首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
The substituted cysteine accessibility method was applied to single Cx46 hemichannels to identify residues that participate in lining the aqueous pore of channels formed of connexins. Criteria for assignment to the pore included reactivity to sulfydryl-specific methanethiosulfonate (MTS) reagents from both sides of an open hemichannel and observable effects on open channel properties. We demonstrate reactivity to MTS reagents over a stretch of seventeen amino acids, D51 through L35, that constitute segments of E1 and TM1. Qualitatively, the nature of the effects caused by the Cys substitutions alone and their modification with MTS reagents of either charge indicate side chain valence is most influential in determining single channel properties with D51 and L35 defining the extracellular and intracellular limits, respectively, of the identified pore-lining region. A number of Cys substitutions beyond L35 in TM1 caused severe alterations in hemichannel function and precluded assignment to the pore. Although all six subunits can be modified by smaller MTS reagents, modifications appear limited to fewer subunits with larger reagents.  相似文献   

2.
The substituted cysteine accessibility method was applied to single Cx46 hemichannels to identify residues that participate in lining the aqueous pore of channels formed of connexins. Criteria for assignment to the pore included reactivity to sulfydryl-specific methanethiosulfonate (MTS) reagents from both sides of an open hemichannel and observable effects on open channel properties. We demonstrate reactivity to MTS reagents over a stretch of seventeen amino acids, D51 through L35, that constitute segments of E1 and TM1. Qualitatively, the nature of the effects caused by the Cys substitutions alone and their modification with MTS reagents of either charge indicate side chain valence is most influential in determining single channel properties with D51 and L35 defining the extracellular and intracellular limits, respectively, of the identified pore-lining region. A number of Cys substitutions beyond L35 in TM1 caused severe alterations in hemichannel function and precluded assignment to the pore. Although all six subunits can be modified by smaller MTS reagents, modifications appear limited to fewer subunits with larger reagents.  相似文献   

3.
Gap junction (GJ) channels provide an important pathway for direct intercellular transmission of signaling molecules. Previously we showed that fixed negative charges in the first extracellular loop domain (E1) strongly influence charge selectivity, conductance, and rectification of channels and hemichannels formed of Cx46. Here, using excised patches containing Cx46 hemichannels, we applied the substituted cysteine accessibility method (SCAM) at the single channel level to residues in E1 to determine if they are pore-lining. We demonstrate residues D51, G46, and E43 at the amino end of E1 are accessible to modification in open hemichannels to positively and negatively charged methanethiosulfonate (MTS) reagents added to cytoplasmic or extracellular sides. Positional effects of modification along the length of the pore and opposing effects of oppositely charged modifying reagents on hemichannel conductance and rectification are consistent with placement in the channel pore and indicate a dominant electrostatic influence of the side chains of accessible residues on ion fluxes. Hemichannels modified by MTS-EA+, MTS-ET+, or MTS-ES- were refractory to further modification and effects of substitutions with positively charged residues that electrostatically mimicked those caused by modification with the positively charged MTS reagents were similar, indicating all six subunits were likely modified. The large reductions in conductance caused by MTS-ET+ were visible as stepwise reductions in single-channel current, indicative of reactions occurring at individual subunits. Extension of single-channel SCAM using MTS-ET+ into the first transmembrane domain, TM1, revealed continued accessibility at the extracellular end at A39 and L35. The topologically complementary region in TM3 showed no evidence of reactivity. Structural models show GJ channels in the extracellular gap to have continuous inner and outer walls of protein. If representative of open channels and hemichannels, these data indicate E1 as constituting a significant portion of this inner, pore-forming wall, and TM1 contributing as pore-lining in the extracellular portion of transmembrane span.  相似文献   

