首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Bielschowsky silver impregnation method has been used extensively to demonstrate neuronal processes including dendrites, axons and neurofibrils. In this study, we examined the differences in the time required for and the staining quality of the Bielschowsky method for neuronal processes when microwave heating was used instead of processing at room temperature. For this purpose, a control group of sections stained according to the conventional method at room temperature was compared to an experimental group stained in a microwave oven at 180 W for 2, 4 and 1 min in 2% silver nitrate, ammoniacal silver nitrate and gold chloride, respectively. Light microscopic examination demonstrated that the normal structure was preserved in both groups and that there was no difference in the staining quality between the control and the microwave groups. In addition, staining time for this procedure was reduced to 8 min by using the microwave oven. Our study revealed that microwave irradiation can be used safely for Bielschowsky silver impregnation of neuronal tissues.  相似文献   

2.
The Bielschowsky silver impregnation method has been used extensively to demonstrate neuronal processes including dendrites, axons and neurofibrils. In this study, we examined the differences in the time required for and the staining quality of the Bielschowsky method for neuronal processes when microwave heating was used instead of processing at room temperature. For this purpose, a control group of sections stained according to the conventional method at room temperature was compared to an experimental group stained in a microwave oven at 180 W for 2, 4 and 1 min in 2% silver nitrate, ammoniacal silver nitrate and gold chloride, respectively. Light microscopic examination demonstrated that the normal structure was preserved in both groups and that there was no difference in the staining quality between the control and the microwave groups. In addition, staining time for this procedure was reduced to 8 min by using the microwave oven. Our study revealed that microwave irradiation can be used safely for Bielschowsky silver impregnation of neuronal tissues.  相似文献   

3.
The use and practicability of microwave-assisted staining procedures in routine histopathology has been well established for more than 17 years. In the study reported here, we aimed to examine an alternative approach that would shorten the duration of dewaxing and clearing steps of hematoxylin and eosin (H & E) staining of paraffin sections by using a microwave oven. Although xylene is one of the most popular dewaxing and clearing agents, its flammability restricts its use in a microwave oven; thus we preferred 1,1,1 trichloroethane, which is not flammable, as the dewaxing and clearing agent in the present study. In Group I and Group II (control groups), intestine was processed with xylene and 1,1,1 trichloroethane, respectively. The sections were then stained with H & E according to the conventional staining protocol at room temperature and subdivided into two groups according to the duration of dewaxing and clearing in xylene. In Groups III and IV (experimental groups) similar tissues were processed with xylene and 1,1,1 trichloroethane, respectively; however, sections from these groups were divided into four subgroups to study the period required for dewaxing and clearing in 1,1,1 trichloroethane, then stained with H & E in the microwave oven at 360 W for 30 sec. Our conventional H & E staining procedure, which includes dewaxing, staining and clearing of sections, requires approximately 90 min, while our method using 1,1,1 trichloroethane and microwave heating required only 2 min. Our alternative method for H & E staining not only reduced the procedure time significantly, but also yielded staining quality equal or superior to those stained the conventional way. Our results suggest that 1,1,1 trichloroethane can be used effectively and safely as a dewaxing and clearing agent for H & E staining in a microwave oven.  相似文献   

4.
The use and practicability of microwave-assisted staining procedures in routine histopathology has been well established for more than 17 years. In the study reported here, we aimed to examine an alternative approach that would shorten the duration of dewaxing and clearing steps of hematoxylin and eosin (H & E) staining of paraffin sections by using a microwave oven. Although xylene is one of the most popular dewaxing and clearing agents, its flammability restricts its use in a microwave oven; thus we preferred 1,1,1 trichloroethane, which is not flammable, as the dewaxing and clearing agent in the present study. In Group I and Group II (control groups), intestine was processed with xylene and 1,1,1 trichloroethane, respectively. The sections were then stained with H & E according to the conventional staining protocol at room temperature and subdivided into two groups according to the duration of dewaxing and clearing in xylene. In Groups III and IV (experimental groups) similar tissues were processed with xylene and 1,1,1 trichloroethane, respectively; however, sections from these groups were divided into four subgroups to study the period required for dewaxing and clearing in 1,1,1 trichloroethane, then stained with H & E in the microwave oven at 360 W for 30 sec. Our conventional H & E staining procedure, which includes dewaxing, staining and clearing of sections, requires approximately 90 min, while our method using 1,1,1 trichloroethane and microwave heating required only 2 min. Our alternative method for H & E staining not only reduced the procedure time significantly, but also yielded staining quality equal or superior to those stained the conventional way. Our results suggest that 1,1,1 trichloroethane can be used effectively and safely as a dewaxing and clearing agent for H & E staining in a microwave oven.  相似文献   

