首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The goals of the current study were to determine whether the conductance of Cx40 and Cx40-Cx43 mixed composition junctions was regulated by platelet-derived growth factor (PDGF)-activated signaling cascades, to ascertain the minimum number of Cx43 subunits/connexon required to confer PDGF sensitivity, and to identify specific residues in Cx43 required for this regulation. Junctional and channel conductances (gj and γj, respectively) were determined for Cx40/Cx40, Cx43/Cx43, Cx40/Cx43, and Cx40-Cx43/Cx40-Cx43 mixed composition channels. PDGF had no effect on gj in Cx40/Cx40 pairs, but decreased gj in the remaining combinations by 53% (Cx43/Cx43), 48% (Cx40/Cx43), 41% (4:1 Cx40:Cx43 expression ratio) and 24% (10:1 Cx40:Cx43 expression ratio). Based on the predicted connexin composition of channels in cells expressing Cx40 and Cx43 at either 4:1 or 10:1 ratios, these decreases in gj suggest that a single subunit of Cx43 is sufficient to confer PDGF sensitivity. The effect of PDGF on gj involved a decrease in both γj and Po and required serine 368 in the C-terminus. These data implicate protein kinase C as the mediator of the PDGF effect and strongly suggest that acute regulation of gap junction function by PDGF-activated signaling cascades is conferred by low levels of expression of a sensitive connexin in cells that otherwise express insensitive connexins.  相似文献   

2.
The goals of the current study were to determine whether the conductance of Cx40 and Cx40-Cx43 mixed composition junctions was regulated by platelet-derived growth factor (PDGF)-activated signaling cascades, to ascertain the minimum number of Cx43 subunits/connexon required to confer PDGF sensitivity, and to identify specific residues in Cx43 required for this regulation. Junctional and channel conductances (g(j) and gamma(j), respectively) were determined for Cx40/Cx40, Cx43/Cx43, Cx40/Cx43, and Cx40-Cx43/Cx40-Cx43 mixed composition channels. PDGF had no effect on g(j) in Cx40/Cx40 pairs, but decreased g(j) in the remaining combinations by 53% (Cx43/Cx43), 48% (Cx40/Cx43), 41% (4:1 Cx40:Cx43 expression ratio) and 24% (10:1 Cx40:Cx43 expression ratio). Based on the predicted connexin composition of channels in cells expressing Cx40 and Cx43 at either 4:1 or 10:1 ratios, these decreases in g(j) suggest that a single subunit of Cx43 is sufficient to confer PDGF sensitivity. The effect of PDGF on g(j) involved a decrease in both gamma(j) and Po and required serine 368 in the C-terminus. These data implicate protein kinase C as the mediator of the PDGF effect and strongly suggest that acute regulation of gap junction function by PDGF-activated signaling cascades is conferred by low levels of expression of a sensitive connexin in cells that otherwise express insensitive connexins.  相似文献   

3.
HeLa cells expressing wild-type connexin43, connexin40 or connexin45 and connexins fused with a V5/6-His tag to the carboxyl terminus (CT) domain (Cx43-tag, Cx40-tag, Cx45-tag) were used to study connexin expression and the electrical properties of gap junction channels. Immunoblots and immunolabeling indicated that tagged connexins are synthesized and targeted to gap junctions in a similar manner to their wild-type counterparts. Voltage-clamp experiments on cell pairs revealed that tagged connexins form functional channels. Comparison of multichannel and single-channel conductances indicates that tagging reduces the number of operational channels, implying interference with hemichannel trafficking, docking and/or channel opening. Tagging provoked connexin-specific effects on multichannel and single-channel properties. The Cx43-tag was most affected and the Cx45-tag, least. The modifications included (1) V j-sensitive gating of I j (V j, gap junction voltage; I j, gap junction current), (2) contribution and (3) kinetics of I j deactivation and (4) single-channel conductance. The first three reflect alterations of fast V j gating. Hence, they may be caused by structural and/or electrical changes on the CT that interact with domains of the amino terminus and cytoplasmic loop. The fourth reflects alterations of the ion-conducting pathway. Conceivably, mutations at sites remote from the channel pore, e.g., 6-His-tagged CT, affect protein conformation and thus modify channel properties indirectly. Hence, V5/6-His tagging of connexins is a useful tool for expression studies in vivo. However, it should not be ignored that it introduces connexin-dependent changes in both expression level and electrophysiological properties.  相似文献   