4.
Different transmembrane (TM) α helices are known to line the pore of the cystic fibrosis TM conductance regulator (CFTR) Cl(-) channel. However, the relative alignment of these TMs in the three-dimensional structure of the pore is not known. We have used patch-clamp recording to investigate the accessibility of cytoplasmically applied cysteine-reactive reagents to cysteines introduced along the length of the pore-lining first TM (TM1) of a cysteine-less variant of CFTR. We find that methanethiosulfonate (MTS) reagents irreversibly modify cysteines substituted for TM1 residues K95, Q98, P99, and L102 when applied to the cytoplasmic side of open channels. Residues closer to the intracellular end of TM1 (Y84-T94) were not apparently modified by MTS reagents, suggesting that this part of TM1 does not line the pore. None of the internal MTS reagent-reactive cysteines was modified by extracellular [2-(trimethylammonium)ethyl] MTS. Only K95C, closest to the putative intracellular end of TM1, was apparently modified by intracellular [2-sulfonatoethyl] MTS before channel activation. Comparison of these results with recent work on CFTR-TM6 suggests a relative alignment of these two important TMs along the axis of the pore. This alignment was tested experimentally by formation of disulfide bridges between pairs of cysteines introduced into these two TMs. Currents carried by the double mutants K95C/I344C and Q98C/I344C, but not by the corresponding single-site mutants, were inhibited by the oxidizing agent copper(II)-o-phenanthroline. This inhibition was irreversible on washing but could be reversed by the reducing agent dithiothreitol, suggesting disulfide bond formation between the introduced cysteine side chains. These results allow us to develop a model of the relative positions, functional contributions, and alignment of two important TMs lining the CFTR pore. Such functional information is necessary to understand and interpret the three-dimensional structure of the pore.  相似文献   

5.
To explore aqueous accessibility and functional contributions of transmembrane domain (TM) 1 in human serotonin transporter (hSERT) proteins, we utilized the largely methanethiosulfonate (MTS) insensitive hSERT C109A mutant and mutated individual residues of hSERT TM1 to Cys followed by tests of MTS inactivation of 5-hydroxytryptamine (5-HT) transport. Residues in TM1 cytoplasmic to Gly-94 were largely unaffected by Cys substitution, whereas the mutation of residues extracellular to Ile-93 variably diminished transport activity. TM1 Cys substitutions displayed differential sensitivity to MTS reagents, with residues more cytoplasmic to Asp-98 being largely insensitive to MTS inactivation. Aminoethylmethanethiosulfonate (MTSEA), [2-(trimethylammonium) ethyl]methanethiosulfonate bromide (MTSET), and sodium (2-sulfonatoethyl)-methanethiosulfonate (MTSES) similarly and profoundly inactivated 5-HT transport by SERT mutants D98C, G100C, W103C, and Y107C. MTSEA uniquely inactivated transport activity of S91C, G94C, Y95C but increased activity at I108C. MTSEA and MTSET, but not MTSES, inactivated transport function at N101C. Notably, 5-HT provided partial to complete protection from MTSET inactivation for D98C, G100C, N101C, and Y107C. Equivalent blockade of MTSET inactivation at N101C was observed with 5-HT at both room temperature and at 4 degrees C, inconsistent with major conformational changes leading to protection. Notably, cocaine also protected MTSET inactivation of G100C and N101C, although MTS incubations with N101C that eliminate 5-HT transport do not preclude cocaine analog binding nor its inhibition by 5-HT. 5-HT modestly enhanced the inactivation by MTSET at I93C and Y95C, whereas cocaine significantly enhanced MTSET sensitivity at Y107C and I108C. In summary, our studies reveal physical differences in TM1 accessibility to externally applied MTS reagents and reveal sites supporting substrate and antagonist modulation of MTS inactivation. Moreover, we identify a limit to accessibility for membrane-impermeant MTS reagents that may reflect aspects of an occluded permeation pathway.  相似文献   

6.
Liu J  Siegelbaum SA 《Neuron》2000,28(3):899-909
The structure of the pore region of the alpha subunit of the bovine rod cyclic nucleotide-gated channel was probed using cysteine-scanning mutagenesis and hydrophilic sulfhydryl-reactive methanethiosulfonate (MTS) reagents. A region homologous to the pore helix in the X-ray crystal structure of the KcsA K(+) channel showed a helical pattern of reactivity with externally applied MTS reagents. Surprisingly, three out of four of the reactive residues, all on one face of the pore helix, only reacted with MTS reagents in the closed state. A residue on the opposite face of the helix only reacted with MTS reagents in the open state. These results indicate that the pore helix (or its surroundings) undergoes a change in conformation, perhaps involving a rotation around its long axis, that opens a gate localized to the selectivity filter of the channel.  相似文献   

