共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Daphne J. Fairbairn Richard F. Preziosi 《Evolution; international journal of organic evolution》1996,50(4):1549-1559
Sexual size dimorphism (SSD) is often attributed to sexual selection, particularly when males are the larger sex. However, sexual selection favoring large males is common even in taxa where females are the larger sex, and is therefore not a sufficient explanation of patterns of SSD. As part of a more extensive study of the evolution of SSD in water striders (Heteroptera, Gerridae), we examine patterns of sexual selection and SSD in 12 populations of Aquarius remigis. We calculate univariate and multivariate selection gradients from samples of mating and single males, for two sexually dimorphic traits (total length and profemoral width) and two sexually monomorphic traits (mesofemoral length and wing form). The multivariate analyses reveal strong selection favoring larger males, in spite of the female-biased SSD for this trait, and weaker selection favoring aptery and reduced mesofemoral length. Selection is weakest on the most dimorphic trait, profemoral width, and is stabilizing rather than directional. The pattern of sexual selection on morphological traits is therefore not concordant with the pattern of SSD. The univariate selection gradients reveal little net selection (direct + indirect) on any of the traits, and suggest that evolution away from the plesiomorphic pattern of SSD is constrained by antagonistic patterns of selection acting on this suite of positively correlated morphological traits. We hypothesize that SSD in A. remigis is not in equilibrium, a hypothesis that is consistent with both theoretical models of the evolution of SSD and our previous studies of allometry for SSD. A negative interpopulation correlation between the intensity of sexual selection and the operational sex ratio supports the hypothesis that, as in several other water strider species, sexual selection in A. remigis occurs through generalized female reluctance rather than active female choice. The implications of this for patterns of sexual selection are discussed. 相似文献
4.
5.
Allen J. Moore 《Evolution; international journal of organic evolution》1990,44(2):315-331
Libellula luctuosa, a pond dragonfly found in eastern North America, is apparently sexually dimorphic. Previous studies of the mating behavior in this species suggested that both male-male competition and female mate choice are important influences. Males compete for territories, where they attract females and where mating occurs. Female behavior influences both the copulation success and the fertilization success of males. Because of temporal and spatial separation of these episodes of sexual selection, multivariate and nonparametric statistical techniques could be used to investigate the influence of components of sexual selection on various sexually dimorphic traits. Sexual dimorphism in L. luctuosa was first quantified; then the direct effects and the form of selection were estimated. Sexually dimorphic wing size, body size, wing coloration, and body coloration are distributed either continuously or discontinuously between the sexes in L. luctuosa. These traits have apparently diverged between the sexes as a result of directional sexual selection. Body size is further influenced by stabilizing selection. Intrasexual selection (success in gaining access to a territory) and intersexual selection (success in copulation and fertilization) can influence the same or different sexually dimorphic characters. Body size is influenced by directional selection during the intrasexual phase of sexual selection and is also influenced by stabilizing selection during intersexual selection. The size of the brown wing patch is influenced by directional selection, primarily during the intersexual phase of sexual selection. There is directional selection on the white wing patch during both phases. Thus, the different proximate mechanisms of sexual selection may jointly or separately affect the evolution of sexually dimorphic characters. Further empirical and theoretical investigations into the differences in the effects of intrasexual selection and intersexual selection are needed to clarify the circumstances leading to separate consequences of these two mechanisms of sexual selection. 相似文献
6.
7.
Lynda F. Delph A. Michele Arntz Caroline Scotti‐Saintagne Ivan Scotti 《Evolution; international journal of organic evolution》2010,64(10):2873-2886
Evaluating the genetic architecture of sexual dimorphism can aid our understanding of the extent to which shared genetic control of trait variation versus sex‐specific control impacts the evolutionary dynamics of phenotypic change within each sex. We performed a QTL analysis on Silene latifolia to evaluate the contribution of sex‐specific QTL to phenotypic variation in 46 traits, whether traits involved in trade‐offs had colocalized QTL, and whether the distribution of sex‐specific loci can explain differences between the sexes in their variance/covariance matrices. We used a backcross generation derived from two artificial‐selection lines. We found that sex‐specific QTL explained a significantly greater percent of the variation in sexually dimorphic traits than loci expressed in both sexes. Genetically correlated traits often had colocalized QTL, whose signs were in the expected direction. Lastly, traits with different genetic correlations within the sexes displayed a disproportionately high number of sex‐specific QTL, and more QTL co‐occurred in males than females, suggesting greater trait integration. These results show that sex differences in QTL patterns are congruent with theory on the resolution of sexual conflict and differences based on G ‐matrix results. They also suggest that trade‐offs and trait integration are likely to affect males more than females. 相似文献
8.