5.
The use and practicability of microwave-assisted staining procedures in routine histopathology has been well established for more than 17 years. In the study reported here, we aimed to examine an alternative approach that would shorten the duration of dewaxing and clearing steps of hematoxylin and eosin (H & E) staining of paraffin sections by using a microwave oven. Although xylene is one of the most popular dewaxing and clearing agents, its flammability restricts its use in a microwave oven; thus we preferred 1,1,1 trichloroethane, which is not flammable, as the dewaxing and clearing agent in the present study. In Group I and Group II (control groups), intestine was processed with xylene and 1,1,1 trichloroethane, respectively. The sections were then stained with H & E according to the conventional staining protocol at room temperature and subdivided into two groups according to the duration of dewaxing and clearing in xylene. In Groups III and IV (experimental groups) similar tissues were processed with xylene and 1,1,1 trichloroethane, respectively; however, sections from these groups were divided into four subgroups to study the period required for dewaxing and clearing in 1,1,1 trichloroethane, then stained with H & E in the microwave oven at 360 W for 30 sec. Our conventional H & E staining procedure, which includes dewaxing, staining and clearing of sections, requires approximately 90 min, while our method using 1,1,1 trichloroethane and microwave heating required only 2 min. Our alternative method for H & E staining not only reduced the procedure time significantly, but also yielded staining quality equal or superior to those stained the conventional way. Our results suggest that 1,1,1 trichloroethane can be used effectively and safely as a dewaxing and clearing agent for H & E staining in a microwave oven.  相似文献   

6.
The effect of oxidation on neurofibrillar argyrophilia was studied by subjecting nervous tissues containing both normal and degenerating fibers to the action of potassium permanganate, periodic acid, chromic acid, lead tetraacetate, and sodium bismuthate prior to silver impregnation. The argyrophilic response of normal fibers to such treatment was studied with the Nonidez silver nitrate block technic, the double impregnation method of Bielschowsky on both blocks and sections, and a silver proteinate procedure. The response of degenerating fibers was studied by the Cajal formula 6 block technic and the modified Bielschowsky procedure of Nauta and Ryan for sections. The experimental data indicated that such oxidation did not produce any differential staining effects between normal or degenerating fibers.  相似文献   

7.
This study compares microwave fixation of whole fetal specimens with conventional techniques performed at room temperature. All fetuses were obtained from the same pregnant rat; half of them were placed in neutral formalin for 15 min at room temperature, then irradiated for 2.5 min in a domestic microwave oven. The remaining fetuses were placed in neutral formalin at room temperature for 48 hr as a control. Both experimental and control groups were exposed to routine tissue processing for light microscopy and embedded in paraffin wax. Sections 5 μm thick were stained with hematoxylin and eosin. Our results showed that the microwave technique reduced the fixation time while providing thin sections that were equal to or better in quality than those in the control group.  相似文献   

8.
This study compares microwave fixation of whole fetal specimens with conventional techniques performed at room temperature. All fetuses were obtained from the same pregnant rat; half of them were placed in neutral formalin for 15 min at room temperature, then irradiated for 2.5 min in a domestic microwave oven. The remaining fetuses were placed in neutral formalin at room temperature for 48 hr as a control. Both experimental and control groups were exposed to routine tissue processing for light microscopy and embedded in paraffin wax. Sections 5 μm thick were stained with hematoxylin and eosin. Our results showed that the microwave technique reduced the fixation time while providing thin sections that were equal to or better in quality than those in the control group.  相似文献   

9.
Conventional methods for histological preparation of degenerated myelin are time-consuming and difficult. The purpose of our study was to shorten the time required for the procedure and to obtain better quality results for light microscopic demonstration of degenerated myelin in the central and peripheral nervous systems by using microwave irradiation. Rat brain and sciatic nerve were used for the study. The middle cerebral artery was occluded and the sciatic nerve was cut to produce myelin degeneration. Marchi's method was used for staining degenerated myelin. Fixation for light microscopy that would take two days using the conventional procedure was completed in 16.5-18.5 min using microwave irradiation. While staining of degenerated myelin requires 10 days for the conventional Marchi method, we decreased it to 7 h for brain tissue and 1 h for sciatic nerve by using the microwave oven. Moreover, a better quality preparation was achieved in the groups stained under microwave irradiation than those prepared by the conventional method.  相似文献   

10.
Conventional methods for histological preparation of degenerated myelin are time-consuming and difficult. The purpose of our study was to shorten the time required for the procedure and to obtain better quality results for light microscopic demonstration of degenerated myelin in the central and peripheral nervous systems by using microwave irradiation. Rat brain and sciatic nerve were used for the study. The middle cerebral artery was occluded and the sciatic nerve was cut to produce myelin degeneration. Marchi's method was used for staining degenerated myelin. Fixation for light microscopy that would take two days using the conventional procedure was completed in 16.5-18.5 min using microwave irradiation. While staining of degenerated myelin requires 10 days for the conventional Marchi method, we decreased it to 7 h for brain tissue and 1 h for sciatic nerve by using the microwave oven. Moreover, a better quality preparation was achieved in the groups stained under microwave irradiation than those prepared by the conventional method.  相似文献   