7.
Mutations at critical residue positions in transmembrane span 7 (TM7) of the serotonin transporter affect the Na(+) dependence of transport. It was possible that these residues, which form a stripe along one side of the predicted alpha-helix, formed part of a water-filled pore for Na(+). We tested whether cysteine substitutions in TM7 were accessible to hydrophilic, membrane-impermeant methanethiosulfonate (MTS) reagents. Although all five cysteine-containing mutants tested were sensitive to these reagents, noncysteine control mutants at the same positions were in most cases equally sensitive. In all cases, MTS sensitivity could be traced to changes in accessibility of a native cysteine residue in extracellular loop 1, Cys-109. Moreover, none of the TM7 cysteines reacted with the biotinylating reagent MTSEA-biotin when tested in the C109A background. It is thus unlikely that the critical stripe forms part of a water-filled pore. Instead, studies of the ion dependence of the reaction between Cys-109 and MTS reagents lead to the conclusion that TM7 is involved in propagating conformational changes caused by ion binding, perhaps as part of the translocation mechanism. The critical stripe residues on TM7 probably represent a close contact region between TM7 and one or more other TMs in the transporter's three-dimensional structure.  相似文献   

8.
Previous cysteine scanning studies of the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel have identified several transmembrane segments (TMs), including TM1, 3, 6, 9, and 12, as structural components of the pore. Some of these TMs such as TM6 and 12 may also be involved in gating conformational changes. However, recent results on TM1 seem puzzling in that the observed reactive pattern was quite different from those seen with TM6 and 12. In addition, whether TM1 also plays a role in gating motions remains largely unknown. Here, we investigated CFTR’s TM1 by applying methanethiosulfonate (MTS) reagents from both cytoplasmic and extracellular sides of the membrane. Our experiments identified four positive positions, E92, K95, Q98, and L102, when the negatively charged MTSES was applied from the cytoplasmic side. Intriguingly, these four residues reside in the extracellular half of TM1 in previously defined CFTR topology; we thus extended our scanning to residues located extracellularly to L102. We found that cysteines introduced into positions 106, 107, and 109 indeed react with extracellularly applied MTS probes, but not to intracellularly applied reagents. Interestingly, whole-cell A107C-CFTR currents were very sensitive to changes of bath pH as if the introduced cysteine assumes an altered pKa-like T338C in TM6. These findings lead us to propose a revised topology for CFTR’s TM1 that spans at least from E92 to Y109. Additionally, side-dependent modifications of these positions indicate a narrow region (L102-I106) that prevents MTS reagents from penetrating the pore, a picture similar to what has been reported for TM6. Moreover, modifications of K95C, Q98C, and L102C exhibit strong state dependency with negligible modification when the channel is closed, suggesting a significant rearrangement of TM1 during CFTR’s gating cycle. The structural implications of these findings are discussed in light of the crystal structures of ABC transporters and homology models of CFTR.  相似文献   

9.
Connexins form channels with large aqueous pores that mediate fluxes of inorganic ions and biological signaling molecules. Studies aimed at identifying the connexin pore now include a crystal structure that provides details of putative pore-lining residues that need to be verified using independent biophysical approaches. Here we extended our initial cysteine-scanning studies of the TM1/E1 region of Cx46 hemichannels to include TM2 and TM3 transmembrane segments. No evidence of reactivity was observed in either TM2 or TM3 probed with small or large thiol-modifying reagents. Several identified pore residues in E1 of Cx46 have been verified in different Cx isoforms. Use of variety of thiol reagents indicates that the connexin hemichannel pore is large and flexible enough, at least in the extracellular part of the pore funnel, to accommodate uncommonly large side chains. We also find that that gating characteristics are largely determined by the same domains that constitute the pore. These data indicate that biophysical and structural studies are converging towards a view that the N-terminal half of the Cx protein contains the principal components of the pore and gating elements, with NT, TM1 and E1 forming the pore funnel.  相似文献   

