SARS-CoV membrane protein results in the failure of cleavage of this recombinant protein by SPP, though this protein still is E.R.-associated. This result suggests that not only E.R.-association but also specific protein sequence is important for the HCV core protein signal peptide cleavage by SPP. Thus, our results suggest that both sequences of the signal peptide and the E.R.-associated domain are important for the signal peptide cleavage of HCV core protein by SPP. Electronic Supplementary MaterialThe online version of this article (doi: ) contains supplementary material, which is available to authorized users.  相似文献   

12.
为了确定人高亲和力钠离子依赖性二羧酸共转运蛋白(high-affinity sodium-dependent dicarboxylate co-transporter, SDCT2,NaDC3)在细胞内的定位,构建了SDCT2与增强型绿色荧光蛋白(EGFP)的融合蛋白表达载体,并转染肾小管上皮细胞LLC-PK1,激光共聚焦显微镜观察显示,SDCT2蛋白主要定位于细胞的基底侧膜上.同时将SDCT2-EGFP融合基因mRNA显微注射到爪蟾卵母细胞中表达,可见融合蛋白的绿色荧光仅分布在细胞膜上.为了进一步确定该蛋白质的亚细胞定位信号序列,将SDCT2基因的N端及C端分别缺失,并构建缺失突变体与EGFP的融合蛋白表达载体,将它们转染到LLC-PK1中,观察SDCT2 缺失体在细胞内的分布情况.结果显示,N端缺失的SDCT2蛋白主要位于细胞质中,顶膜和基底侧膜上也有表达;C端缺失的SDCT2蛋白主要位于基底侧膜上,顶膜几乎没有表达,细胞质中表达很少.免疫组化结果也显示,SDCT2只表达于人近端肾小管上皮细胞的基底侧膜.这表明SDCT2蛋白的N端序列对其亚细胞定位是必需的,人SDCT2蛋白的基底膜定位信号位于N端序列中.  相似文献   

13.
The hexose transporter family, which mediates facilitated uptake in mammalian cells, consists of more than 10 members containing 12 membrane-spanning segments with a single N-glycosylation site. We previously demonstrated that glucose transporter 1 is organized into a raft-like detergent-resistant membrane domain but that glucose transporter 3 distributes to fluid membrane domains in nonpolarized mammalian cells. In this study, we further examined the structural basis responsible for the distribution by using a series of chimeric constructs. Glucose transporter 1 and glucose transporter 3 with a FLAG-tagged N-terminus were expressed in detergent-resistant membranes and non-detergent-resistant membranes of CHO-K1 cells, respectively. Replacement of either the C-terminal or N-terminal cytosolic portion of FLAG-tagged glucose transporter 1 and glucose transporter 3 did not affect the membrane distribution. However, a critical sorting signal may exist within the N-terminal half of the isoforms without affecting transport activity and its inhibition by cytochalasin B. Further shortening of these regions altered the critical distribution, suggesting that a large proportion or several parts of the intrinsic structure, including the N-terminus of each isoform, are involved in the regulation.  相似文献   

14.
In eukaryotic cellular proteins, protein N-myristoylation has been recognized as a protein modification that occurs mainly on cytoplasmic or nucleoplasmic proteins. In this study, to search for a eukaryotic N-myristoylated transmembrane protein, the susceptibility of the N-terminus of several G-protein-coupled receptors (GPCRs) to protein N-myristoylation was evaluated by in vitro and in vivo metabolic labeling. It was found that the N-terminal 10 residues of B96Bom, a Bombyx mori GPCR, efficiently directed the protein N-myristoylation. Analysis of a tumor necrosis factor (TNF) fusion protein with the N-terminal 90 residues of B96Bom at its N-terminus revealed that (a) transmembrane domain 1 of B96Bom functioned as a type I signal anchor sequence, (b) the N-myristoylated N-terminal domain (58 residues) was translocated across the membrane, and (c) two N-glycosylation motifs located in this domain were efficiently N-glycosylated. In addition, when Ala4 in the N-myristoylation motif of B96Bom90-TNF, Met-Gly-Gln-Ala-Ala-Thr(1-6), was replaced with Asn to generate a new N-glycosylation motif, Asn-Ala-Thr(4-6), efficient N-glycosylation was observed on this newly introduced N-glycosylation site in the expressed protein. These results indicate that the N-myristoylated N-terminus of B96Bom is translocated across the membrane and exposed to the extracellular surface. To our knowledge, this is the first report showing that a eukaryotic transmembrane protein can be N-myristoylated and that the N-myristoylated N-terminus of the protein can be translocated across the membrane.  相似文献   

15.
In the secretion of polypeptides from Gram-negative bacteria, the outer membrane constitutes a specific barrier which has to be circumvented. In the majority of systems, secretion is two-step process, with initial export to the periplasm involving an N-terminal signal sequence. Transport across the outer membrane then involves a variable number of ancillary polypeptides including both periplasmic and outer membrane. While such ancillary proteins are probably specific for each secreted protein, the mechanism of movement across the outer membrane is unknown. In contrast to these systems, secretion of theE. coli hemolysin (HlyA) has several distinctive features. These include a novel targeting signal located within the last 50 or so C-terminal amino acids, the absence of any periplasmic intermediates in transfer, and a specific membrane-bound translocator, HlyB, with important mammalian homologues such as P-glycoprotein (Mdr) and the cystic fibrosis protein. In this review we discuss the nature of the HlyA targeting signal, the structure and function of HlyB, and the probability that HlyA is secreted directly to the medium through a trans-envelope complex composed of HlyB and HlyD.  相似文献   