4.
Connexin40 (Cx40) and connexin43 (Cx43) are co-expressed in the cardiovascular system, yet their ability to form functional heterotypic Cx43/Cx40 gap junctions remains controversial. We paired Cx43 or Cx40 stably-transfected N2a cells to examine the formation and biophysical properties of heterotypic Cx43/Cx40 gap junction channels. Dual whole cell patch clamp recordings demonstrated that Cx43 and Cx40 form functional heterotypic gap junctions with asymmetric transjunctional voltage (Vj) dependent gating properties. The heterotypic Cx43/Cx40 gap junctions exhibited less Vj gating when the Cx40 cell was positive and pronounced gating when negative. Endogenous N2a cell connexin expression levels were 1,000-fold lower than exogenously expressed Cx40 and Cx43 levels, measured by real-time PCR and Western blotting methods, suggestive of heterotypic gap junction formation by exogenous Cx40 and Cx43. Imposing a [KCl] gradient across the heterotypic gap junction modestly diminished the asymmetry of the macroscopic normalized junctional conductance – voltage (Gj-Vj) curve when [KCl] was reduced by 50% on the Cx43 side and greatly exacerbated the Vj gating asymmetries when lowered on the Cx40 side. Pairing wild-type (wt) Cx43 with the Cx40 E9,13K mutant protein produced a nearly symmetrical heterotypic Gj-Vj curve. These studies conclusively demonstrate the ability of Cx40 and Cx43 to form rectifying heterotypic gap junctions, owing primarily to alternate amino-terminal (NT) domain acidic and basic amino acid differences that may play a significant role in the physiology and/or pathology of the cardiovascular tissues including cardiac conduction properties and myoendothelial intercellular communication.  相似文献   

5.
Connexin40 (Cx40) and connexin43 (Cx43) are co-expressed in the cardiovascular system, yet their ability to form functional heterotypic Cx43/Cx40 gap junctions remains controversial. We paired Cx43 or Cx40 stably-transfected N2a cells to examine the formation and biophysical properties of heterotypic Cx43/Cx40 gap junction channels. Dual whole cell patch clamp recordings demonstrated that Cx43 and Cx40 form functional heterotypic gap junctions with asymmetric transjunctional voltage (Vj) dependent gating properties. The heterotypic Cx43/Cx40 gap junctions exhibited less Vj gating when the Cx40 cell was positive and pronounced gating when negative. Endogenous N2a cell connexin expression levels were 1,000-fold lower than exogenously expressed Cx40 and Cx43 levels, measured by real-time PCR and Western blotting methods, suggestive of heterotypic gap junction formation by exogenous Cx40 and Cx43. Imposing a [KCl] gradient across the heterotypic gap junction modestly diminished the asymmetry of the macroscopic normalized junctional conductance – voltage (Gj-Vj) curve when [KCl] was reduced by 50% on the Cx43 side and greatly exacerbated the Vj gating asymmetries when lowered on the Cx40 side. Pairing wild-type (wt) Cx43 with the Cx40 E9,13K mutant protein produced a nearly symmetrical heterotypic Gj-Vj curve. These studies conclusively demonstrate the ability of Cx40 and Cx43 to form rectifying heterotypic gap junctions, owing primarily to alternate amino-terminal (NT) domain acidic and basic amino acid differences that may play a significant role in the physiology and/or pathology of the cardiovascular tissues including cardiac conduction properties and myoendothelial intercellular communication.  相似文献   

6.
Three gap junctional proteins have been identified in canine ventricular myocytes: connexin 43 (Cx43), connexin 45 (Cx45), and connexin 40 (Cx40). We have characterized the functional properties of canine Cx45 and examined how Cx45 functionally interacts with Cx43 in Xenopus oocyte pairs. Homotypic pairs expressing Cx45 were well coupled. Heterotypic pairs composed of Cx45 paired with either Cx43 or Cx38 also developed high levels of conductance. Junctional currents in the heterotypic pairs displayed a highly asymmetrical voltage dependence. The kinetics and steady-state voltage dependence of the heterotypic channels more closely resembled those of the Cx45 channels when the Cx45 cRNA-injected cell was relatively negative suggesting that the Cx45 connexon closes for relative negativity at the cytoplasmic end of the channel. We also show that homotypic and heterotypic channels composed of Cx45 and Cx43 exhibit differences in pH i sensitivity. Received: 18 August 1995/Revised: 21 November 1995  相似文献   