10.
The positively charged S4 transmembrane segment of voltage-gated channels is thought to function as the voltage sensor by moving charge through the membrane electric field in response to depolarization. Here we studied S4 movements in the mammalian HCN pacemaker channels. Unlike most voltage-gated channel family members that are activated by depolarization, HCN channels are activated by hyperpolarization. We determined the reactivity of the charged sulfhydryl-modifying reagent, MTSET, with substituted cysteine (Cys) residues along the HCN1 S4 segment. Using an HCN1 channel engineered to be MTS resistant except for the chosen S4 Cys substitution, we determined the reactivity of 12 S4 residues to external or internal MTSET application in either the closed or open state of the channel. Cys substitutions in the NH2-terminal half of S4 only reacted with external MTSET; the rates of reactivity were rapid, regardless of whether the channel was open or closed. In contrast, Cys substitutions in the COOH-terminal half of S4 selectively reacted with internal MTSET when the channel was open. In the open state, the boundary between externally and internally accessible residues was remarkably narrow (approximately 3 residues). This suggests that S4 lies in a water-filled gating canal with a very narrow barrier between the external and internal solutions, similar to depolarization-gated channels. However, the pattern of reactivity is incompatible with either classical gating models, which postulate a large translational or rotational movement of S4 within a gating canal, or with a recent model in which S4 forms a peripheral voltage-sensing paddle (with S3b) that moves within the lipid bilayer (the KvAP model). Rather, we suggest that voltage sensing is due to a rearrangement in transmembrane segments surrounding S4, leading to a collapse of an internal gating canal upon channel closure that alters the shape of the membrane field around a relatively static S4 segment.  相似文献   

11.
The ionic pore of the P2X receptor passes through the central axis of six transmembrane (TM) helices, two from each of three subunits. Val48 and Ile328 are at the outer end of TM1 and TM2, respectively. Homology models of the open and closed states of P2X2 indicate that pore opening is associated with a large lateral displacement of Ile328. In addition, molecular dynamics simulations suggest that lipids enter the interstices between the outer ends of the TM domains. The P2X2(I328C) receptor was activated by propyl-methanethiosulfonate (MTS) as effectively as by ATP, but cysteine substitutions elsewhere in TM2 had no such effect. Other lipophilic MTS compounds (methyl, ethyl, and tert-butylethyl) had a similar effect but not polar MTS. The properties of the conducting pathway opened by covalent attachment of propyl-MTS were the same as those opened by ATP, with respect to unitary conductance, rectification, and permeability of N-methyl-d-glucamine. The ATP-binding residue Lys69 was not required for the action of propyl-MTS, although propyl-MTS did not open P2X2(K308A/I328C) receptors. The propyl-MTS did not open P2X2 receptors in which the Val48 side chain was removed (P2X2(V48G/I328C)). The results suggest that an interaction between Val48 and Ile328 stabilizes the closed channel and that this is broken by covalent attachment of a larger lipophilic moiety at the I328C receptors. Lipid intercalation between the separating TM domains during channel opening would be facilitated in P2X2(I328C) receptors with attached propyl-MTS. The results are consistent with the channel opening mechanism proposed on the basis of closed and open crystal structures and permit the refinement of the position of the TMs within the bilayer.  相似文献   

12.
Acid-sensing ion channels (ASICs) are trimeric cation channels that undergo activation and desensitization in response to extracellular acidification. The underlying mechanism coupling proton binding in the extracellular region to pore gating is unknown. Here we probed the reactivity toward methanethiosulfonate (MTS) reagents of channels with cysteine-substituted residues in the outer vestibule of the pore of ASIC1a. We found that positively-charged MTS reagents trigger pore opening of G428C. Scanning mutagenesis of residues in the region preceding the second transmembrane spanning domain indicated that the MTSET-modified side chain of Cys at position 428 interacts with Tyr-424. This interaction was confirmed by double-mutant cycle analysis. Strikingly, Y424C-G428C monomers were associated by intersubunit disulfide bonds and were insensitive to MTSET. Despite the spatial constraints introduced by these intersubunit disulfide bonds in the outer vestibule of the pore, Y424C-G428C transitions between the resting, open, and desensitized states in response to extracellular acidification. This finding suggests that the opening of the ion conductive pathway involves coordinated rotation of the second transmembrane-spanning domains.  相似文献   