9.
J. Meril B. C. Sheldon H. Ellegren 《Evolution; international journal of organic evolution》1998,52(3):870-876
Quantitative genetic theory predicts that evolution of sexual size dimorphism (SSD) will be a slow process if the genetic correlation in size between the sexes is close to unity, and the heritability of size is similar in both sexes. However, there are very few reliable estimates of genetic correlations and sex-specific heritabilities from natural populations, the reasons for this being that (1) offspring have often been sexed retrospectively, and hence, selection acting differently with respect to body size in the two sexes between measuring and sex identification can bias estimates of SSD; and (2) in many taxa, parents may be incorrectly assigned to offspring either because of assignment errors or because of extrapair paternity. We used molecular sex and paternity identification to overcome these problems and estimated sex-specific heritabilities and the genetic correlation in body size between the two sexes in the collared flycatcher, Ficedula albicollis. After exclusion of the illegitimate offspring, the genetic correlation in body size between the sexes was 1.00 (SE = 0.22), implying a severe constraint on the evolution of SSD in this species. Furthermore, sex-specific heritability estimates were very similar, indicating that neither sex will be able to evolve faster than the other. By using estimated genetic parameters, together with empirically derived estimates of sex-specific selection gradients, we further demonstrated that the predicted selection response in female tarsus length is displaced about 200% in the opposite direction from that to be expected if there were no genetic correlation between the sexes. The correspondence between the biochemically estimated rate of extrapair paternity (about 15 % of the young) and that estimated from the “heritability method” (11%) was good. However, the estimated rate of extrapair paternity with the heritability method after exclusion of the illegitimate young was 22%, adding to increasing evidence that factors other than extrapair paternity (e.g., maternal effects) may be resposible for the commonly observed higher mother-offspring than father-offspring resemblance. 相似文献
10.
Skulls of 69 bottlenose dolphins (genus Tursiops ) from the Indian/Banana River on the east coast of Florida were examined for evidence of sexual dimorphism. The only sexual dimorphism shown by t -tests on 28 morphological and four meristic skull characters was that males have, on average, more teeth than females in all four arcades. Results of covariance analysis, employed to account for variation in size, indicate minor dimorphism in parietal width of the skull. Twenty body measurements of 29 Tursiops originating in the same area were also analysed for differences between males and females. Statistical results indicate the possibility of sexual dimorphism in the length from the snout to the umbilicus and in flipper width. No evidence was found for differences in overall skull or body length between the sexes. 相似文献
11.
12.
13.
14.
EVIDENCE of sexual dimorphism has been found in two species,Cypraeagracilis Gaskoin and Umbilia hesitata Iredale. In theformer the observed difference lies in the colour of the livinganimals, and in the latter in the length of the shell, the malebeing the longer. (Received 10 June 1960; 相似文献
15.
Thomas R. Meagher 《Evolution; international journal of organic evolution》1992,46(2):445-457
It is widely recognized that there are basic conflicts between the resource needs of a plant for paternal versus maternal functions. In dioecious species, these divergent demands, and the selection pressures they impose, can lead to the evolution of sexual dimorphism. The present study was conducted to assess the potential for the evolution of sexual dimorphism in Silene latifolia by evaluating the genetic variation and genetic correlation between characters and between the sexes for a range of growth and reproductive characters. Sexual dimorphism is largely restricted to reproductive characters, particularly flower number and flower size. A canonical correlation analysis revealed considerable intercorrelation between growth characters, such as germination date, height, and leaf size, and reproductive characters; plants that grow fast early on also flower earlier, and plants that produce big leaves also produce big flowers. There was genetic variation for several sexually dimorphic characters; much of the focus in this analysis was on flower size, particularly calyx diameter. Finally, genetic correlations within and between the sexes were found that limit the rate of evolutionary divergence between the sexes. The genetic results suggest that S. latifolia has been subject to divergent selection on the two sexes for a long period of time, bringing about a gradual fixation of sex-limited gene effects, so that the remaining genetic effects are expressed in both sexes. Genetic correlations between the sexes that arise from this residual variation impose limits on further evolutionary change. 相似文献
16.