11.
The well-know technique of silver staining of the nucleolar organizer (Ag-NOR) is improved in contrast, selectivity and speed when performed with microwave irradiation. The Ag-NOR technique is a very useful tool for studies on the functional morphology and molecular architecture of the nucleolus, and is reputed to be one of the best techniques for diagnosis and prognosis of cancer lesions. To test the generality of the enhancing effects. our study has involved the use of both mammalian and plant cells. Two steps in the process are improved quantitatively by microwave irradiation: fixation and staining itself. Fixation with the ethanol-based reagent, Kryofix, for 3 min in the microwave oven, resulted in good structural preservation at the optical level, and enhanced the contrast and selectivity of silver staining. On the contrary, we found that neither glutaraldehyde fixation, nor a treatment of sections with Carnoy's solution, improved Ag-NOR staining. After an analysis of the effects of the different substances involved in sample preparation, we conclude that ethanol is an essential factor for fixation for nucleolar staining, particularly if aldehydes are eliminated from fixative solutions. The process of staining was performed with a drop of staining solution on a semithin section of plastic-embedded tissue intthe microwave oven for 1 min. Staining under these conditions always improved the visualization of nucleoli, regardless of the fixation procedure. Therefore, microwave irradiation at both steps is recommended for giving the best results. Microwave irradiation probably enhances fixation by controlled heat, whereas the increase in reactivity of the staining solution is a direct effect by the microwaves on the silver ions themselves. We used this method to study nucleolar materials during mitosis in proliferating plant cells. Current applications of Ag-NOR staining can be improved with this technical modification.  相似文献   

12.
Conventional methods for histological preparation of degenerated myelin are time-consuming and difficult. The purpose of our study was to shorten the time required for the procedure and to obtain better quality results for light microscopic demonstration of degenerated myelin in the central and peripheral nervous systems by using microwave irradiation. Rat brain and sciatic nerve were used for the study. The middle cerebral artery was occluded and the sciatic nerve was cut to produce myelin degeneration. Marchi's method was used for staining degenerated myelin. Fixation for light microscopy that would take two days using the conventional procedure was completed in 16.5–18.5 min using microwave irradiation. While staining of degenerated myelin requires 10 days for the conventional Marchi method, we decreased it to 7 h for brain tissue and 1 h for sciatic nerve by using the microwave oven. Moreover, a better quality preparation was achieved in the groups stained under microwave irradiation than those prepared by the conventional method.  相似文献   

13.
Our studies on the effects of temperature on the demonstration of neurosecretory granules using argyrophil stains indicate an inverse relationship between the time needed for staining and temperature of the silver and reducing solutions. Careful monitoring of the temperature of silver solutions during the Grimelius procedure and its modifications show long incubation times serve in large part only to bring the solutions to reaction temperature. Tissue sections added when this temperature has been reached will stain with the same intensity as sections impregnated for the entire incubation period. We have modified the argyrophil procedure so that double-impregnation with solutions preheated to 60-70 C and development in Bodian's reducer prepared with preheated water rapidly demonstrates secretory granules. Our method does not require a microwave oven and much shorter incubation periods are required than with usual procedures. It is not necessary to incubate sections in hot solutions for extended periods of time, which can lead to detachment of sections, nonspecific staining and decomposition of the silver solution. Rinsing after impregnation and before development greatly increases contrast of argyrophil cells by reducing background staining. Our procedure results in more reliable staining of argyrophil and argentaffin cells and takes only ten minutes.  相似文献   

14.
We investigated the effects of microwave irradiation on a safranin O staining method for paraffin sections of formalin fixed rabbit larynx. The control sections were stained according to the conventional method, and the experimental sections were stained in microwave oven for 10 sec at 360 W in Weigert's iron hematoxylin, and for 30 sec at 360 W in fast green and 0.1% safranin O staining solutions. Light microscopic examination of the sections revealed that the microwave heating did not adversely affect the staining properties of cartilage tissue compared to the conventional staining method. Small differences such as darker staining of the matrix and shrinkage of the cytoplasm was observed in some microwave treated sections. The present study revealed that microwave application can be used safely for the safranin O method with the advantage of reduced staining time.  相似文献   