13.
N-methyl-D-aspartate receptors (NMDARs) are ligand-gated ion channels that contribute to fundamental physiological processes such as learning and memory and, when dysfunctional, to pathophysiological conditions such as neurodegenerative diseases, stroke, and mental illness. NMDARs are obligate heteromultimers typically composed of NR1 and NR2 subunits with the different subunits underlying the functional versatility of NMDARs. To study the contribution of the different subunits to NMDAR channel structure and gating, we compared the effects of cysteine-reactive agents on cysteines substituted in and around the M1, M3, and M4 segments of the NR1 and NR2C subunits. Based on the voltage dependence of cysteine modification, we find that, both in NR1 and NR2C, M3 appears to be the only transmembrane segment that contributes to the deep (or voltage dependent) portion of the ion channel pore. This contribution, however, is subunit specific with more positions in NR1 than in NR2C facing the central pore. Complimentarily, NR2C makes a greater contribution than NR1 to the shallow (or voltage independent) portion of the pore with more NR2C positions in pre-M1 and M3-S2 linker lining the ion-conducting pathway. Substituted cysteines in the M3 segments in NR1 and NR2C showed strong, albeit different, state-dependent reactivity, suggesting that they play central but structurally distinct roles in gating. A weaker state dependence was observed for the pre-M1 regions in both subunits. Compared to M1 and M3, the M4 segments in both NR1 and NR2C subunits had limited accessibility and the weakest state dependence, suggesting that they are peripheral to the central pore. Finally, we propose that Lurcher mutation-like effects, which were identified in and around all three transmembrane segments, occur for positions located at dynamic protein-protein or protein-lipid interfaces that have state-dependent accessibility to methanethiosulfonate (MTS) reagents and therefore can affect the equilibrium between open and closed states following reactions with MTS reagents.  相似文献   

14.
Opening of the cystic fibrosis transmembrane conductance regulator Cl channel is dependent both on phosphorylation and on ATP binding and hydrolysis. However, the mechanisms by which these cytoplasmic regulatory factors open the Cl channel pore are not known. We have used patch clamp recording to investigate the accessibility of cytoplasmically applied cysteine-reactive reagents to cysteines introduced along the length of the pore-lining sixth transmembrane region (TM6) of a cysteine-less variant of cystic fibrosis transmembrane conductance regulator. We find that methanethiosulfonate (MTS) reagents modify irreversibly cysteines substituted for TM6 residues Phe-337, Thr-338, Ser-341, Ile-344, Val-345, Met-348, Ala-349, Arg-352, and Gln-353 when applied to the cytoplasmic side of open channels. However, the apparent rate of modification by internal [2-sulfonatoethyl] methanethiosulfonate (MTSES), a negatively charged MTS reagent, is dependent on the activation state of the channels. In particular, cysteines introduced far along the axis of TM6 from the inside (T338C, S341C, I344C) showed no evidence of significant modification even after prolonged pretreatment of non-activated channels with internal MTSES. In contrast, cysteines introduced closer to the inside of TM6 (V345C, M348C) were readily modified in both activated and non-activated channels. Access of a permeant anion, Au(CN)2, to T338C was similarly dependent upon channel activation state. The pattern of MTS modification we observe allows us to designate different pore-lining amino acid side chains to distinct functional regions of the channel pore. One logical interpretation of these findings is that cytoplasmic access to residues at the narrowest region of the pore changes concomitant with activation.  相似文献   