7.
The N-terminal (NT) domain of the connexins forms an essential transjunctional voltage (Vj) sensor and pore-forming domain that when truncated, tagged, or mutated often leads to formation of a nonfunctional channel. The NT domain is relatively conserved among the connexins though the α- and δ-group connexins possess a G2 residue not found in the β- and γ-group connexins. Deletion of the connexin40 G2 residue (Cx40G2Δ) affected the Vj gating, increased the single channel conductance (γj), and decreased the relative K+/Cl? permeability (PK/PCl) ratio of the Cx40 gap junction channel. The conserved α/β-group connexin D2/3 and W3/4 loci are postulated to anchor the NT domain within the pore via hydrophilic and hydrophobic interactions with adjacent connexin T5 and M34 residues. Cx40D3N and D3R mutations produced limited function with progressive reductions in Vj gating and noisy low γj gap junction channels that reduced the γj of wild-type Cx40 channels from 150 pS to < 50 pS when coexpressed. Surprisingly, hydrophobic Cx40 W4F and W4Y substitution mutations were not compatible with function despite their ability to form gap junction plaques. These data are consistent with minor and major contributions of the G2 and D3 residues to the Cx40 channel pore structure, but not with the postulated hydrophobic W4 intermolecular interactions. Our results indicate an absolute requirement for an amphipathic W3/4 residue that is conserved among all α/β/δ/γ-group connexins. We alternatively hypothesize that the connexin D2/3-W3/4 locus interacts with the highly conserved FIFR M1 motif to stabilize the NT domain within the pore.  相似文献   

8.
Many cardiovascular cells coexpress multiple connexins (Cx), leading to the potential formation of mixed (heteromeric) gap junction hemichannels whose biophysical properties may differ from homomeric channels containing only one connexin type. We examined the potential interaction of connexin Cx43 and Cx40 in HeLa cells sequentially stably transfected with these two connexins. Immunoblots verified the production of comparable amounts of both connexins, cross-linking showed that both connexins formed oligomers, and immunofluorescence showed extensive colocalization. Moreover, Cx40 copurified with (His)(6)-tagged Cx43 by affinity chromatography of detergent-solubilized connexons, demonstrating the presence of both connexins in some hemichannels. The dual whole cell patch-clamp method was used to compare the gating properties of gap junctions in HeLa Cx43/Cx40 cells with homotypic (Cx40-Cx40 and Cx43-Cx43) and heterotypic (Cx40-Cx43) gap junctions. Many of the observed single channel conductances resembled those of homotypic or heterotypic channels. The steady-state junctional conductance (g(j,ss)) in coexpressing cell pairs showed a reduced sensitivity to the voltage between cells (V(j)) compared with homotypic gap junctions and/or an asymmetrical V(j) dependence reminiscent of heterotypic gap junctions. These gating properties could be fit using a combination of homotypic and heterotypic channel properties. Thus, whereas our biochemical evidence suggests that Cx40 and Cx43 form heteromeric connexons, we conclude that they are functionally insignificant with regard to voltage-dependent gating.  相似文献   

9.
Tumour cells often exhibit erratic cell growth, as well as decreased gap junctional intercellular communication (GJIC). C6 glioma cells are characterized by low levels of gap junction mRNA and protein, and decreased amounts of GJIC when compared with astrocytes. Previous work has shown that C6 glioma cells transfected with connexin43 (C6-Cx43) exhibit decreased proliferation in vivo and in vitro, as well as genes that are differentially expressed between these cells. In this study, RNA levels of two CCN (connective tissue growth factor [CTGF], Cyr61/Cef-10, nephroblastoma overexpressed [NOV]) gene family members are shown to be upregulated in C6-Cx43 cells: Cyr61 and Nov. Cyr61 has previously been shown to increase adhesion, migration and growth in many cell types, whereas NOV has growth suppressive capacities. Cyr61 RNA expression is shown here to respond to serum in quiescent cells in an immediate early gene fashion, independent of Cx43 expression. In contrast, Nov RNA levels remain constant, reflective of transfected Cx43 expression. Furthermore, confocal microscopy indicates that NOV colocalizes with Cx43 plaques at the cell membrane. These findings provide insight into the possible role of Nov and Cyr61 in tumour cells.  相似文献   