SEXUAL DIMORPHISM IN MAMMALS 总被引:2,自引:0,他引:2
A. GLUCKSMANN 《Biological reviews of the Cambridge Philosophical Society》1974,49(4):423-475
1. Life expectancy and mortality rates from diseases arising in various organs vary with sex because of differential exposure to external hazards and because of essential differences between males and females in aspects not directly connected with reproduction. This review attempts to collate data about the structural and functional dimorphism of mammals exclusive of the genital organs and psychological aspects. 2. The primary sex ratio is not certain and like the secondary and tertiary may vary with species. In many mammals more males are aborted and born than females. Later a higher mortality of males, due to sex-linked congenital diseases and greater exposure to external hazards, shifts the balance in favour of females at the time of sexual maturity. The average life span of females is longer than that of males, except in hamsters and in inbred strains of mice with a high incidence of mammary tumours. 3. Chromosomes as well as gonadal hormones are responsible for the development of male and female characteristics. The Y-chromosome initiates the differentiation of the testis, but gonadal hormones control the subsequent differentiation of the genital tract and other organs. In embryos the testicular secretion precedes that of the ovary. The Y-chromosome is devoid of, but the X-chromosome retains structural genes. The random heterochromatization of a paternal or a maternal X-chromosome in the somatic cells of female embryos equalizes the genetic information for both sexes and produces a mosaicism of female somatic cells except in the kangaroo where the paternal X-chromosome is selectively inactivated. Deficient genes on the X-chromosome become manifest in hemizygous males, in homozygous females and can be detected in heterozygous women in half of the somatic cell population in some conditions. 4. The testis grows faster than the ovary and starts to secrete earlier, but the maturation of female gonocytes precedes that of males. Spermatogenesis starts at puberty and is maintained throughout life, while multiplication of oogonia ceases in the perinatal period (except in lemurs), when the stage of the first meiotic division is reached. The stock of oocytes dwindles during life. 5. In many mammals the male grows faster than the female before and after birth, but is less mature. Puberty tends to start earlier in females and the associated growth spurt does not last as long as in males. Testosterone has a direct anabolic effect, promotes growth and delays differentiation. Oestrogens are considered katabolic, but promote growth indirectly by stimulating the production of growth hormone in the pituitary. Progesterone has an anabolic and slight androgenic effect. 6. A female pattern of differentiation of the hypothalamus, the pituitary and the pineal gland, manifested at puberty by cyclical activities of the reproductive organs requires the absence of androgens during a critical phase of ante- or perinatal development. Oestrogens given to males at that period produce effects similar to castration. Antiandrogens induce in males a cyclical pattern of function in the hypothalamus and the pituitary, enlargement of the breasts and formation of nipples in the rat and a female type of sexual behaviour. There is no complete sex reversal in mammals comparable to that of fish and amphibians. 7. With some exceptions (hamsters, rabbits, guinea-pigs) males are larger than females. Gender differences in weight of organs and in other parameters must be assessed as proportion to male or female weight, surface and activities. The relatively greater amount of fat in female and of connective tissue in male organs in relation to the active parenchyma complicate comparisons. 8. The head and shoulder region is proportionately larger in males and the pelvic region in females. Men and male mice have heavier bones, muscles, hearts, lungs, salivary glands, kidneys and gonads in proportion to body weight, while females have proportionately heavier brains, livers, spleens, adrenals, thymus, stomach and fat deposits. 9. The basal metabolic rate in women is lower than in males. A great variety of metabolic parameters, levels of enzyme activity, location of fat deposits, sensitivity to drugs is sexually dimorphic and responsive to the action of androgens, oestrogens and progestagens. 10. Males tend to have more red blood corpuscles, haemoglobin and erythropoietin per unit volume of blood than women, cows, mares, sows, bitches, female cats and hamsters, but there is no sex difference in this respect in rats, rabbits, goats or sheep. Females tend to have more granulocytes and a proportionately larger lymphomyeloid complex (bone marrow, spleen, thymus, lymph nodes and lymphoepithelial tissues) and greater immunological competence than males. The cortical epithelium of the thymus in mice and rats is sexually dimorphic, responsive to castration and treatment with sex hormones and varies with the oestrous cycle. 11. The kidney is proportionately larger in male mice, rats, cats and dogs, is reduced by castration and enlarged by treatment with testosterone. The kidneys of hamsters and guinea-pigs do not differ in size with sex, nor do they respond to castration or to androgens. The proportion of tubules to glomeruli is greater in the male than the female kidney. The tubular mass increases with androgenic medication, but not the juxtaglomerular apparatus. The parietal epithelium of Bowman's capsule, the histochemistry of the kidney and the composition of the urine vary with gender and respond to sex hormones according to species and strain. The bladder of male mice is proportionately larger than that of females. Some pheromones are present in the bladder urine of intact male mice and of spayed females given testosterone, but absent from that of castrated males. 