15.
Intracellular application of certain charged methanethiosulfonate (MTS) reagents modified and irreversibly inhibited Kir6.2 channels when cysteine substitutions were introduced at positions Ile-210, Ile-211, or Ser-212 within the putative cytoplasmic region. Inhibition depends on the spatial dimensions of the MTS reagents. Reaction of MTS reagents, having head diameters of 7.6-8.2 A, with cysteines introduced at position Ser-212 must occur in more than two subunits of the tetrameric Kir6.2 complex to inhibit channel activity. MTS reagents with head diameters less than 6.6 A modified cysteines without causing channel inhibition. An MTS reagent with a head diameter of approximately 10 A could neither modify nor inhibit the channels. Channel inhibition is interpreted as blockage of the intracellular vestibule by MTS reagents that enter the channel vestibule and react with the cysteine residues at vestibule-lining positions. Data are consistent with the hypothesis that residues Ile-210-Ser-212 line a funnel-shaped vestibule of 20-25 A in diameter, which remains unchanged during channel gating.  相似文献   

16.
We used cysteine-modifying reagents to localize the pH-sensitive gate in the renal inward-rectifier K(+) channel Kir1.1a (ROMK1). Cytoplasmic-side methanethiosulfonate (MTS) reagents blocked K(+) permeation in native Kir1.1 channels, expressed in Xenopus oocytes. Replacement of three cysteines in the N-terminus, C-terminus, and transmembrane domains eliminated this sensitivity to MTS reagents, as measured with inside-out macropatches. Reintroduction of one cysteine at 175-Kir1.1a in the second transmembrane domain allowed blockade of the open channel by the MTS reagents MTSEA, MTSET, and MTSES and by Ag(+). However, closure of the channel by low pH protected it from modification. Cysteine was also introduced into position G223, which is thought to line the cytoplasmic pore of the channel. MTSET blocked G223C in both the open and closed state. In contrast, MTSEA reduced G223C single-channel conductance from 40 to 23 pS but did not produce complete block. We conclude that cytoplasmic acidification induces a conformational change in the channel protein that prevents access of cysteine-modifying reagents, and presumably also K(+) ions, to the transmembrane pore from the cytoplasm. This is consistent with localization of the Kir1.1 pH gate at the helix bundle crossing near the cytoplasmic end of the transmembrane pore.  相似文献   

17.
Shuck K  Lamb RA  Pinto LH 《Journal of virology》2000,74(17):7755-7761
The M(2) ion channel of influenza A virus is a small integral membrane protein whose active form is a homotetramer with each polypeptide chain containing 96-amino-acid residues. To identify residues of the transmembrane (TM) domain that line the presumed central ion-conducting pore, a set of mutants was generated in which each residue of the TM domain (residues 25 to 44) was replaced by cysteine. The accessibility of the cysteine mutants to modification by the sulfhydryl-specific reagents methane thiosulfonate ethylammonium (MTSEA) and MTS tetraethylammonium (MTSET) was tested. Extracellular application of MTSEA evoked decreases in the conductances measured from two mutants, M(2)-A30C and M(2)-G34C. The changes observed were not reversible on washout, indicative of a covalent modification. Inhibition by MTSEA, or by the larger reagent MTSET, was not detected for residues closer to the extracellular end of the channel than Ala-30, indicating the pore may be wider near the extracellular opening. To investigate the accessibility of the cysteine mutants to reagents applied intracellularly, oocytes were microinjected directly with reagents during recordings. The conductance of the M(2)-W41C mutant was decreased by intracellular injection of a concentrated MTSET solution. However, intracellular application of MTSET caused no change in the conductance of the M(2)-G34C mutant, a result in contrast to that obtained when the reagent was applied extracellularly. These data suggest that a constriction in the pore exists between residues 34 and 41 which prevents passage of the MTS reagent. These findings are consistent with the proposed role for His-37 as the selectivity filter. Taken together, these data confirm our earlier model that Ala-30, Gly-34, His-37, and Trp-41 line the channel pore (L. H. Pinto, G. R. Dieckmann, C. S. Gandhi, C. G. Papworth, J. Braman, M. A. Shaughnessy, J. D. Lear, R. A. Lamb, and W. F. DeGrado, Proc. Natl. Acad. Sci. USA 94:11301-11306, 1997).  相似文献   