16.
To determine the minimum requirement in the 76-residue leader sequence of pro-tumor necrosis factor (TNF) for membrane translocation across the endoplasmic reticulum (ER) and for the maturation of pro-TNF, we constructed pro-TNF mutants in which a part of the transmembrane domain of pro-TNF was directly linked to the N-terminus of the mature domain, and evaluated their translocational behavior across the ER-membrane and their secretion from the transfected cells. The in vitro translation/translocation assay involving a canine pancreatic microsomal membrane system including a mutant, Delta-75-47, -32-1, revealed that the N-terminal half of the transmembrane domain of pro-TNF consisting of 14 residues functioned as a cleavable signal sequence; it generated a cleaved form of TNF having a molecular mass similar to that of mature TNF. Analysis of the cleavage site by site-directed mutagenesis indicated that the site was inside the leader sequence of this mutant. When the mutant, Delta-75-47, -32-1, was expressed in COS-1 cells, efficient secretion of a biologically active soluble TNF was observed. Further deletion of the hydrophobic domain from this mutant inhibited the translocation, indicating that some extent of hydrophobicity is indispensable for the membrane translocation of the mature domain of TNF. Thus, the N-terminal half of the transmembrane domain of pro-TNF could function as a cleavable signal sequence when linked to the mature domain of TNF, and secretion of a biologically active secretory form of TNF could be achieved with this 14-residue hydrophobic segment. In intact pro-TNF, however, this 14-residue sequence could not function as a cleavable signal sequence during intracellular processing, indicating that the remainder of the 76-residue leader sequence of pro-TNF inhibits the signal peptide cleavage and thus enables the leader sequence to function as a type II signal-anchor sequence that generates a transmembrane form of TNF.  相似文献   

17.
Posttranslational and direct integration of heme oxygenase into microsomes   总被引:1,自引:0,他引:1  
Rat liver heme oxygenase has a large cytoplasmically exposed domain containing the N-terminus that can be cleaved from the membranes by a low concentration of trypsin, indicating that heme oxygenase is embedded in membranes with an insertion sequence near its C-terminal portion. Heme oxygenase synthesized in a cell-free system or purified from microsomes after detergent-solubilization was integrated into microsomal membranes posttranslationally and directly, like cytochrome b5.  相似文献   

18.
A J Denzer  C E Nabholz    M Spiess 《The EMBO journal》1995,14(24):6311-6317
Upon insertion of a signal-anchor protein into the endoplasmic reticulum membrane, either the C-terminal or the N-terminal domain is translocated across the membrane. Charged residues flanking the transmembrane domain are important determinants for this decision, but are not necessarily sufficient to generate a unique topology. Using a model protein that is inserted into the membrane to an equal extent in either orientation, we have tested the influence of the size and the folding state of the N-terminal domain on the insertion process. A small zinc finger domain or the full coding sequence of dihydrofolate reductase were fused to the N-terminus. These stably folding domains hindered or even prevented their translocation. Disruption of their structure by destabilizing mutations largely restored transport across the membrane. Translocation efficiency, however, did not depend on the size of the N-terminal domain within a range of 40-237 amino acids. The folding behavior of the N-terminal domain is thus an important factor in the topogenesis of signal-anchor proteins.  相似文献   

19.
In eukaryotes, most secretory and membrane proteins are targeted by an N‐terminal signal sequence to the endoplasmic reticulum, where the trimeric Sec61 complex serves as protein‐conducting channel (PCC). In the post‐translational mode, fully synthesized proteins are recognized by a specialized channel additionally containing the Sec62, Sec63, Sec71, and Sec72 subunits. Recent structures of this Sec complex in the idle state revealed the overall architecture in a pre‐opened state. Here, we present a cryo‐EM structure of the yeast Sec complex bound to a substrate, and a crystal structure of the Sec62 cytosolic domain. The signal sequence is inserted into the lateral gate of Sec61α similar to previous structures, yet, with the gate adopting an even more open conformation. The signal sequence is flanked by two Sec62 transmembrane helices, the cytoplasmic N‐terminal domain of Sec62 is more rigidly positioned, and the plug domain is relocated. We crystallized the Sec62 domain and mapped its interaction with the C‐terminus of Sec63. Together, we obtained a near‐complete and integrated model of the active Sec complex.  相似文献   

20.
A number of studies using chimeric constructs made by fusing endoplasmic/sarcoplasmic reticulum calcium pump (SERCA) sequences with those of the plasma membrane located calcium pump (PMCA) have suggested that the retention/retrieval signal responsible for maintaining SERCA in the endoplasmic reticulum (ER) is located within the N-terminus of these pumps. Because of the difficulties in identifying the presence of constructs at the plasma membrane we have used a trans-Golgi network (TGN) marker to evaluate whether chimeric proteins are retained by the ER or have lost their retention/retrieval sequences and are able to enter the wider endomembrane system and reach the TGN. In this study, attempts to locate this retention/retrieval sequence demonstrate that the retention sequences are located not in the N-terminus, as previously suggested, but in the largely transmembranous C-terminal domain of SERCA. Further attempts to identify the precise retention/retrieval motif using SERCA1/PMCA3 chimeras were unsuccessful. This may be due to the fact that introducing SERCA1 sequences into the C-terminal PMCA3 sequence and vice versa disrupts the organization of the closely packed transmembrane helices leading to retention of such constructs by the quality control mechanisms of the ER. An alternative explanation is that SERCAs have targeting motifs that are non-linear, being made up of several segments of sequence to form a patch that interacts with the retrieval machinery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号