12. Boars, male elephants, mastodons, horses, deer and monkeys have larger canines than the females. The submaxillary gland of male mice, rats and pigs is proportionately larger than in females, but smaller in hamsters. The proportion of mucous to serous acinar cells in female rodents is greater than in males; female hamsters produce more sialic acid. The secretory tubules of male rats and mice are larger than in females and produce a nerve- and an epidermal-growth factor. Apart from amylase the levels of enzyme activity vary with sex. The liver is sexually dimorphic as regards size, content and metabolism of glycogen, fat, vitamin A, levels of enzymatic activity, phagocytic activity and in its response to castration, sex hormones, to toxic agents, drugs and carcinogens. Sex hormones affect the production of insulin by the pancreas in vivo and in vitro. 13. The male larynx which enlarges and induces voice changes in many mammals at puberty or the onset of the breeding season, is affected by castration and by sex hormones. Male lungs are proportionately larger than female ones with a greater vital and maximal respiratory capacity. Breathing rate and manner varies with sex and is related to differences in the muscular development of the diaphragm. 14. The epidermis and dermis of males are thicker, but the subcutis thinner than in females. The skin is sexually dimorphic in respect of dermatoglyphics, the replacement of vellus by terminal hair and pigmentation of specific regions, the colour of the face and of the sexual skin in monkeys, the development of antlers and horns. The synchrony of the hair cycle and the growth wave of the hair coat in mice and rats depend on the sex of the animals. The X-chromosome mosaicism in the hair follicles of female mice accounts for the mosaicism in pigmentation. Apart from a genetic disorder, the sweat glands are not sexually dimorphic, but the apocrine, the sebaceous glands and their specialized forms are. The embryonic development of mammary glands depends on the absence of androgens and can be induced in male rats and guinea-pigs by antiandrogens. 15. An intact cerebral cortex is necessary for the performance of reproductive functions in male, but not in female rats, cats, rabbits and guinea-pigs. Removal of the olfactory bulb impairs reproduction in female, but not in male mice. Pinealectomy prevents the testicular atrophy of hamsters kept in the dark. The reproductive cycles in females are regulated by the hypothalamus through the control of the ratio of FSH to LH release in the pituitary. This in turn acts on the ovary and thus affects the activity of the thyroid, thymus and lung. In males FSH and LH act synergistically and their secretion is not controlled separately. Oestrogens are more effective than androgens in inhibiting pituitary functions. Sexual dimorphism in cytology, enzyme levels and oestrogen-binding is manifest in the preoptic area, the hypothalamus and the nucleus medialis amygdalae. The female brain is proportionately larger than the male with equal relative amounts of grey and white matter, but a bigger hypothalamic-pituitary-pineal complex. The pineal gland is more prone to tumour formation in boys than in girls and retains its cellularity longer in women than in men. Colour blindness is manifested less in heterozygous women than in hemizygous men. Mature women are more sensitive to the smell of synthetic musk than girls or men. Male rats and mice are more susceptible to audiogenic seizures than females. 16. The activity of the thyroid gland varies at different phases of the oestrous cycle in rats, mice and guinea-pigs. Female mice release more thyroid hormone into the blood than males or spayed animals. Oestrogens increase the level of thyroxin-binding protein. The concentration of TSH in the blood of mature women is double that of men and of menopausal women. The incidence of non-endemic thyroid disorders in women considerably exceeds that in men. 17. The adrenals of females are much larger than those of males except in hamsters. The gland of the female mouse contains more lipid than that of the male. The juxtamedullary X-zone of mice involutes at puberty in males and during the first pregnancy in females. Castration induces an X-zone in male mice, voles, hamsters and cats and an enlargement without stratification in rats. ACTH controls the secretion of glucocorticoids and since its formation is promoted by oestrogens and inhibited by androgens, sex hormones influence indirectly the size and activity of the adrenal cortex. Hepatic inactivation of glucocorticoids is 3 to 10 times greater in intact females than in males. 18. The implications of species variations in sexual dimorphism for the survival and the evolution of mammals are discussed. 相似文献
17.
Abstract: Two hundred and eighty-nine skulls of Dall's porpoises from the North Pacific Ocean, Sea of Japan, Sea of Okhotsk, and Bering Sea were investigated morphometrically. A clear pattern of geographic variation was found in overall size of the skull. In the North Pacific, overall skull size became gradually smaller eastward from the coast of Japan to the offshore eastern Pacific, and it became larger again off the coast of California. Specimens from the Sea of Japan-Okhotsk and Bering Sea had larger skulls than those from the central North Pacific. The distribution of primary productivity corresponds well with this pattern of geographic variation, suggesting that quantity of food might affect the overall size of Dall's porpoise skulls. By canonical discriminant analyses, about 70% (male) and 90% (female) of specimens of the Sea of Japan-Okhotsk population were distinguished from those of other populations. This agrees with the results of genetic studies. 相似文献
18.