10.
Growing evidence suggests that the astrocytic gap junctions (GJs), mainly formed by connexin 43 (Cx43), play an important role in physiological maintenance and various central nervous system (CNS) pathological conditions. However, little is known about the role of Cx43 in Parkinson’s disease (PD). In this article, we report that rotenone, a classic neurotoxin for PD, could inhibit expression of astrocytic Cx43 and gap junction permeability. ATP-sensitive potassium (KATP) channel openers, iptakalim (IPT) and diazoxide (DZ), exerted protective effect on rotenone-induced dysfunction of Cx43 and astrocyte apoptosis, which was reversed by selective mitochondrial KATP (mitoKATP) channel blocker 5-hydroxydecanoate (5-HD). Taken together, our findings reveal that rotenone-induced dysfunction of astrocytic Cx43 may be involved in the pathology of PD. Moreover, opening mitoKATP channels in astrocytes can reverse rotenone-induced dysfunction of astrocytic Cx43 and therefore protect against toxicity of rotenone on astrocytes.  相似文献   

11.
We analyzed the expression of connexin(Cx)43 in proliferating and differentiating C2C12cells and in myoblasts obtained from newborn mice. Cx43 was present in both cell types and under both conditions. The functional role of gap junctional communication (GJC) during terminal differentiation was evaluated in C2C12myoblasts in the presence or absence of the gap junction blocker 18β-glycyrrhetinic acid (β-GA). Differentiation was temporally analyzed through myogenin expression, activity of creatine kinase (CK), and yield of multinucleated cells. In cells treated with β-GA, the CK activity and myotube formation were reversibly blocked. While in control cultures positive myogenin expression was seen in cell clusters, in β-GA treated cultures the myogenin immunoreactivity was detected in few, preferentially sparse cells. The role of Cx43 during terminal differentiation was evaluated in cultures of myoblasts obtained from Cx43Cre-ER(T)/fltransgenic mice. Inducible deletion of Cx43 was obtained upon activation of Cre-ER(T) via 4-OH-tamoxifen applications. Cx43 deletion led to a drastic decrease in myogenin expression at 24 h of differentiation as compared to myoblasts from control mice. Our results indicate that Cx43-containing gap junctions are required for normal skeletal muscle terminal differentiation. These channels might provide a pathway for the intercellular transfer of signals involved in myogenesis.  相似文献   

12.
In the vessel wall, endothelial cells are metabolically and electrically coupled to each other and to the adjacent smooth muscle cells by gap junctions composed of connexins. Gap junctions may be formed from combinations of several different connexin proteins, and deletion of one connexin can lead to modification of the expression of another. To reveal a possible interaction between connexin40 (Cx40) and connexin43 (Cx43) in endothelium, we studied their distribution in vessels from C57Bl/6 and Cx40 knockout mice (Cx40-/-) using immunoblots and immunocytochemistry on aortic cross sections and en face whole mounts. En face preparations from C57Bl/6 mice revealed two distinct pools of Cx43, one pericellular and the other intracellular. Cx40 was largely restricted to the periphery of the cells, and in Cx40-/- mice it was, as expected, undetectable. In the Cx40-/- mice, total Cx43 protein was also modestly reduced (immunoblots), but there was a major redistribution of the protein within the cell. The pericellular component of Cx43 was rendered virtually undetectable, and the intracellular compartments were normal or even slightly elevated. Smooth muscle Cx43 was also reduced in the Cx40-/- animals. These findings indicate that the cellular distribution of Cx43 is dependent on the presence of Cx40, and in view of the profound effects on the pericellular pool of the Cx43, the findings suggest that interactions between Cx40 and Cx43 regulate communication between endothelial cells and perhaps between smooth muscle and endothelial cells as well.  相似文献   

13.
The pacemaker of the heart, the sinoatrial (SA) node, is characterized by unique electrical coupling properties. To investigate the contribution of gap junction organization and composition to these properties, the spatial pattern of expression of three gap junctional proteins, connexin45 (Cx45), connexin40 (Cx40), and connexin43 (Cx43), was investigated by immunocytochemistry combined with confocal microscopy. The SA nodal regions of rabbits were dissected and rapidly frozen. Serial cryosections were double labeled for Cx45 and Cx43 and for Cx40 and Cx43, using pairs of antibody probes raised in different species. Dual-channel scanning confocal microscopy was applied to allow simultaneous visualization of the different connexins. Cx45 and Cx40, but not Cx43, were expressed in the central SA node. The major part of the SA nodal-crista terminalis border revealed a sharply demarcated boundary between Cx43-expressing myocytes of the crista terminalis and Cx45/Cx40-expressing myocytes of the node. On the endocardial side, however, a transitional zone between the crista terminalis and the periphery of the node was detected in which Cx43 and Cx45 expression merged. These distinct patterns of connexin compartmentation and merger identified suggest a morphological basis for minimization of contact between the tissues, thereby restricting the hyperpolarizing influence of the atrial muscle on the SA node while maintaining a communication route for directed exit of the impulse into the crista terminalis.  相似文献   