18.
Mutations in the GJB2 gene, which encodes Cx26, are the most common cause of sensorineural deafness. In syndromic cases, such as keratitis-ichthyosis-deafness (KID) syndrome, in which deafness is accompanied by corneal inflammation and hyperkeratotic skin, aberrant hemichannel function has emerged as the leading contributing factor. We found that D50N, the most frequent mutation associated with KID syndrome, produces multiple aberrant hemichannel properties, including loss of inhibition by extracellular Ca2+, decreased unitary conductance, increased open hemichannel current rectification and voltage-shifted activation. We demonstrate that D50 is a pore-lining residue and that negative charge at this position strongly influences open hemichannel properties. Examination of two putative intersubunit interactions involving D50 suggested by the Cx26 crystal structure, K61–D50 and Q48–D50, showed no evidence of a K61–D50 interaction in hemichannels. However, our data suggest that Q48 and D50 interact and disruption of this interaction shifts hemichannel activation positive along the voltage axis. Additional shifts in activation by extracellular Ca2+ remained in the absence of a D50–Q48 interaction but required an Asp or Glu at position 50, suggesting a separate electrostatic mechanism that critically involves this position. In gap junction (GJ) channels, D50 substitutions produced loss of function, whereas K61 substitutions functioned as GJ channels but not as hemichannels. These data demonstrate that D50 exerts effects on Cx26 hemichannel and GJ channel function as a result of its dual role as a pore residue and a component of an intersubunit complex in the extracellular region of the hemichannel. Differences in the effects of substitutions in GJ channels and hemichannels suggest that perturbations in structure occur upon hemichannel docking that significantly impact function. Collectively, these data provide insight into Cx26 structure–function and the underlying bases for the phenotypes associated with KID syndrome patients carrying the D50N mutation.  相似文献   

19.
Loop-gating is one of two voltage-dependent mechanisms that regulate the open probability of connexin channels. The loop-gate permeability barrier is formed by a segment of the first extracellular loop (E1) (the parahelix) and appears to be accompanied by straightening of the bend angle between E1 and the first transmembrane domain (TM1). Here, all-atom molecular dynamics simulations are used to identify and characterize interacting van der Waals and electrostatic networks that stabilize the parahelices and TM1/E1 bend angles of the open Cx26 hemichannel. Dynamic fluctuations in an electrostatic network in each subunit are directly linked to the stability of parahelix structure and TM1/E1 bend angle in adjacent subunits. The electrostatic network includes charged residues that are pore-lining and thus positioned to be voltage sensors. We propose that the transition to the closed state is initiated by voltage-driven disruption of the networks that stabilize the open-state parahelix configuration, allowing the parahelix to protrude into the channel pore to form the loop-gate barrier. Straightening of the TM1/E1 bend appears to be a consequence of the reorganization of the interacting networks that accompany the conformational change of the parahelix. The electrostatic network extends across subunit boundaries, suggesting a concerted gating mechanism.  相似文献   

20.
Aqueous exposure of critical residues in the selectivity region of voltage gated Na+ channels was studied by cysteine-scanning mutagenesis at three positions in each of the SS2 segments of domains III (D3) and IV (D4) of the human heart Na+ channel. Ionic currents were modified by charged cysteine-specific methanethiosulfonate (MTS) reagents, (2-aminoethyl)methanethiosulfonate (MTSEA+) and (2-sulfonatoethyl)methanethiosulfonate (MTSES) in all six of the Cys-substituted channels, including Trp → Cys substitutions at homologous positions in D3 and D4 that were predicted in secondary structure models to have buried side chains. Furthermore, in the absence of MTS modification, each of the Cys mutants showed a reduction in tetrodotoxin (TTX) block by a factor >102. Cysteine substitution without MTS modification abolished the alkali metal ion selectivity in K1418C (D3), but not in A1720C (the corresponding position in D4) suggesting that the lysine but not the alanine side chains contribute to selectivity even though both were exposed. Neither position responded to MTSES suggesting that these residues occupy either a size- or charge-restricted region of the pore. By contrast, MTSES markedly increased, and MTSEA+ markedly decreased conductance of D1713C (D4) suggesting that the acidic side chain of Asp1713 acts electrostatically in an unrestricted region. These results suggest that Lys1418 lies in a restricted region favorable to cations, whereas Asp1713 is at a more peripheral location in the Na+ channel pore. Received: 8 May 1996/Revised: 15 August 1996  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号