HELMUT C. MUELLER 《Biological reviews of the Cambridge Philosophical Society》1990,65(4):553-585
Reversed sexual dimorphism in size (RSD) occurs in most species of several taxonomic groups of birds. The hypotheses proposed to explain this phenomenon are examined theoretically, using inequalities to state selection in the most rigorous possible terms. The most pertinent empirical evidence is also examined critically. Proponents of hypotheses on the evolution of RSD have failed to consider the genetic constraints on the evolution of dimorphism. Selection for dimorphism can act on only that small portion of the genetic determination of body size that is sex limited. In general, selection for body size is much more likely to lead to a similar change (e.g. larger) in both sexes than to dimorphism. The most popular hypotheses involve selection for size-related differences in foraging ability. It is unlikely that there is variation in size-related foraging differences available for selection in a monomorphic, ancestral population. Foraging differences between the sexes cannot lead to the evolution of RSD; evolution of large and small morphs of both sexes is a more likely outcome. Selection for sex-role differentiation factors (e.g. large females lay larger eggs, small males are more agile in flight) can lead to the evolution of RSD, but only if the magnitudes of opposing selection for small males and for large females are equal. Combining selection for size-related foraging differences with selection for sex-role differentiation factors hinders the evolution of RSD until the sexes differ in size by 3 s.d . Empirical evidence supports this assertion: statistically significant differences between the sexes in the size of prey taken are found only in highly dimorphic species. The sex-role differentiation factors that have been proposed appear unlikely to provide the equal selection necessary for the evolution of RSD. Several authors have proposed that small size in males is selected for foraging ability and large size in females for some sex-role differentiation factor. Males cannot be more efficient foragers without females being less efficient and efficiency cannot be a factor only when the male is feeding his family. RSD cannot evolve in monogamous species if large females survive less well than small males. RSD might evolve as the result of sexual selection for small size in males and constraints on the reduction of size in females because of some factor associated with reproduction. Examination of seven studies indicating a relationship between female size and reproductive success shows very little unequivocal evidence for small size in females allowing breeding earlier in the season. Large size in females allows females to breed at a younger age in the sparrowhawk and pairs to form more rapidly in three species of sandpipers. Both of these may be the result of sexual selection. There are fewer theoretical problems with sexual selection as a cause for the evolution of RSD than with the other hypotheses. Empirical evidence for sexual selection is scarce but better than that for the other hypotheses. Evidence is contradictory for the selection of small size in males for agility in aerial displays for courtship or defence of territory. Large size in females does not appear to be the result of selection for competitive ability to obtain mates. Facilitation of female dominance and hence of the formation and maintenance of a pair bond is the most viable explanation of the evolution of RSD. It is most likely that all dimorphism (normal or reversed) is the result of sexual selection. RSD is correlated with birds in the diet in the Falconiformes and this is a central theme in the foraging hypotheses. This correlation may be because birds are abundant and available in a continuum of sizes, thus permitting but not causing the evolution of RSD or because species that prey upon birds are better equipped physically (and perhaps more likely behaviourally) to inflict damaging attacks on conspecifics and the greater RSD increases female dominance and the ease of pair formation. 相似文献
19.
20.
Bruno A. Buzatto Joseph L. Tomkins Leigh W. Simmons Glauco Machado 《Evolution; international journal of organic evolution》2014,68(6):1671-1686
Secondary sexual traits increase male fitness, but may be maladaptive in females, generating intralocus sexual conflict that is ameliorated through sexual dimorphism. Sexual selection on males may also lead some males to avoid expenditure on secondary sexual traits and achieve copulations using alternative reproductive tactics (ARTs). Secondary sexual traits can increase or decrease fitness in males, depending on which ART they employ, generating intralocus tactical conflict that can be ameliorated through male dimorphism. Due to the evolutionary forces acting against intralocus sexual and tactical conflicts, male dimorphism could coevolve with sexual dimorphism, a hypothesis that we tested by investigating these dimorphisms across 48 harvestman species. Using three independently derived phylogenies, we consistently found that the evolution of sexual dimorphism was correlated with that of male dimorphism, and suggest that the major force behind this relationship is the similarity between selection against intralocus sexual conflict and selection against intralocus tactical conflict. We also found that transitions in male dimorphism were more likely in the presence of sexual dimorphism, indicating that if a sexually selected trait arises on an autosome and is expressed in both sexes, its suppression in females probably evolves earlier than its suppression in small males that adopt ARTs. 相似文献