14.
Mice lacking both connexin37 (Cx37) and connexin40 (Cx40), gap junction proteins expressed in vascular endothelium, die perinatally with pronounced vascular abnormalities. Early vasculogenesis proceeds normally, but by E18.5 Cx37?/?Cx40?/?animals display vessel dilatation and congestion as well as localized hemorrhages in skin, testis, intestines, and lungs. Abnormal vascular channels are present in the testis, often forming cavernous hemangioma-like defects. Unusually large, distended vessels are also present in the submucosa and lamina propria of the intestine. Ablation of Cx40 has a greater effect on endothelial dye-transfer than ablation of Cx37, and the effect of Cx40 ablation is age-dependent. Only in embryonic aortas lacking both Cx37 and Cx40 is there a complete loss of endothelial coupling. Surprisingly, elimination of Cx40 results in a large drop in aortic endothelial Cx37 on western blots, and deletion of Cx37 also reduces endothelial Cx40 levels. In contrast, in the medial layer, both Cx37 and Cx43 increase when Cx40 is ablated. These studies indicate that Cx37 and Cx40 are collectively critical for endothelial communication and provide evidence of an important role for gap junctions in vascular development. In addition, Cx37 and Cx40 appear to be mutually dependent on each other for normal expression in vascular endothelium.  相似文献   

15.
Many tissues express multiple gap junction proteins, or connexins (Cx); for example, Cx43, Cx40, and Cx37 are coexpressed in vascular cells. This study was undertaken to elucidate the consequences of coexpression of Cx40 or Cx37 with Cx43 at different ratios. EcR-293 cells (which endogenously produce Cx43) were transfected with ecdysone-inducible plasmids encoding Cx37 or Cx40. Immmunoblotting showed a ponasterone dose-dependent induction of Cx37 or Cx40 while constant levels of Cx43 were maintained. The coexpressed connexins colocalized at appositional membranes. Double whole-cell patch clamp recordings showed no significant change in total junctional conductances in cells treated with 0, 0.5, or 4?μM ponasterone; however, they did show a diversity of unitary channel sizes consistent with the induced connexin expression. In cells with induced expression of either Cx40 or Cx37, intercellular transfer of microinjected Lucifer yellow was reduced, but transfer of NBD-TMA (2-(4-nitro-2,1,3-benzoxadiol-7-yl)[aminoethyl]trimethylammonium) was not affected. In cocultures containing uninduced EcR cells together with cells induced to coexpress Cx37 or Cx40, Lucifer yellow transfer was observed only between the cells expressing Cx43 alone. These data show that induced expression of either Cx37 or Cx40 in Cx43-expressing cells can selectively alter the intercellular exchange of some molecules without affecting the transfer of others.  相似文献   

16.
Cx45 channel sensitivity to CO2, transjunctional voltage (Vj) and inhibition of calmodulin (CaM) expression was tested in oocytes by dual voltage-clamp. Cx45 channels are very sensitive to Vjand close preferentially by the slow gate, likely the same as the chemical gate. With CO2-induced drop in junctional conductance (Gj), the speed of Vj-dependent inactivation of junctional current (Ij) and Vjsensitivity increased. With 40 mV Vj, the τ of single exponential Ijdecay reversibly decreased by ~40% with CO2, and Gj steady state/Gj peakdecreased multiphasically, indicating that kinetics and Vjsensitivity of chemical/slow-Vjgating are altered by changes in [H+]iand/or [Ca2+]i. With 15 min exposure to CO2, Gjdropped to 0% in controls and by ~17% following CaM expression inhibition; similarly, Vjsensitivity decreased significantly. This indicates that the speed and sensitivity of Vj-dependent inactivation of Cx45 channels are increased by CO2, and that CaM plays a role in gating. Cx32 channels behaved similarly, but the drop in both Gj steady state/Gj peakand τ with CO2matched more closely that of Gj peak. In contrast, sensitivity and speed of Vjgating of Cx40 and Cx26 channels decreased, rather than increased, with CO2application.  相似文献   