15.
Out studies on the effects of temperature on the demonstration of neurosecretory granules using argyrophil stains indicate an inverse relationship between the time needed for staining and temperature of the silver and reducing solutions. Careful monitoring of the temperature of silver solutions during the Grimelius procedure and its modifications show long incubation times serve in large part only to bring the solutions to reaction temperature. Tissue sections added when this temperature has been reached will stain with the same intensity as sections impregnated for the entire incubation period. We have modified the argyrophil procedure so that double-impregnation with solutions preheated to 60-70 C and development in Bodian's reducer prepared with preheated water rapidly demonstrates secretory granules. Our method does not require a microwave oven and much shorter incubation periods are required than with usual procedures. It is not necessary to incubate sections in hot solutions for extended periods of time, which can lead to detachment of sections, nonspecific staining and decomposition of the silver solution. Rinsing after impregnation and before development greatly increases contrast of argyrophil cells by reducing background staining. Our procedure results in more reliable staining of argyrophil and argentaffin cells and takes only ten minutes.  相似文献   

16.
We investigated the effects of microwave irradiation on a safranin O staining method for paraffin sections of formalin fixed rabbit larynx. The control sections were stained according to the conventional method, and the experimental sections were stained in microwave oven for 10 sec at 360 W in Weigert's iron hematoxylin, and for 30 sec at 360 W in fast green and 0.1% safranin O staining solutions. Light microscopic examination of the sections revealed that the microwave heating did not adversely affect the staining properties of cartilage tissue compared to the conventional staining method. Small differences such as darker staining of the matrix and shrinkage of the cytoplasm was observed in some microwave treated sections. The present study revealed that microwave application can be used safely for the safranin O method with the advantage of reduced staining time.  相似文献   

17.
Enterochromaffin cells from the small intestine of man, guinea pig, dog, chicken, rabbit, cat and rat were stained using the Masson-Fontana ammoniacal silver method with varying dilutions of silver nitrate solution (0.25 to 5 g per 100 ml of distilled water) and incubation temperatures (60 C and 75 C). The 0.5% solution of silver nitrate gave an argentaffin pattern similar to that of the 5% solution and had two major advantages: economically, since much less silver nitrate is used, and methodologically, since low background resulted with tissue of those species (rat, cat and rabbit) that required unusually long incubation. The staining of melanocytes was similar for all dilutions at the usual staining time (15-30 min).  相似文献   

18.
Enterochromaffin cells from the small intestine of man, guinea pig, dog, chicken, rabbit, cat and rat were stained using the Masson-Fontana ammoniacal silver method with varying dilutions of silver nitrate solution (0.25 to 5 g per 100 ml of distilled water) and incubation temperatures (60 C and 75 C). The 0.5% solution of silver nitrate gave an argentaffin pattern similar to that of the 5% solution and had two major advantages: economically, since much less silver nitrate is used, and methodologically, since low background resulted with tissue of those species (rat, cat and rabbit) that required unusually long incubation. The staining of melanocytes was similar for all dilutions at the usual staining time (15-30 min).  相似文献   

19.
Fresh pineal glands are fixed in 10% formalin at room temperature for about 3 days. After washing, dehydrating and clearing they are embedded in paraffin, sectioned and mounted. The tissues are placed in 10% silver nitrate for 24 hours, washed and impregnated in strong silver carbonate. The sections are reduced in 10% formalin, washed and toned in gold chloride, fixed in 5% hyposulfite, counterstained with erythrosin and mounted in Canada balsam. The processes of the pineal parenchymatous cells of the sheep, cow and man have been successfully stained by this method.  相似文献   

20.
The mercury-silver (Hg-Ag) argentaffin technique, known to stain specifically proteins in the lateral components of triads/diads in striated muscle cells, was applied to the central nervous system of adult rats. Following fixation in glutaraldehyde, axons in white and gray matter were selectively stained, but not perikarya or their proximal axon and dendrites. Neural tissues were postfixed 24 hr in 5% (w/v) mercuric acetate in 2% (v/v) acetic acid in distilled water, stained for 12-24 hr in darkness at 37-43 C with ammoniacal silver nitrate solution, freshly prepared by adding concentrated ammonia to 60% (w/v) silver nitrate solution until a small amount of silver oxide precipitate remained undissolved. Samples were then washed with freshly prepared 5% (w/v) sodium sulfite and distilled water. All steps were carried out using dark-colored glass flasks. Samples were dehydrated with ethanol and embedded in Paraplast or Poly Bed. Electron microscopy showed the silver-reducing protein inside the axons. Methylation abolished Hg-Ag axonal reactivity indicating that carboxyl groups were necessary for silver staining. Proteins with solubility properties characteristic of neurofilament proteins were involved in Hg-Ag staining. In the cerebellum the plexus of parallel fibers in the molecular layer were not stained, while basket cell axonal processes reacted intensely. The method appears to distinguish neuronal protein variants related to cytotypic differences in cytoskeletal neurofilaments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号