17.
Many tumor cells exhibit aberrant gap junctional intercellular communication, which can be restored by transfection with connexin genes. We have previously discovered that overexpression of connexin43 (Cx43) in C6 glioma cells not only reduces proliferation but also leads to production of soluble growth-inhibitory factors. We identified that several members of the CCN (Cyr61/connective tissue growth factor/nephroblastoma-overexpressed) family are up-regulated following Cx43 expression, including CCN3 (NOV). We now report evidence for an association between CCN3 and Cx43. Western blot analysis demonstrated that the 48-kDa full-length CCN3 protein was present in the lysate and conditioned medium of growth-suppressed C6-Cx43 cells, as well as primary astrocytes, but not in C6 parental and human glioma cells. Immunocytochemical examination of CCN3 revealed diffuse localization in parental C6 cells, whereas transfection of C6 cells with Cx43 (C6-Cx43) or with a modified Cx43 tagged to green fluorescent protein on its C terminus (Cx43-GFP) resulted in punctate staining, suggesting that CCN3 co-localizes with Cx43 in plaques at the plasma membrane. In cells expressing a C-terminal truncation of Cx43 (Cx43Delta244-382), this co-localization was lost. Glutathione S-transferase pull-down assay and co-immunoprecipitation demonstrated that CCN3 was able to physically interact with Cx43. In contrast, CCN3 was not found to associate with Cx43Delta244-382. Similar experiments revealed that CCN3 did not co-localize or associate with other connexins, including Cx40 or Cx32. Taken together, these data support an interaction of CCN3 with the C terminus of Cx43, which could play an important role in mediating growth control induced by specific gap junction proteins.  相似文献   

18.

Background

Many signaling molecules and pathways that regulate gap junctions (GJs) protein expression and function are, in fact, also controlled by GJs. We, therefore, speculated an existence of the GJ channel-mediated self-regulation of GJs. Using a cell culture model in which nonjunctional connexin43 (Cx43) hemichannels were activated by cadmium (Cd2+), we tested this hypothesis.

Principal Findings

Incubation of Cx43-transfected LLC-PK1 cells with Cd2+ led to an increased expression of Cx43. This effect of Cd2+ was tightly associated with JNK activation. Inhibition of JNK abolished the elevation of Cx43. Further analysis revealed that the changes of JNK and Cx43 were controlled by GSH. Supplement of a membrane-permeable GSH analogue GSH ethyl ester or GSH precursor N-acetyl-cystein abrogated the effects of Cd2+ on JNK activation and Cx43 expression. Indeed, Cd2+ induced extracellular release of GSH. Blockade of Cx43 hemichannels with heptanol or Cx43 mimetic peptide Gap26 to prevent the efflux of GSH significantly attenuated the Cx43-elevating effects of Cd2+.

Conclusions

Collectively, our results thus indicate that Cd2+-induced upregulation of Cx43 is through activation of nonjunctional Cx43 hemichannels. Our findings thus support the existence of a hemichannel-mediated self-regulation of Cx43 and provide novel insights into the molecular mechanisms of Cx43 expression and function.  相似文献   

19.
20.
Little is known about connexin expression and function in murine cardiac fibroblasts. The authors isolated native ventricular fibroblasts from adult mice and determined that although they expressed both connexin43 (Cx43) and connexin45 (Cx45), the relative abundance of Cx45 was greater than that of Cx43 in fibroblasts compared to myocytes, and the electrophoretic mobility of both Cx43 and Cx45 differed in fibroblasts and in myocytes. Increasing Cx43 expression by adenoviral infection increased intercellular coupling, whereas decreasing Cx43 expression by genetic ablation decreased coupling. Interestingly, increasing Cx43 expression reduced fibroblast proliferation, whereas decreasing Cx43 expression increased proliferation. These data demonstrate that native fibroblasts isolated from the mouse heart exhibit intercellular coupling via gap junctions containing both Cx43 and Cx45. Fibroblast proliferation is inversely related to the expression level of Cx43. Thus, connexin expression and remodeling is likely to alter fibroblast function, maintenance of the extracellular matrix, and ventricular remodeling in both normal and diseased hearts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号